
SIP F. Cao

Internet-Draft C. Jennings

Expires: January 11, 2006 Cisco Systems

 July 10, 2005

 Response Identity and Authentication in Session Initiation Protocol

 draft-cao-sip-response-auth-00

Status of this Memo

 By submitting this Internet-Draft, each author represents that any

 applicable patent or other IPR claims of which he or she is aware

 have been or will be disclosed, and any of which he or she becomes

 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF), its areas, and its working groups. Note that

 other groups may also distribute working documents as Internet-

 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at

 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at

 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 11, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 This draft describes some extensions for verifying SIP response

 identity and enhancing SIP response authentication. Some mechanisms

 are demonstrated for providing and verifying the identity of SIP

 responses. In order to prevent several kinds of security attacks

 through SIP response, SIP response authentication should be provided

 through a chain of trust of the SIP responses. Some extensions are

 proposed to enhance the per-hop authentication for handling SIP

 response.

Cao & Jennings Expires January 11, 2006 [Page 1]

Internet-Draft Response Identity and Authentication July 2005

 This draft is an early work in progress and suggests some approaches

 but there is still significant discussion needed. Some of the

 attacks discussed in this draft can be mitigated by using the sips

 URL.

Table of Contents

 1. Introduction . 3

 2. Terminology . 3

 3. Overview . 4

 3.1 SIP Response Identity 4

 3.2 Chain of SIP Response Trust 5

 4. User Agent Behavior . 8

 4.1 SIP Response Identity 8

 4.2 Chain of SIP Response Trust 9

 5. Proxy Server Behavior 9

 5.1 SIP Response Identity 9

 5.2 Chain of SIP Response Trust 10

 6. Syntax and Examples . 11

 6.1 Header Syntax . 11

 7. Security Considerations 14

 8. IANA Considerations . 15

 8.1 Header Field Names . 15

 8.2 431 ’Failed Responder Identity Response Code 15

 8.3 432 ’Failed Response Authorization Response Code 15

 9. Acknowledgments . 16

 10. Appendix A. AIB used for SIP response identity 16

 11. References . 18

 11.1 Normative References 18

 11.2 Informational References 19

 Authors’ Addresses . 19

 Intellectual Property and Copyright Statements 21

Cao & Jennings Expires January 11, 2006 [Page 2]

Internet-Draft Response Identity and Authentication July 2005

1. Introduction

 This document provides enhancements for addressing security concerns

 on response messages in Session Initiation Protocol (SIP [1]). There

 are some limitations with the current handling of SIP response

 without identity verification and authentication that leaves holes

 for malicious attacks through SIP response.

 [3] described the current limitations of some security mechanisms

 provided in SIP [1]. Due to these limitations, some extensions were

 added in [3] to address the need for authenticating identity of SIP

 request.

 The identity of SIP response is more complicated than that of SIP

 request. First, SIP response may be originated by any intermediate

 SIP proxies instead of the desired SIP UAS. Because SIP UAC may send

 requests to SIP UAS without any previous association, these

 intermediate SIP proxies may not be known or verified by SIP UAC

 beforehand. Second, the presence of the exact responder for SIP

 response is not clearly defined, which is different from the From

 header field for SIP request. In general, it is obvious that the To

 header field cannot be used as described above. Contact and Reply-to

 have their own meanings and cannot be relied on for backward

 compatibility.

 In this document, some mechanisms are demonstrated to enable the

 sender to verify the identity of a corresponding SIP response.

 Furthermore, there are still some loopholes left for malicious

 attacks through SIP responses. In particular, there is no strict

 per-hop authentication for the received SIP response. This could

 enable an attacker to spoof SIP response and disturb the SIP service.

 This issue is defined as Chain of SIP Response Trust (CSRT) in this

 document. Some extensions are shown in this document to enhance CSRT

 in SIP.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

 document are to be interpreted as described in RFC 2119 [2].

 Domain-based Authentication Service (DAS): Authentication service is

 provided for each domain through its certificate and the domain

 private key. Proxies may authenticate servers with the domain keys.

 Authenticated Identity Body (AIB): some SIP headers are replicated

Cao & Jennings Expires January 11, 2006 [Page 3]

Internet-Draft Response Identity and Authentication July 2005

 into an S/MIME body of the same message and are signed with a digital

 signature (See [5])

 Chain of SIP Response Trust (CSRT): as described in Section 1.

 Certificate: An X.509v3 [15] style certificate containing a public

 key and a list of identities in the SubjectAltName that are bound to

 this key. The certificates discussed in this document are generally

 self signed and use the mechanisms in the SIP Identity specification

 to vouch for their validity.

3. Overview

 This section gives an overview of the requirements and the mechanisms

 for addressing the security concerns of SIP response. In particular,

 the first part is about SIP response identity and how to verify it.

 The rest is about CSRT for guaranteeing per-hop authentication to

 prevent malicious attacks through SIP response.

3.1 SIP Response Identity

 SIP response identify is crucial for negotiation and providing the

 desired services. UAC might guess the identity of the responder of

 the received SIP response message through the response code and some

 header fields. But there is no defined mechanism for determining

 that identity and verifying it.

 The following requirements should be addressed:

 O The identities of both UAs and proxies should be covered

 O The mechanism should be backward compatible.

 O The identity should be clearly specified for the responder of the

 SIP response message.

 O The integrity of SIP response should be covered along with the

 responder identify

 The following example is used in this document to demonstrate the

 mechanisms in many sections:

 UAC <------> Proxy-1 <------> Proxy-2 <-----> UAS

 UAC: alice@source.com

 Proxy-1: px1@source.com

 Proxy-2: px2@destination.com

 UAS: bob@destination.com

Cao & Jennings Expires January 11, 2006 [Page 4]

Internet-Draft Response Identity and Authentication July 2005

 Alice sends an INVITE request to Bob. Proxy-2 receives the request

 and informs Alice of the response code 183 Session Progress, along

 with two new header fields called Responder and Responder-Info:

 Responder: claimer=px2@destination.com;

 verify-method=DAS;

 Responder-Info: https://www.destination.com/certs

 Identify: akfjiqiowrgnavnvnnfa2o3fafanfkfjakfjalkf203urjafskjfaf

 Jprqiyupirequqpiruskfka

 [Identity needs to be recalculated]

 The field of claimer specifies the exact identity of the responder.

 The field of verify-method indicates the secure mechanism for

 verifying the identify of the responder.

 There are several security methods covered in this document to

 support this mechanism:

 O DAS

 O AIB (See Appendix A)

 For DAS, the mechanism is similar to [3]. Some headers, including

 the new header Responder, and the body of the message are used to

 compute a hash. This hash is signed with certificate for Proxy-2’s

 domain (destination.com), and the final output is inserted into the

 header field Identity introduced by [3]. One new header, Responder,

 is introduced to specify the exact responder and related

 authentication method. Responder-Info is inserted to indicate where

 to acquire the certificate for the claimer of the responder.

 For DAS, the proxy servers can obtain the certificate of DAS for the

 responder through Responder-Info. The digest in Identity can be

 verified for the responder identity. If there is a mismatch, the

 proxy server may replace the response code with 431 Failed Responder

 Identity for indicating the problem as early as possible.

3.2 Chain of SIP Response Trust

 In order to prevent several kinds of malicious attacks through SIP

 response, Chain of SIP Response Trust (CSRT) should be provided to

 enhance the per-hop authentication for receiving SIP response.

 For example, in the above example, a rogue proxy can spoof the IP

 address of Proxy-2 and send the response back to Proxy-1 along with

 its rogue domain authentication service info, before Proxy-2’s

Cao & Jennings Expires January 11, 2006 [Page 5]

Internet-Draft Response Identity and Authentication July 2005

 response. Without the per-hop authentication, Proxy-1 will be

 deceived by the response from the rogue proxy.

 The following requirements should be addressed:

 O authentication between neighboring domains or nodes can be enhanced

 O The mechanism should be simple

 O CSRT can be built when this mechanism is applied on all the hops.

 One simple authentication mechanism is proposed in this document for

 satisfying all these requirements. This mechanism is to generate a

 digest challenge for the next-hop node (or domain). The

 authorization to this challenge should be delayed and piggybacked

 with the next normal SIP response from the next-hop downstream node

 (or domain). After the digest is verified, the trust can be enhanced

 for the SIP response from the next-hop node (or domain).

 There are several security mechanisms covered in this document to

 support this mechanism:

 O DAS

 O shared secret key with the next-hop downstream node

 O public key of the next-hop downstream node

 The figure below shows a basic call to illustrate some scenarios.

 The call is initiated by alice@atlanta.com to bob@biloxy.com. The

 assumption is that Alice and Atlanta have a shared secret, Biloxi has

 a public certificate, and Bob and Biloxi have a shared secret.

Cao & Jennings Expires January 11, 2006 [Page 6]

Internet-Draft Response Identity and Authentication July 2005

 Alice Atlanta Biloxi Bob

 | INV+E(n1) | | |

 |--------F1--------->| SUBSCRIBE | |

 | +------F2----------->| |

 | | NOTIFY(cert) | |

 | |<-------F3----------+ |

 | | | |

 | | INV+E(n2) | |

 | +-------F4---------->+ INV+E(n3) |

 | | +--------F5--------->|

 | | | |

 | | | 200+hash3(n3, .) |

 | | 200+hash2(n2, .) |<-------F6----------+

 | 200+hash1(n1, .) |<------F7-----------+ |

 |<--------F8---------+ | |

 | | | |

 | | | BYE+ hash3(n3, .) |

 | | BYE+ hash2(n2, .) |<-------F9----------+

 | BYE+hash1(n1, .) |<-------F10---------+ |

 |<--------F11--------+ | |

 In message F1, Alice sends a normal invite but includes an

 Authentication header that includes the encrypted nonce, n1, that is

 encrypted for the next hop, which is Atlanta.

 In message F4, Atlanta will forward the invite to Biloxi with a nonce

 that is encrypted for Biloxi; however, to do the encryption, Atlanta

 may have to use the SUB/NOT in message F2 and F3 to fetch Biloxi’s

 public key so that Atlanta can encrypt the nonce. Note F2 and F3

 might have already been done for previous SIP dialogs from

 Atlanta.com to Biloxi.com.

 In message F5, biloxi sends the INVITE with a nonce encrypted for

 Bob, using the shared secret between Biloxi and Bob.

 In message F6, Bob inserts a header that says the responder in

 bob@biloxi.com and computes a hash over key parts of the message

 including the responder header field value. The hash includes the

 decrypted content of the nonce that Biloxi sent to Bob. When Biloxi

 receives this message it can verify that the hash is correct and that

 it believes the responder information.

 Biloxi computes a new hash over the message using the nonce2 and

 sends F7 using this hash.

 Later in message F9, F10, and F11, the hash can be computed using the

 previous nonces. The proxies do not need to be session state-full,

 as long as the nonce are constructed such that the proxy can later

Cao & Jennings Expires January 11, 2006 [Page 7]

Internet-Draft Response Identity and Authentication July 2005

 check that they are only being used in the dialog for which they were

 originally constructed.

 If the verification in Biloxy or Atlanta indicates the unmatched SIP

 response authorization, the proxy may replace the response code with

 432 Failed Response Authorization for announcing the failure of the

 next-hop response authentication.

 There are some advantages of this mechanism. For example, man-in-

 the-middle attacks can be prevented as the rogue proxy does not have

 the message forward to him in a valid way and cannot compute a valid

 hash for the response. This method can be easily distributed to

 enhance the security in any specified hops among domains.

 A proxy such as Biloxy does not need to do work until Bob actually

 sends the 180 response. At this point it must decrypt the the

 original nonce and recompute the hash. However, this is after the

 call has been at some level accepted by a device that this provides

 service for.

 Therefore, CSRT can be enhanced through this extension from end to

 end. The rogue proxies can be prevented from attacking SIP services

 through SIP responses.

4. User Agent Behavior

 The extensions in this document require new processing and parsing

 for both UAS and UAC. Their behaviors are described in this section.

4.1 SIP Response Identity

 When UAS sends the response, UAS must accurately generate the new

 header fields as the responder.

 For DAS, UAS must populate Responder inside the SIP response. In

 addition, the URI as claimer inside Responder must be consistent with

 what UAS registers in its domain. Note the URI as claimer may be

 different from other header fields, such as Reply-To, Contact, and

 To, in some scenarios. Please see Proxy Server Behavior for Identity

 and Responder-Info.

 When it receives the corresponding SIP response, UAC can verify the

 identify of the responder. For DAS, the certificate of DAS for the

 responder should be obtained to verify the digest in Identity.

 UAC may receive the response code 431 Failed Responder Identity. UAC

 should choose to avoid the verification of the responder identity.

 UAC should treat it as a failure and may terminate the dialog.

Cao & Jennings Expires January 11, 2006 [Page 8]

Internet-Draft Response Identity and Authentication July 2005

4.2 Chain of SIP Response Trust

 When UAC sends the SIP request, UAC can generate nonce before

 assembling the new authentication header field.

 For DAS, UAC must obtain the certificate of DAS for the next-hop

 node. The nonce is encrypted and inserted into Response-

 Authentication. For the shared key with the next-hop node, the nonce

 is encrypted by the shared key to ensure its privacy.

 When it receives the SIP response for the corresponding SIP request,

 UAC should verify the authorization from the next hop. It generates

 its own digest through its saved nonce in decrypted format, plus some

 header fields and the message body in response message. This digest

 is compared with the one in SIP response message from the next hop.

 If there is a mismatch, it should treat it as an error and may

 terminate the dialog with the failure reason.

 Even if UAC may receive the response code 432 Failed Response

 Authorization, UAC should finish the steps for verifying the received

 response from the next-hop. If Response-Authorization carries the

 correct digest, this response code can be trusted. The proper

 follow-up operations should take place, such as terminating the

 dialog with the failure reason. If not, the received response may be

 suspicious. UAC should analyze the reason before taking any steps

 for further operations.

 As a recipient of the SIP request with Response-Authentication, UAS

 should generate the digest for SIP response with respect to the

 specified method. The digest is inserted into UAS’s next SIP

 response.

5. Proxy Server Behavior

 The extensions in this document require new processing and parsing

 for proxy servers. Their behaviors are described in this section.

5.1 SIP Response Identity

 The proxy server may provide the domain authentication service for an

 outgoing SIP response. When a SIP response is received without the

 header Responder, the proxy server may insert the identity of the

 sender as the responder along with Responder-Info and Identity.

 After receiving the SIP response with a new header field Responder,

 the proxy servers may verify the responder identity in order to

 detect the mismatched identity as early as possible.

Cao & Jennings Expires January 11, 2006 [Page 9]

Internet-Draft Response Identity and Authentication July 2005

 For DAS, the proxy server can obtain the certificate of DAS for the

 responder through Responder-Info. The digest in Identity can be

 verified for the responder identity.

 If there is a mismatch, the proxy server may replace the response

 code with 431 Failed Responder Identity for announcing the problem.

 On the other hand, the proxy servers may relay the SIP responses

 without checking the responder identity and modifying any fields

 including response codes.

5.2 Chain of SIP Response Trust

 After receiving the SIP request with Response-Authentication, the

 proxy server must save the nonce received from the upstream node.

 It is recommended that when the proxy server relays the SIP request,

 the proxy server carry its own Response-Authentication inside the

 request. The nonce should be encrypted.

 Before relaying the SIP request to the next-hop downstream node, the

 proxy server should generate its own nonce, encrypt the nonce, and

 overwrite the Response-Authentication header field inside the SIP

 request.

 For DAS, the nonce is encrypted by the certificate of the next-hop

 domain and inserted into Response-Authentication. For the shared key

 with the downstream node, the nonce is encrypted by the shared key to

 ensure its privacy.

 Note that to reduce the risk of disclosure, the nonce received from

 the previous hop should not be forwarded to the next hop.

 If the SIP response is received, the proxy server must finish two

 steps. First, it has to verify the authorization from the next-hop

 downstream node. It generates its own digest through its saved nonce

 in decrypted format, plus some header fields and the message body in

 response message. This digest is compared with the one in the SIP

 response message from the next hop.

 Second, the proxy server has to generate another digest from the

 decrypted nonce received from the upstream node, some header fields,

 and the message body for SIP response. This digest is inserted into

 its relayed SIP response to the upstream node.

 Note that the proxy server has to obtain the certificate, the public

 key or the shared key with the downstream node (or domain) before

 Response-Authentication is assembled. [4] is recommended to retrieve

 the certificate through SUBSCRIBE and NOTIFY in the enhanced

Cao & Jennings Expires January 11, 2006 [Page 10]

Internet-Draft Response Identity and Authentication July 2005

 certificate management.

 When it receives the SIP response for the corresponding SIP request,

 the proxy server should compare the digest inside Response-

 Authorization with its generated one. If there is a mismatch, the

 proxy server should analyze this suspicious response. The proper

 follow-up operations should take place, such as replacing the

 response code with 432 Failed Response Authorization. Note that the

 saved digest for the corresponding SIP request should be piggybacked

 into its response.

 Even if it receives the response code 432 Failed Response-

 Authorization, the proxy server should finish the steps for verifying

 the validness of this received response from the downstream node.

6. Syntax and Examples

6.1 Header Syntax

 Four new SIP headers are introduced in this document. Responder,

 Responder-Info, and Response-Authorization appear in the response.

 Response-Authentication is eligible in the request.

 Responder = "Responder" HCOLON responder-param

 Responder-param = claimer-param *(SEMI verify-param)

 claimer-param = "claimer" EQUAL (name-addr / addr-spec)

 verify-param = "verify-method" EQUAL ("DAS" / token)

 Note: token in verify-param can be extended to cover other

 verification methods, such as AIB(See Appendix A in detail).

 Responder-Info = "Responder-Info" HCOLON responder-info-param

 responder-info-param = LAQUOT absoluteURI RAQUOT

 For DAS, the responder’s identity is the digest in the the Identity

 header. This digest is generated by including the following elements

 of the SIP response in a bit-exact string in this specified order.

 O addr-spec in To

 O addr-spec in From

 O addr-spec of claimer field in Responder

 O callid from Call-ID

Cao & Jennings Expires January 11, 2006 [Page 11]

Internet-Draft Response Identity and Authentication July 2005

 O the digits and the method from CSeq

 O Date field

 O body content of the message with the bits exactly as they are in

 the message (in the ABNF for SIP, the message body).

 In summary, digest-string for Identity header in the SIP response is

 digest-string = addr-spec ":" addr-spec ":"

 addr-spec ":" callid ":" 1*DIGIT SP method

 ":" SIP-Date ":" message-body

 Similar to [3], this digest-string is hashed and signed with the

 certificate for the domain. The mandatory procedure is

 sha1WithRSAEncryption as described in RFC 3371 with base64 encoding

 as described in RFC 3548.

 Here is one sample response from Bob in the above example:

 SIP/2.0 180 Ringing

 Via: SIP/2.0/UDP px1.source.com;branch=z9hG4bKnashds8

 ;received=101.37.45.98

 Via: SIP/2.0/UDP px2.destination.com;branch=bfajk34lk2

 ;received=121.56.12.1

 To: Bob <sip:bob@destination.com>;tag=a6c85cf634

 From: Alice <sip:alice@source.com>;tag=1928301774

 Call-ID: a84b4c76e66710

 Contact: <sip:bob@192.0.2.4>

 CSeq: 314159 INVITE

 Responder: claimer=bob@destination.com; verify-method=DAS

 Responder-Info: https://www.destination.com/certificate

 Identity: oiurw20984oij12kfqfknrewqfhgahg198431ufadsafafdag32r4189f

 hafaaafi298r3398i32uip293gDFQqireu904328FQWlkafqroiewrjafaf

 k189ahffahjf4289981

 Content-Length: 0

 [*Identity: needs to be recalculated]

 Two new headers are introduced for CSRT:

Cao & Jennings Expires January 11, 2006 [Page 12]

Internet-Draft Response Identity and Authentication July 2005

 Response-Authentication = "Response-Authentication"

 HCOLON resp-authen-param

 resp-authen-param = auth-method-param * (SEMI nonce-param)

 auth-method-param = "method" EQUAL auth-method-enum

 auth-method-eum = "DAS" / "SharedKey" / "PublicKey"

 nonce-param = "nonce" EQUAL "nonce-value"

 Response-Authorization = "digest" EQUAL resp-author-digest

 Resp-author-digest = LDQUOT 32LHEX RDQUOT

 For the digest generated in Response-Authorization, the digest-string

 includes

 O status code of the response

 O addr-spec in To

 O addr-spec in From

 O addr-spec of claimer field in Responder

 O method and nonce in Response-Authentication

 O callid from Call-ID

 O the digits and the method from CSeq

 O Date field

 O body content of the message with the bits exactly as they are in

 the message (in the ABNF for SIP, the message body).

 In summary, digest-string for Identity header in the SIP response is

 digest-string = status-code ":"

 addr-spec ":" addr-spec ":" addr-spec ":"

 auth-method-enum nonce-value ":"

 callid ":" 1*DIGIT SP method ":" SIP-Date ":"

 message-body

 The decrypted nonce plus this digest-string are hashed and signed

 with the key based on the specified method. The mandatory procedure

 is sha1WithRSAEncryption as described in RFC 3371 with base64

 encoding as described in RFC 3548.

Cao & Jennings Expires January 11, 2006 [Page 13]

Internet-Draft Response Identity and Authentication July 2005

7. Security Considerations

 This document provides some security enhancements on SIP response

 identity and response authentication.

 There are some advantages for the proposed mechanisms in this

 document. The new fields inside SIP response provide the needed

 responder identity with authentication methods, and are backward

 compatible with [1]. The mechanisms proposed for per-hop SIP

 response authentication can be easily used on any hops, such as hops

 between different domains, to prevent malicious attacks through SIP

 responses over those hops. Furthermore, if each hop (or all the hops

 with security concerns) is enhanced with these mechanisms, CRST can

 be created to detect and prevent several kinds of malicious attacks

 through SIP responses, and to guarantee the validness of SIP

 response.

 For example, if a rogue proxy can sniff the SIP requests from Proxy-1

 to Proxy-2, it can spoof the addresses and URIs of Proxy-2 and send

 the response back to Proxy-1 along with its own rogue domain

 authentication service info, before Proxy-2’s response. Without the

 proposed mechanisms, Proxy-1 and the caller of SIP requests will be

 deceived by the response from the rogue proxy. This will allow the

 rogue proxy to conduct attacks, such as redirecting the requests to

 attack other targets for DoS attacks, redirecting the requests to

 rogue users for information disclosure, and terminating the dialogs

 for turning down SIP services.

 With the mechanisms introduced in the document, Proxy-1 can detect

 the faked responses from the rogue proxy by checking the digest in

 Response-Authorization. These faked responses are dropped

 immediately by Proxy-1 without any impact on the callers of SIP

 requests.

 Another example is to verify the response identity, which is

 important in many scenarios. This document provides the responder

 identity through the new header fields in SIP response, and the

 mechanism for verifying this identity.

 All the hops with security concerns should apply these mechanisms for

 enhancing authentication for SIP response. If not, man-in-the-middle

 attacks may be possible again through SIP response, just as before.

 This document is based on some existing results for domain-based

 authentication and certificate management (See [3, 4]). Therefore,

 these mechanisms may be affected by the secure concerns for these

 functional components.

Cao & Jennings Expires January 11, 2006 [Page 14]

Internet-Draft Response Identity and Authentication July 2005

 As anonymous identity is a subject for future work, this document

 leaves one open question about the exact impact of these mechanisms

 on anonymous identity.

8. IANA Considerations

 This document requests changes to the header and response-code sub-

 registries of the SIP parameters IANA registry.

8.1 Header Field Names

 This document specifies four new SIP headers: Responder, Responder-

 Info, Response-Authentication and Response-Authorization. Their

 syntax is given in Section 6. These headers are defined by the

 following information, which is to be added to the header sub-

 registry under http://www.iana.org/assignments/sip-parameters.

 Header Name: Responder

 Compact Form: (none)

 Header Name: Responder-Info

 Compact Form: (none)

 Header Name: Response-Authentication

 Compact Form: (none)

 Header Name: Response-Authorization

 Compact Form: (none)

8.2 431 ’Failed Responder Identity Response Code

 This document registers a new SIP response code which is described in

 Section 3.1. It is used when the responder of the SIP response

 cannot be verified successfully. This response code is defined by

 the following information, which is to be added to the method and

 response-code sub-registry under

 http://www.iana.org/assignments/sip-parameters.

 Response Code Number: 431

 Default Reason Phrase: Failed Responder Identity

8.3 432 ’Failed Response Authorization Response Code

 This document registers a new SIP response code which is described in

 Section 3.2. It is used when the expected Response-Authorization is

 missing or doesn’t carry the correct digest. This response code is

 defined by the following information, which is to be added to the

 method and response-code sub-registry under

Cao & Jennings Expires January 11, 2006 [Page 15]

Internet-Draft Response Identity and Authentication July 2005

 http://www.iana.org/assignments/sip-parameters.

 Response Code Number: 432

 Default Reason Phrase: Bad Identity-Info

9. Acknowledgments

10. Appendix A. AIB used for SIP response identity

 The following example is used in this document to demonstrate the

 mechanisms in many sections:

 UAC <------> Proxy-1 <------> Proxy-2 <-----> UAS

 UAC: alice@source.com

 Proxy-1: px1@source.com

 Proxy-2: px2@destination.com

 UAS: bob@destination.com

 Alice sends an INVITE request to Bob. Proxy-2 receives the request

 and informs Alice of the response code 183 Session Progress, along

 with two new header fields called Responder and Responder-Info:

 Responder: claimer=px2@destination.com; verify-method=AIB

 Responder-Info: https://www.destination.com/certification

 For AIB inside S/MIME, some headers including Responder are used as

 the authenticated body inside S/MIME. It is up to the responder to

 decide if end-to-end security is needed, which may trigger the

 encryption of AIB through the public key of the caller, i.e. Alice.

 AIB is signed with responder’s private key to assure its identify.

 Assume that TLS is set up for each hop, including between Alice and

 Proxy-1 and between Proxy-1 and Proxy-2. The mechanism for handling

 AIB inside S/MIME can be applied for handling the identity in this

 scenario. Proxy-2 generates the SIP response of 183 Session

 Progress, and Proxy-2 must insert its URI into Responder with the

 link to acquire its certification inside Responder-Info.

 AIB may be generated by Proxy-2 without any encryption. After

 verifying AIB for Proxy-2’s identify, Proxy-1 can propagate the same

 info back to Alice. Then Alice can verify Responder by herself

 through AIB and Responder-Info.

 One variation for TLS is that AIB may be encrypted by Proxy-2 with

 Proxy-1’s certificate. This requires Proxy-1 to decrypt the AIB and

 verify the identity of Proxy-2 . If the identity is proven

Cao & Jennings Expires January 11, 2006 [Page 16]

Internet-Draft Response Identity and Authentication July 2005

 consistent, Proxy-1 may have to encrypt the AIB again by Alice’s

 public key. Similarly, Alice can verify the identity of the

 responder. If the verification fails, Proxy-1 may decide what the

 right follow-up operations are.

 In some scenarios for providing better secure operations, the proxies

 may verify the identity of the responder. If the verification

 indicates the unmatched SIP response identity, the proxies may

 replace the response code with the 431 Failed Responder Identity for

 announcing the identity problem as early as possible.

 If AIB is specified as the verifier-method inside Responder header,

 AIB inside S/MIME is used to provide the digital signature of the SIP

 response Identity.

 The headers used for this purpose should include the minimum set of

 To, From, Call-ID, CSeq, Date, and Responder. Any additional headers

 may be put into AIB by the responder.

 The following example is to illustrate the response from Proxy-2.

 Proxy-2 adds its identity into AIB.

 SIP/2.0 100 Trying

 Via: SIP/2.0/UDP px1.source.com;branch=z9hG4bKnashds8

 ;received=127.101.56.17

 To: Bob <sip:bob@destination.com>

 From: Alice <sip:alice@source.com>;tag=1928301774

 Call-ID: a84b4c76e66710

 CSeq: 314159 INVITE

 Max-Forwards: 50

 Date: Thu, 21 Apr 2005 16:28:56 GMT

 Responder: claimer=px2@destination.com; verify-method=AIB

 Responder-Info: https://www.destination.com/certification

 Content-Type: multipart/mixed; boundary=unique-boundary-1

 --unique-boundary-1

 Content-Type: application/sdp

 Content-Length: 147

 v=0

 o=UserA 3569844526 3569844526 IN IP4 source.com

 s=Session SDP

 c=IN IP4 px2.destination.com

 t=0 0

 m=audio 61020 RTP/AVP 0

 a=rtpmap:0 PCMU/8000

Cao & Jennings Expires January 11, 2006 [Page 17]

Internet-Draft Response Identity and Authentication July 2005

 --unique-boundary-1

 Content-Type: multipart/signed;

 protocol="application/pkcs7-signature";

 micalg=sha1; boundary=boundary68

 Content-Length: 742

 --boundary68

 Content-Type: message/sipfrag

 Content-Disposition: aib; handling=optional

 To: Bob <sip:bob@destination.com>

 From: Alice <sip:alice@source.com>;tag=1928301774

 Call-ID: a84b4c76e66710

 CSeq: 314159 INVITE

 Date: Thu, 21 Apr 2005 16:28:56 GMT

 Responder: claimer=px2@destination.com; verify-method=AIB

 --boundary68

 Content-Type: application/pkcs7-signature; name=smime.p7s

 Content-Transfer-Encoding: base64

 Content-Disposition: attachment; filename=smime.p7s;

 handling=required

 H77n8HHGTrfvbnj756tbB9HG4VQpfyF467GhIGfHfYT6vhJhjH776tbB9HG4

 T6jH77n8HHGghyHhHUujhJh756tbB9HGTrfvbnjTrfvbnj756tbB9HG4VQdT

 hJhjH776tbB9HG4VQbnj7567GhIGfHfYT6ghyHhHUujpfyF4oirDAFqre570

 AFAwqoireikf5287REW

 --boundary42--

 --unique-boundary-1--

 [*digest needs to be recalculated for this message]

 It is up to the responder to decide if end-to-end security is needed,

 which may trigger the encryption of AIB through the public key of the

 caller. In this case, only the caller can verify the signature of

 the responder.

11. References

11.1 Normative References

 [1] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,

 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:

 Session Initiation Protocol", RFC 3261, June 2002.

 [2] Bradner, S., "Key words for use in RFCs to Indicate Requirement

Cao & Jennings Expires January 11, 2006 [Page 18]

Internet-Draft Response Identity and Authentication July 2005

 Levels", BCP 14, RFC 2119, March 1997.

 [3] Peterson, J. and C. Jennings, "Enhancements for Authenticated

 Identity Management in the Session Initiation Protocol (SIP)",

 draft-ietf-sip-identity-05 (work in progress), May 2005.

 [4] Jennings, C. and J. Peterson, "Certificate Management Service

 for The Session Initiation Protocol (SIP)",

 draft-ietf-sipping-certs-01 (work in progress), February 2005.

 [5] Peterson, J., "Session Initiation Protocol (SIP) Authenticated

 Identity Body (AIB) Format", RFC 3893, September 2004.

 [6] Metz, C., "OTP Extended Responses", RFC 2243, November 1997.

11.2 Informational References

 [7] Peterson, J., "A Privacy Mechanism for the Session Initiation

 Protocol (SIP)", RFC 3323, November 2002.

 [8] Jennings, C., Peterson, J., and M. Watson, "Private Extensions

 to the Session Initiation Protocol (SIP) for Asserted Identity

 within Trusted Networks", RFC 3325, November 2002.

 [9] Schulzrinne, H., "The tel URI for Telephone Numbers", RFC 3966,

 December 2004.

Authors’ Addresses

 Feng Cao

 Cisco Systems

 170 West Tasman Drive

 MS: SJC-21/2

 San Jose, CA 95134

 USA

 Email: fcao@cisco.com

Cao & Jennings Expires January 11, 2006 [Page 19]

Internet-Draft Response Identity and Authentication July 2005

 Cullen Jennings

 Cisco Systems

 170 West Tasman Drive

 MS: SJC-21/2

 San Jose, CA 95134

 USA

 Phone: +1 408 902-3341

 Email: fluffy@cisco.com

Cao & Jennings Expires January 11, 2006 [Page 20]

Internet-Draft Response Identity and Authentication July 2005

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any

 Intellectual Property Rights or other rights that might be claimed to

 pertain to the implementation or use of the technology described in

 this document or the extent to which any license under such rights

 might or might not be available; nor does it represent that it has

 made any independent effort to identify any such rights. Information

 on the procedures with respect to rights in RFC documents can be

 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any

 assurances of licenses to be made available, or the result of an

 attempt made to obtain a general license or permission for the use of

 such proprietary rights by implementers or users of this

 specification can be obtained from the IETF on-line IPR repository at

 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any

 copyrights, patents or patent applications, or other proprietary

 rights that may cover technology that may be required to implement

 this standard. Please address the information to the IETF at

 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an

 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS

 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET

 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,

 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE

 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED

 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject

 to the rights, licenses and restrictions contained in BCP 78, and

 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the

 Internet Society.

Cao & Jennings Expires January 11, 2006 [Page 21]

SIP K. Ono

Internet-Draft S. Tachimoto

Expires: January 10, 2006 NTT Corporation

 July 9, 2005

 End-to-middle Security in the Session Initiation Protocol (SIP)

 draft-ietf-sip-e2m-sec-00

Status of this Memo

 By submitting this Internet-Draft, each author represents that any

 applicable patent or other IPR claims of which he or she is aware

 have been or will be disclosed, and any of which he or she becomes

 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF), its areas, and its working groups. Note that

 other groups may also distribute working documents as Internet-

 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at

 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at

 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 10, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 Some services provided by intermediaries depend on their ability to

 inspect a message body in the Session Initiation Protocol (SIP).

 When sensitive information is included in the message body, a SIP

 User Agent (UA) needs to protect it from other intermediaries than

 those that the UA agreed to disclose it to. This document proposes a

 mechanism for securing information passed between an end user and

 intermediaries using S/MIME. It also proposes mechanisms for a UA to

 discover intermediaries which need to inspect an S/MIME-secured

Ono & Tachimoto Expires January 10, 2006 [Page 1]

Internet-Draft End-to-middle security in SIP July 2005

 message body, or to receive the message body with data integrity.

Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

 document are to be interpreted as described in RFC-2119 [1].

Table of Contents

 1. Introduction . 3

 2. Generating S/MIME-secured Message Body 3

 2.1 S/MIME-secured Message Body for Confidentiality 3

 2.2 S/MIME-secured Message Body for Data Integrity 4

 3. Indicating the Target Content 5

 4. Discovering the Security Policies of Proxy Servers 5

 5. Behavior of UAs and Proxy Servers 7

 5.1 UAC Behavior . 7

 5.2 UAS Behavior . 8

 5.3 Proxy Behavior . 8

 6. Proxy-Required-Body Header Field Use 9

 7. Message Examples . 10

 7.1 Message Examples of End-to-Middle Confidentiality 10

 7.2 Message Examples of End-to-Middle Integrity 14

 8. Security Considerations 16

 8.1 Impersonating a Proxy Server 16

 8.2 Tampering with a Message Body 16

 8.3 Tampering with the Label of the Target Content 17

 9. IANA Considerations . 17

 10. Acknowledgments . 17

 11. References . 17

 11.1 Normative References 17

 11.2 Informative References 18

 Authors’ Addresses . 19

 Intellectual Property and Copyright Statements 20

Ono & Tachimoto Expires January 10, 2006 [Page 2]

Internet-Draft End-to-middle security in SIP July 2005

1. Introduction

 When a UA requires services provided by intermediaries that depend on

 the message body in request/response messages, end-to-end

 confidentiality currently has to be disabled. This problem is

 pointed out in Section 23 of [2]. Since such intermediaries are not

 always adjacent to the UA, this situation requires security between

 the UA and the intermediaries for the message body. We call this

 "end-to-middle security", where by "end" we mean a UA and by "middle"

 we mean an intermediary, typically a proxy server.

 End-to-middle security, as well as end-to-end security, consists of

 peer authentication, data integrity, and data confidentiality. Peer

 authentication is required to achieve data integrity and data

 confidentiality respectively. The mechanisms of end-to-middle peer

 authentication are established with pre-existing mechanisms such as

 HTTP Digest authentication [7]. Therefore, this document focuses on

 mechanisms for providing data confidentiality and integrity for end-

 to-middle security to meet the requirements discussed in [3].

 The proposed mechanisms are based on S/MIME [4], since the major

 requirement is to have little impact on standardized end-to-end

 security mechanisms, the way of handling S/MIME-secure messages. The

 mechanisms consist of generating S/MIME-secured message body and

 indicating the target message body for a proxy server selected by the

 UA. In addition, this document describes a mechanism for a UA to

 discover the intermediary which needs to inspect an S/MIME-secured

 message body, or to receive the message body with data integrity.

2. Generating S/MIME-secured Message Body

2.1 S/MIME-secured Message Body for Confidentiality

 For end-to-middle confidentiality, a UA MUST generate S/MIME CMS [5]

 EnvelopedData. Prior to generating it, a UA needs to identify the

 target proxy servers and obtain their credentials, such as their

 public key certificates or shared secrets. One method is shown in

 Section 4.

 The structure of the S/MIME CMS EnvelopedData contains encrypted data

 specified in the "encryptedContentInfo" field and its recipient list

 specified in the "recipientInfos" field. The encrypted data is

 encrypted with a content-encryption-key (CEK) and the recipient list

 contains the CEKs encrypted with different key-encryption-keys

 (KEKs), one for each recipient. The KEKs are either the public keys

 of each recipient or the shared keys between the UA and each

 recipient.

Ono & Tachimoto Expires January 10, 2006 [Page 3]

Internet-Draft End-to-middle security in SIP July 2005

 If the encrypted data is destined for a proxy server, the recipient

 list MUST contain only the proxy server. If the same encrypted data

 is destined for multiple proxy servers, or is shared with the user

 agent server (UAS) and proxy servers, the recipient list MUST be

 addressed to the proxy servers, or the UAS and the proxy servers. If

 there are multiple pieces encrypted data destined for each proxy

 server, the recipient list in each piece of encrypted data MUST

 contain the relevant proxy server. If a piece of encrypted data is

 destined for a proxy server and another piece of encrypted data for

 the UAS, the recipient of each piece of encrypted data MUST be each

 entity respectively. In order to concatenate more than one CMS

 EnvelopedData, the user agent client (UAC) MUST generate a multipart

 MIME body.

 For example, a UA uses this mechanism when keying materials, such as

 keys used for Secure RTP (SRTP), are included in the SDP[8].

 Although a proxy server needs to view SDP (i.e., for a firewall

 traversal service), the UA does not want to show the keying materials

 to the proxy server. In this case, one CMS EnvelopedData contains

 the SDP, that includes keying materials of the SRTP stream, encrypted

 for the UA. The other CMS EnvelopedData contains the SDP, that does

 not include the keying materials, encrypted for the proxy server.

 As described in [2], proxy servers are prohibited from deleting any

 message body. Even if a UAC send a piece of encrypted data only to a

 proxy server, the UAS receives it and cannot decrypt it. In order to

 avoid unnecessary error conditions in the UAS, the UAC MUST set the

 value "optional" in the handling parameter of the "Content-

 Disposition" MIME header for the message body. If the multipart MIME

 body consists of encrypted MIME bodies with the value "optional", the

 "Content-Disposition" MIME header of the multipart MIME body MUST

 also contain the value "optional" in the handling parameter. If the

 multipart MIME body contains a body with the value "required" and

 another body with the value "optional", the multipart MIME body MUST

 have either the value "required" in the handling parameter of the

 "Content-Disposition" MIME header, or no handling parameter, since

 the default value is "required" as specified in [2]. The UAS SHOULD

 NOT try to decrypt encrypted data that has the value "optional".

2.2 S/MIME-secured Message Body for Data Integrity

 For end-to-middle data integrity, a UA SHOULD generate either S/MIME

 CMS SignedData. A UA MAY generate a signature in the SIP Identity

 [9] header, if the UA has its own public and private key. These

 mechanisms allow any entity to verify the data integrity, if it is

 able to access the UA’s public key. This is why the same mechanisms

 can be used in both end-to-middle and end-to-end data integrity.

Ono & Tachimoto Expires January 10, 2006 [Page 4]

Internet-Draft End-to-middle security in SIP July 2005

 Note: There are other mechanisms which can provide data integrity,

 such as S/MIME CMS AuthenticatedData, which requires that a UA

 obtains the credential of the recipient, that is a proxy server,

 in advance. However, this is not used in [2] and require a

 mechanism to securely transmit the credential from the proxy

 server to the UA. Thus, this document does not describe the use

 of S/MIME CMS AuthenticatedData.

3. Indicating the Target Content

 A UA needs a way to indicate content that it expects to be viewed by

 a proxy server, in order for the proxy server to easily determine

 whether to process a MIME body and if so, which part. To meet this

 requirement, the UA SHOULD set a label to indicate the proxy server

 and its target content using a new SIP header, "Proxy-Required-Body".

 This header consists of one or more proxy servers’ hostnames and one

 or more "content-id" parameter(s) pointing to the "Content-ID" MIME

 header placed in the target body.

 Note: There were three other options to label a body: a new SIP

 parameter to an existing SIP header, a new MIME header, or a new

 parameter to an existing MIME header.

 1) Using a new parameter to Route header. Since a proxy server

 views this header when forwarding a request message, it seems to

 be a reasonable option. However, it cannot work with strict

 routing.

 2) Using a new MIME header, "Content-Target", as proposed in a

 previous version of this draft. Since this option is not

 necessary as a generic mechanism of MIME, it is not preferred.

 3) Using a new MIME parameter to "Content-Disposition". The same

 reason as above.

 If a UA needs to label the encrypted data, it SHOULD set the "Proxy-

 Required-Body" SIP header that contains the address of the proxy

 server and "content-id" parameter indicating the target S/MIME CMS

 EnvelopedData.

 If a UA needs to label the signed data, it SHOULD set the "Proxy-

 Required-Body" SIP header that contains the address of the server and

 "content-id" parameter indicating the S/MIME CMS SignedData. Note

 that the signature for part of a MIME body alone is meaningless in

 providing data integrity.

4. Discovering the Security Policies of Proxy Servers

 A discovery mechanism for security policies of proxy servers is

 needed when a UA does not statically know which proxy servers or

 domains have such policies. Security policies require disclosure of

Ono & Tachimoto Expires January 10, 2006 [Page 5]

Internet-Draft End-to-middle security in SIP July 2005

 data and/or verification in order to provide some services which

 needs UA’s compliance.

 There are two ways in which a UA can learn the policies of the proxy

 servers. One is by receiving an error response. A UAC can learn the

 policies in this way. However, it is not applicable to the UAS

 because there is no way to react a response message. Alternatively,

 a policy server can provide a UAC and the UAS a package mentioning

 proxy’s policy as described in [10]. When a proxy server needs to

 inspect the message body contained in the response, it needs to learn

 the policies from a policy server before sending the response.

 When the proxy server receives a request that can not be accepted due

 to its condition, the proxy server MUST reject with an error

 response. If the request contains encrypted data and the proxy

 server cannot view the message body that has to be viewed in order to

 proceed, the proxy server MUST reject with a 493 (Undecipherable)

 error response. The proxy’s public key certificate and Content-Type

 to be viewed SHOULD be contained with the error response. The proxy

 public key certificate SHOULD be set as an "application/pkix-cert"

 body. The required Content-Type SHOULD be set in the Warning header

 with a new warn-code, 380.

 If a digital signature is not attached to the message body in the

 request and the proxy server requires the integrity check, the proxy

 server MUST reject with a 495 (Signature Required) error response.

 This error response does not contain signature required Content-Type,

 since the attached signature to the whole body is always required.

 When a proxy server requires both disclosure and an integrity check

 of the message body in a request message and the message satisfies

 neither, the proxy server SHOULD send one error response at a time.

 When a proxy server cannot decrypt the message body in a request

 message and does not see if the signature is placed inside, a proxy

 server SHOULD send an error response only for requesting disclosure.

 After receiving a request message including encrypted data destined

 for the proxy server, it finds out whether the message has a

 signature attached and SHOULD send an error response for requesting

 signature when the message lacks it.

 Note: A 495 (Signature Required) response is not only generated by

 a proxy server, but also by the UAS.

 This discovery mechanism requires two more messages’ exchange for an

 error condition per each proxy server in the signaling path in order

 to establish a session between UAs. Since this causes a delay in

 session establishment, it is desirable that the UAs learn the

 security policies of the proxy servers in advance.

Ono & Tachimoto Expires January 10, 2006 [Page 6]

Internet-Draft End-to-middle security in SIP July 2005

5. Behavior of UAs and Proxy Servers

 We describe here an example of the behavior of UAs and proxy servers

 in a model in which a proxy server that provides a logging service

 for instant messages exists in a signaling path as shown in Figure 1.

 +-----+ +-----+ +-----+ +-----+

 | C |-----| C |-----| [C] |-----| C |

 +-----+ +-----+ +-----+ +-----+

 UA #1 Proxy #1 Proxy #2 UA #2

 w/Logging function

 C : Content that UA #1 allows the entities to inspect

 [C]: Content that UA #1 prevents the entity from inspecting

 Figure 1: Deployment example

5.1 UAC Behavior

 When a UAC sends a MESSAGE [11] request including encrypted message

 content for end-to-end and end-to-middle confidentiality, it MUST use

 S/MIME CMS EnvelopedData. If UA #1 is unaware of the services

 provided by Proxy #1 that requires inspecting the message body, UA #1

 will MAY get a 493 (Undecipherable) error response and the public key

 of Proxy #1. After getting the error response, UA #1 MUST use S/MIME

 CMS EnvelopedData body for UA #2 and Proxy #1. UA #1 SHOULD specify

 the hostname of Proxy #1 and Content-ID of the S/MIME CMS

 EnvelopedData to be decrypted by Proxy #1 in the "Proxy-Required-

 Body" SIP header.

 When a UAC sends a request message of which message body needs end-

 to-middle integrity, it SHOULD use S/MIME CMS SignedData to attach a

 digital signature. If UA #1 does not know the service of Proxy #1

 that requires verifying the message body, UA #1 MAY get a 495

 (Signature Required) error response. After getting the error

 response, UA #1 SHOULD generate the CMS SignedData to attach a

 signature by computing with its own private key. UA #1 SHOULD

 specify the hostname of Proxy #1 and Content-ID of the CMS SignedData

 to be validated by Proxy #1 in the "Proxy-Required-Body" SIP header.

 When a UAC sends a request and needs both end-to-middle

 confidentiality and integrity for the message body, it SHOULD first

 attach a digital signature, and then encrypted the message body. In

 this example, UA #1 SHOULD generate S/MIME CMS SignedData for the

 contents, and then generate S/MIME CMS EnvelovedData body to encrypt

 the CMS SignedData. UA#1 SHOULD specify the hostname of Proxy#1 and

 Content-IDs of the CMS SignedData and the CMS EnvelopedData destined

Ono & Tachimoto Expires January 10, 2006 [Page 7]

Internet-Draft End-to-middle security in SIP July 2005

 for Proxy #1 in the "Proxy-Required-Body".

 When a UAC generates S/MIME CMS EnvelopedData, the UAC MAY use the

 CEK reuse mechanism [12][13]. The CEK reuse mechanism has a benefit

 that enables UAs to efficiently encrypt/decrypt data in subsequent

 messages. The UAC MAY use the "unprotectedAttrs" field to stipulate

 reuse of the CEK and indicate its identifier. When the UAC reuses

 the CEK in the previous request as the KEK, it generates CMS

 EnvelopedData with the type "KEKRecipientInfo" of "RecipientInfo"

 attribute.

5.2 UAS Behavior

 When the UAS receives a request that uses S/MIME, it first decrypts

 and/or validates the S/MIME bodies as usual. In particular, when the

 CMS EnvelopedData body of the request contains the "unprotectedAttrs"

 attribute specifying reuse of the CEK, the UAS MAY keep the CEK with

 the identifier specified in the "unprotectedAttrs" attribute.

 When the UAS responds with a 200 OK, the same type of S/MIME CMS data

 is RECOMMENDED to be used. For example, if the UAS receives an

 INVITE request in which the SDP is encrypted by using the CMS

 EnvelopedData, it is RECOMMENDED to respond with a 200 OK response in

 which the SDP is encrypted by using the CMS EnvelopedData body. If

 the UAS receives an INVITE request which is attached a digital

 signature to the SDP by using the CMS SignedData, it is RECOMMENDED

 to respond with a 200 OK response which is attached a signature to

 the SDP by using the CMS SignedData. In the above example, however,

 a 200 OK response to the MESSAGE request does not need to use the

 same type of S/MIME CMS data since the response does not contain any

 MIME body.

 Even when the UAS receives a request that does not use S/MIME, the

 UAS sometimes needs end-to-end and end-to-middle confidentiality for

 the message body and/or headers in a response. In this case, the UAS

 MUST use CMS EnvelopedData to encrypt it. When the UAS sends a

 response and needs end-to-end and end-to-middle integrity for the

 message body and/or headers, it SHOULD use CMS SignedData to attach a

 digital signature. This is not different from how a UAC operates as

 described in Section 5.1.

5.3 Proxy Behavior

 When a proxy server supporting this mechanism receives a message, it

 MUST inspect the "Proxy-Required-Body" header. If the header

 includes the processing server’s own hostname, the proxy server MUST

 inspect the body specified by the Content-ID. When the specified

 body is CMS EnvelopedData, the proxy server MUST inspect it and try

Ono & Tachimoto Expires January 10, 2006 [Page 8]

Internet-Draft End-to-middle security in SIP July 2005

 to decrypt the "recipientInfos" field. If the header does not

 include the server’s own name, nor the header exists, the proxy

 server MAY view the message body.

 If there is a piece of encrypted data for the proxy, the proxy server

 will succeed in decryption using the "recipientInfos" field. If the

 proxy server fails to decrypt the message body that is required to

 view, it MUST respond with a 493 (Undecipherable) response if it is a

 request, otherwise any existing dialog MUST be terminated.

 If the proxy server succeeds in this decryption, it MAY inspect the

 "unprotectedAttrs" field of the CMS EnvelopedData body. If the

 attribute gives the key’s identifier, the proxy server MAY keep the

 CEK with its identifier until the lifetime of the CEK expires. If it

 receives subsequent messages within the lifetime, it MAY try to

 decrypt the type "KEKRecipientInfo" of the "RecipientInfo" attribute

 by using this CEK.

 When the specified content is CMS SignedData body, the proxy server

 MUST inspect it and validate the digital signature. If the

 verification fails, the proxy server SHOULD reject the subsequent

 procedure and respond with a 495 (Signature Required) response if the

 message is a request, otherwise any existing dialog MAY be

 terminated.

 When the proxy server forwards the request, it modifies the routing

 headers as it normally does, but does not modify the message body.

 The proxy server MAY delete the "Proxy-Required-Body" header that

 contains its own hostname.

 When a provider operating the proxy server does not allow any

 information related to its security policies to be revealed to the

 proxy server serving the recipient UA, the proxy server deletes the

 "Proxy-Required-Body" header. However, when a request message is

 transmitted to the proxy server via a proxy server operated by

 another provider, there is no way to conceal the header from the

 other proxy servers.

 If a proxy does not support this mechanism and receives a message

 with the "Proxy-Required-Body" header, the proxy MUST ignore the

 header and operate as usual.

6. Proxy-Required-Body Header Field Use

 The following syntax specification uses the augmented Backus-Naur

 Form (BNF) as described in RFC-2234 [6]. The new header "Proxy-

 Required-Body" is defined as a SIP header.

Ono & Tachimoto Expires January 10, 2006 [Page 9]

Internet-Draft End-to-middle security in SIP July 2005

 Proxy-Required-Body = "Proxy-Required-Body" HCOLON required-proxy

 SEMI target-body

 required-proxy = host

 target-body = cid-param *(COMMA cid-param)

 cid-param = "cid" EQUAL content-id

 content-id = LDQUOT dot-atom "@" (dot-atom / host) RDQUOT

 dot-atom = atom *("." atom)

 atom = 1*(alphanum / "-" / "!" / "%" / "*" /

 "_" / "+" / "’" / "‘" / "˜")

 Information about the use of headers in relation to SIP methods and

 proxy processing is summarized in Table 1.

 Header field where proxy ACK BYE CAN INV OPT REG

 --

 Proxy-Required-Body R dr - o - o o o

 Proxy-Required-Body 100-699 dr - o - o o o

 Header field where proxy SUB NOT PRK IFO UPD MSG

 --

 Proxy-Required-Body R dr o o - o o o

 Proxy-Required-Body 100-699 dr o o - o o o

 Table 1: Summary of header field use

 The "where" column gives the request and response types in which

 the header field can be used. The values in the "where" column

 are as follows:

 * R: The header field may appear in requests

 * 100-699: A numeral range indicates response codes with which

 the header field can be used.

 The "proxy" column gives the operations a proxy may perform on the

 header field:

 * d: A proxy can delete a header field value.

 * r: A proxy must be able to read the header field, so it cannot

 be encrypted.

 The next columns relate to the presence of a header field in a

 method:

 * o: The header field is optional.

 * -: The header field is not applicable.

7. Message Examples

 The following examples illustrate the use of the mechanism defined in

 the previous sections.

7.1 Message Examples of End-to-Middle Confidentiality

 In the following example, a UAC needs message content in a MESSAGE

Ono & Tachimoto Expires January 10, 2006 [Page 10]

Internet-Draft End-to-middle security in SIP July 2005

 request to be confidential and it allows a proxy server to view the

 message body. It also needs to reuse the CEK in the subsequent

 request messages. Even though the Content-Length has no digit, the

 appropriate length is to be set. In the example message below, the

 text with the box of asterisks ("*") is encrypted:

 MESSAGE alice@atlanta.example.com --> ss1.atlanta.example.com

 MESSAGE sip:bob@biloxi.example.com SIP/2.0

 Via: SIP/2.0/TCP client.atlanta.example.com:5060;branch=z9hG4bK74bf9

 Max-Forwards: 70

 Route: <sip:ss1.atlanta.example.com;lr>

 From: Alice <sip:alice@atlanta.example.com>;tag=9fxced76sl

 To: Bob <sip:bob@biloxi.example.com>

 Call-ID: 3848276298220188511@atlanta.example.com

 CSeq: 1 MESSAGE

 Date: Fri, 20 June 2003 13:02:03 GMT

 Proxy-Required-Body: ss1.atlanta.example.com;

 cid=1234@atlanta.example.com

 Content-Type: application/pkcs7-mime;smime-type=enveloped-data;

 name=smime.p7m

 Content-Transfer-Encoding: binary

 Content-ID: 1234@atlanta.example.com

 Content-Disposition: attachment;filename=smime.p7m;handling=required

 Content-Length: ...

 **

 * (encryptedContentInfo) *

 * Content-Type: text/plain *

 * Content-Length: ... *

 * *

 * Hello. *

 * This is confidential. *

 * *

 * (recipientInfos) *

 * RecipientInfo[0] for ss1.atlanta.example.com public key *

 * RecipientInfo[1] for Bob’s public key *

 * *

 * (unprotectedAttrs) *

 * CEKReference *

 **

 If the proxy server successfully views the message body, the UAC

 receives a 200 OK from the UAS normally. However, if a proxy server

 fails to view the message body, the UAC receives a 493

Ono & Tachimoto Expires January 10, 2006 [Page 11]

Internet-Draft End-to-middle security in SIP July 2005

 (Undecipherable) error response from the proxy server, as follows:

 493 Undecipherable alice@atlanta.example.com <--

 ss1.atlanta.example.com

 SIP/2.0 493 Undeciperable

 Warning: 380 ss1.atlanta.example.com "Required to view ’text/plain’"

 Via: SIP/2.0/TCP client.atlanta.example.com:5060;branch=z9hG4bK74bf9

 ;received=192.0.2.101

 From: Alice <sip:alice@atlanta.example.com>;tag=9fxced76sl

 To: Bob <sip:bob@biloxi.example.com>;tag=8321234356

 Call-ID: 3848276298220188511@atlanta.example.com

 CSeq: 1 MESSAGE

 Content-Type: application/pkix-cert

 Content-Length: ...

 <certificate>

 In the following example, a UA needs the SDP in an INVITE request to

 be confidential and it allows a proxy server to view the SDP. It

 also needs to reuse the CEK of the encrypted data in the subsequent

 request messages.

Ono & Tachimoto Expires January 10, 2006 [Page 12]

Internet-Draft End-to-middle security in SIP July 2005

 INVITE alice@atlanta.example.com --> ss1.atlanta.example.com

 INVITE sip:bob@biloxi.example.com SIP/2.0

 Via: SIP/2.0/TCP client.atlanta.example.com:5060;branch=z9hG4bK74bf9

 Max-Forwards: 70

 From: Alice <sip:alice@atlanta.example.com>;tag=9fxced76sl

 To: Bob <sip:bob@biloxi.example.com>

 Call-ID: 3848276298220188511@atlanta.example.com

 CSeq: 1 INVITE

 Date: Fri, 20 June 2003 13:02:03 GMT

 Contact: <sip:alice@client.atlanta.example.com;transport=tcp>

 Proxy-Required-Body: ss1.atlanta.example.com;

 cid=1234@atlanta.example.com

 Content-Type: application/pkcs7-mime;smime-type=enveloped-data;

 name=smime.p7m

 Content-Transfer-Encoding: binary

 Content-ID: 1234@atlanta.example.com

 Content-Disposition: attachment;filename=smime.p7m;handling=required

 Content-Length: ...

 **

 * (encryptedContentInfo) *

 * Content-Type: application/sdp *

 * Content-Length: 151 *

 * *

 * v=0 *

 * o=alice 2890844526 2890844526 IN IP4 client.atlanta.example.com*

 * s=- *

 * c=IN IP4 192.0.2.101 *

 * t=0 0 *

 * m=audio 49172 RTP/AVP 0 *

 * a=rtpmap:0 PCMU/8000 *

 * *

 * (recipientInfos) *

 * RecipientInfo[0] for ss1.atlanta.example.com public key *

 * RecipientInfo[1] for Bob’s public key *

 * *

 * (unprotectedAttrs) *

 * CEKReference *

 **

 When the proxy server successfully views the SDP, and the UAS

 responds with a 200 OK. The 200 OK is to be encrypted as follows:

Ono & Tachimoto Expires January 10, 2006 [Page 13]

Internet-Draft End-to-middle security in SIP July 2005

 200 OK alice@atlanta.example.com <-- ss1.atlanta.example.com

 SIP/2.0 200 OK

 Via: SIP/2.0/TCP client.atlanta.example.com:5060;branch=z9hG4bK74bf9

 ;received=192.0.2.101

 From: Alice <sip:alice@atlanta.example.com>;tag=9fxced76sl

 To: Bob <sip:bob@biloxi.example.com>;tag=8321234356

 Call-ID: 3848276298220188511@atlanta.example.com

 CSeq: 1 INVITE

 Contact: <sip:bob@client.biloxi.example.com;transport=tcp>

 Content-Type: application/pkcs7-mime;smime-type=enveloped-data;

 name=smime.p7m

 Content-Transfer-Encoding: binary

 Content-ID: 1234@atlanta.example.com

 **

 * (encryptedContentInfo) *

 * Content-Type: application/sdp *

 * Content-Length: 147 *

 * *

 * v=0 *

 * o=alice 2890844526 2890844526 IN IP4 client.atlanta.example.com*

 * s=- *

 * c=IN IP4 192.0.2.201 *

 * t=0 0 *

 * m=audio 3456 RTP/AVP 0 *

 * a=rtpmap:0 PCMU/8000 *

 * *

 * (recipientInfos) *

 * RecipientInfo[0] for Alice’s public key *

 **

7.2 Message Examples of End-to-Middle Integrity

 In the following example, a UA needs the integrity of message content

 in a MESSAGE request to be validated by a proxy server before it

 views message content. Even though the Content-Length has no digit,

 the appropriate length is to be set.

Ono & Tachimoto Expires January 10, 2006 [Page 14]

Internet-Draft End-to-middle security in SIP July 2005

 MESSAGE alice@atlanta.example.com --> ss1.atlanta.example.com

 MESSAGE sip:bob@biloxi.example.com SIP/2.0

 Via: SIP/2.0/TCP client.atlanta.example.com:5060;branch=z9hG4bK74bf9

 Max-Forwards: 70

 Route: <sip:ss1.atlanta.example.com;lr>

 From: Alice <sip:alice@atlanta.example.com>;tag=9fxced76sl

 To: Bob <sip:bob@biloxi.example.com>

 Call-ID: 3848276298220188511@atlanta.example.com

 CSeq: 1 MESSAGE

 Date: Fri, 20 June 2003 13:02:03 GMT

 Proxy-Required-Body: ss1.atlanta.example.com;

 cid=1234@atlanta.example.com

 Content-Type: multipart/signed;protocol="application/pkcs7-signature"

 ;micalg=sha1;boundary=boundary1

 Content-Length: ...

 --boundary1

 Content-Type: text/plain

 Content-Length: ...

 Hello.

 This is protected with the signature.

 --boundary1

 Content-Type: application/pkcs7-signature; name=smime.p7s

 Content-Transfer-Encoding: binary

 Content-ID:1234@atlanta.example.com

 Content-Disposition: attachment;

 filename=smime.p7s;handling=required

 [binary data]

 --boundary1--

 If the proxy server successfully validates the integrity of the

 message body, the UAC normally receives a 200 OK from the UAS.

 However, if a proxy server does not receive a signature for the whole

 message body, the UAC receives a 495 (Signature Required) error

 response from the proxy server, as follows:

Ono & Tachimoto Expires January 10, 2006 [Page 15]

Internet-Draft End-to-middle security in SIP July 2005

 495 Signature Required alice@atlanta.example.com <--

 ss1.atlanta.example.com

 SIP/2.0 495 Signature Required

 Via: SIP/2.0/TCP client.atlanta.example.com:5060;branch=z9hG4bK74bf9

 ;received=192.0.2.101

 From: Alice <sip:alice@atlanta.example.com>;tag=9fxced76sl

 To: Bob <sip:bob@biloxi.example.com>;tag=8321234356

 Call-ID: 3848276298220188511@atlanta.example.com

 CSeq: 1 MESSAGE

 Content-Length: 0

8. Security Considerations

8.1 Impersonating a Proxy Server

 In the discovery mechanism in Section 4, a UA receives a 493

 (Undecipherable) error response with the public key certificate of

 the proxy server requesting the disclosure of the message body. The

 public key certificate in the error response is vulnerable to be

 forged by a malicious user.

 To make sure that the response is sent by a proper proxy server, a UA

 needs to authenticate the response. Since the UA is not always

 adjacent to the proxy server, the UA cannot directly authenticate the

 proxy server by security mechanisms of the transport layer or the

 below. A UA SHOULD verify the chains to a trusted certificate

 authority of the public key certificate.

8.2 Tampering with a Message Body

 This document describes a mechanism to encrypt data for multiple

 recipients, such as multiple proxy servers, or a recipient UA and

 proxy servers. A piece of encrypted data is decipherable and

 vulnerable to tampering by proxy servers at the previous hops.

 In order to prevent such tampering, the UA SHOULD protect the data

 integrity before encryption, when the encrypted data is meant to be

 shared with multiple proxy servers, or to be shared with the UAS and

 selected proxy servers. The UA SHOULD generate S/MIME CMS SignedData

 and then SHOULD generate the EnvelopedData to encrypt attached data

 with a digital signature. The recipient entity SHOULD verify the

 signature to see if the encrypted data has been modified after

 decryption by an entity listed in the "recipientInfos" field.

Ono & Tachimoto Expires January 10, 2006 [Page 16]

Internet-Draft End-to-middle security in SIP July 2005

8.3 Tampering with the Label of the Target Content

 This document also describes a new SIP header for labeling a message

 body for a proxy server. If a malicious user or proxy server

 modified/added/deleted the label, the specified message body is not

 inspected by the specified proxy server, and some services requiring

 its content can not be provided. Or a proxy server will conduct an

 unnecessary processing on message bodies such as unpacking MIME

 structure, and/or signature verification. This is a possible cause

 for a Denial-of-Services attack to a proxy server.

 To prevent such attacks, data integrity for the label is needed. UAs

 and proxy servers SHOULD use TLS mechanism to communicate with each

 other. Since a proxy server trusted to provide SIP routing is

 basically trusted to process SIP headers other than those related to

 routing, hop-by-hop security is reasonable to protect the label. In

 order to further protect the integrity of the label, UAs MAY generate

 a "message/sipfrag" body and attach a digital signature for the whole

 body.

9. IANA Considerations

 This document defines a new SIP header, "Proxy-Required-Body", of

 which the syntax is shown in Section 6. This document also defines a

 new SIP response-code, 495 "Signature Required", and a new Warn-code,

 380 "Required to view Content-Type", as described in Section 4.

10. Acknowledgments

 Thanks to Rohan Mahy and Cullen Jennings for their initial support of

 this concept and to many people for useful comments, especially Jon

 Peterson, Jonathan Rosenberg, Eric Burger, and Russ Housely.

11. References

11.1 Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement

 Levels", RFC 2119, BCP 14, March 1997.

 [2] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,

 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:

 Session Initiation Protocol", RFC 3261, June 2002.

 [3] Ono, K. and S. Tachimoto, "Requirements for end-to-middle

 security in the Session Initiation Protocol (SIP)",

 draft-ietf-sipping-e2m-sec-reqs-06 (work in progress),

 March 2005.

Ono & Tachimoto Expires January 10, 2006 [Page 17]

Internet-Draft End-to-middle security in SIP July 2005

 [4] Ramsdell, B., "Secure/Multipurpose Internet Mail Extensions

 (S/MIME) Version 3.1 Certificate Handling", RFC 3850, July 2004.

 [5] Housley, R., "Cryptographic Message Syntax", RFC 2630,

 June 1999.

 [6] Crocker, D. and P. Overell, "Augmented BNF for Syntax

 Specifications: ABNF", RFC 2234, November 1997.

11.2 Informative References

 [7] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,

 Leach, P., Luotonen, A., and L. Stewart, "HTTP Authentication:

 Basic and Digest Access Authentication", RFC 2617, June 1999.

 [8] Andreasen, F., Baugher, M., and D. Wing, "Session Description

 Protocol Security Descriptions for Media Streams",

 draft-ietf-mmusic-sdescriptions-11 (work in progress),

 June 2005.

 [9] Peterson, J. and C. Jennings, "Enhancements for Authenticated

 Identity Management in the Session Initiation Protocol (SIP)",

 draft-ietf-sip-identity-05 (work in progress), May 2005.

 [10] Hilt, V., Camarillo, G., and J. Rosenberg, "Session Initiation

 Protocol (SIP) Session Policies - Document Format and Session-

 Independent Delivery Mechanism",

 draft-ietf-sipping-session-indep-policy-02 (work in progress),

 February 2005.

 [11] Campbell, Ed., B., Rosenberg, J., Schulzrinne, H., Huitema, C.,

 and D. Gurle, "Session Initiation Protocol (SIP) Extension for

 Instant Messaging", RFC 3428, December 2002.

 [12] Farrell, S. and S. Turner, "Reuse of CMS Content Encryption

 Keys", RFC 3185, October 2001.

 [13] Ono, K. and S. Tachimoto, "Key reuse in S/MIME for SIP",

 draft-ono-sipping-keyreuse-smime-00 (work in progress),

 February 2004.

 [14] Sparks, R., "Internet Media Type message/sipfrag", RFC 3420,

 November 2002.

Ono & Tachimoto Expires January 10, 2006 [Page 18]

Internet-Draft End-to-middle security in SIP July 2005

Authors’ Addresses

 Kumiko Ono

 Network Service Systems Laboratories, NTT Corporation

 Musashino-shi, Tokyo 180-8585

 Japan

 Email: ono.kumiko@lab.ntt.co.jp

 Shinya Tachimoto

 Network Service Systems Laboratories, NTT Corporation

 Musashino-shi, Tokyo 180-8585

 Japan

 Email: tachimoto.shinya@lab.ntt.co.jp

Ono & Tachimoto Expires January 10, 2006 [Page 19]

Internet-Draft End-to-middle security in SIP July 2005

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any

 Intellectual Property Rights or other rights that might be claimed to

 pertain to the implementation or use of the technology described in

 this document or the extent to which any license under such rights

 might or might not be available; nor does it represent that it has

 made any independent effort to identify any such rights. Information

 on the procedures with respect to rights in RFC documents can be

 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any

 assurances of licenses to be made available, or the result of an

 attempt made to obtain a general license or permission for the use of

 such proprietary rights by implementers or users of this

 specification can be obtained from the IETF on-line IPR repository at

 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any

 copyrights, patents or patent applications, or other proprietary

 rights that may cover technology that may be required to implement

 this standard. Please address the information to the IETF at

 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an

 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS

 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET

 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,

 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE

 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED

 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject

 to the rights, licenses and restrictions contained in BCP 78, and

 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the

 Internet Society.

Ono & Tachimoto Expires January 10, 2006 [Page 20]

SIP J. Rosenberg

Internet-Draft Cisco Systems

Expires: January 15, 2006 July 14, 2005

Obtaining and Using Globally Routable User Agent (UA) URIs (GRUU) in the

 Session Initiation Protocol (SIP)

 draft-ietf-sip-gruu-04

Status of this Memo

 By submitting this Internet-Draft, each author represents that any

 applicable patent or other IPR claims of which he or she is aware

 have been or will be disclosed, and any of which he or she becomes

 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF), its areas, and its working groups. Note that

 other groups may also distribute working documents as Internet-

 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at

 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at

 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 15, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 Several applications of the Session Initiation Protocol (SIP) require

 a user agent (UA) to construct and distribute a URI which can be used

 by anyone on the Internet to route a call to that specific UA

 instance. A URI which routes to a specific UA instance is called a

 Globally Routable UA URI (GRUU). This document describes an

 extension to SIP for obtaining a GRUU from a server, and for

 communicating a GRUU to a peer within a dialog.

Rosenberg Expires January 15, 2006 [Page 1]

Internet-Draft GRUU Mechanism July 2005

Table of Contents

 1. Introduction . 3

 2. Terminology . 4

 3. Defining a GRUU . 4

 4. Use Cases . 6

 4.1 REFER . 6

 4.2 Conferencing . 6

 4.3 Presence . 7

 5. Overview of Operation . 7

 6. Creation of a GRUU . 9

 7. Obtaining a GRUU . 12

 7.1 Through Registrations 12

 7.1.1 User Agent Behavior 12

 7.1.2 Registrar Behavior 15

 7.2 Administratively . 16

 8. Using the GRUU . 17

 8.1 Sending a Message Containing a GRUU 17

 8.2 Sending a Message to a GRUU 18

 8.3 Receiving a Request Sent to a GRUU 19

 8.4 Proxy Behavior . 19

 8.4.1 Request Targeting 19

 8.4.2 Record Routing . 21

 9. The opaque SIP URI Parameter 24

 10. Grammar . 25

 11. Requirements . 25

 12. Example Call Flow . 26

 13. Security Considerations 31

 14. IANA Considerations . 32

 14.1 Header Field Parameter 32

 14.2 URI Parameters . 32

 14.3 Media Feature Tag . 32

 14.4 SIP Option Tag . 33

 15. Acknowledgements . 34

 16. References . 34

 16.1 Normative References 34

 16.2 Informative References 35

 Author’s Address . 36

 A. Example GRUU Construction Algorithms 36

 A.1 Instance ID in opaque URI Parameter 36

 A.2 Encrypted Instance ID and AOR 36

 Intellectual Property and Copyright Statements 38

Rosenberg Expires January 15, 2006 [Page 2]

Internet-Draft GRUU Mechanism July 2005

1. Introduction

 The Session Initiation Protocol, RFC 3261 [1] is used to establish

 and maintain a dialog between a pair of user agents in order to

 manage a communications session. Messages within the dialog are sent

 from one user agent to another using a series of proxy hops called

 the route set, eventually being delivered to the remote target - the

 user agent on the other side of the dialog. This remote target is a

 SIP URI obtained from the value of the Contact header field in INVITE

 requests and responses.

 RFC 3261 mandates that a user agent populate the Contact header field

 in INVITE requests and responses with a URI that is global (meaning

 that it can be used from any element connected to the Internet), and

 that routes to the user agent which inserted it. RFC 3261 also

 mandates that this URI be valid for requests sent outside of the

 dialog in which the Contact URI was inserted.

 In practice, these requirements have proven very difficult to meet.

 Endpoints often have only an IP address and not a hostname that is

 present in DNS, and this IP address is frequently a private address,

 because the client is behind a NAT. Techniques like the Simple

 Traversal of UDP Through NAT (STUN) [15] can be used to obtain IP

 addresses on the public Internet. However, many firewalls will

 prohibit incoming SIP requests from reaching a client unless they

 first pass through a proxy sitting in the DMZ of the network. Thus

 URIs using STUN-obtained IP addresses often do not work.

 Because of these difficulties, most clients have actually been

 inserting URIs into the Contact header field of requests and

 responses with the form sip:<IP-address>. These have the property of

 routing to the client, but they are generally only reachable from the

 proxy to which the user is directly connected. This limitation does

 not prevent normal SIP calls from proceeding, since the user’s proxy

 can usually reach these private addresses, and the proxy itself is

 generally reachable over the public network. However, this issue has

 impacted the ability of several other SIP mechanisms and applications

 to work properly.

 An example of such an application is call transfer [24], based on the

 REFER method [7]. Another application is the usage of endpoint-

 hosted conferences within the conferencing framework [17]. Both of

 these mechanisms require the endpoint to be able to construct a URI

 that not only routes to that user agent, but is usable by other

 entities anywhere on the Internet as a target for new SIP requests.

 This specification formally defines a type of URI called a Globally

 Routable User Agent URI (GRUU) which has the properties of routing to

Rosenberg Expires January 15, 2006 [Page 3]

Internet-Draft GRUU Mechanism July 2005

 the UA and being reachable from anywhere. Furthermore, it defines a

 new mechanism by which a client can obtain a GRUU from its SIP

 provider, allowing it to use that URI in the Contact header fields of

 its dialog forming requests and responses. Since the GRUU is

 provided by the user’s SIP provider, the GRUU properties can be

 guaranteed by the provider. As a result, the various applications

 which require the GRUU property, including transfer, presence, and

 conferencing, can work reliably.

2. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",

 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",

 and "OPTIONAL" are to be interpreted as described in RFC 2119 [5] and

 indicate requirement levels for compliant implementations.

 This specification also defines the following additional terms:

 contact: The term "contact", when used in all lowercase, refers to a

 URI that is bound to an AOR or GRUU by means of a registration. A

 contact is usually a SIP URI, and is bound to the AOR and GRUU

 through a REGISTER request by appearing as the value of the

 Contact header field.

 remote target: The term "remote target" refers to a URI that a user

 agent uses to identify itself for receipt of subsequent requests

 mid-dialog. A remote target is established by placing a URI in

 the Contact header field of a dialog forming request or response.

 Contact header field: The term "Contact header field", with a

 capitalized C, refers to the header field which can appear in

 REGISTER requests and responses, redirects, or in dialog creating

 requests and responses. Depending on the semantics, the Contact

 header field sometimes conveys a contact, and sometimes conveys a

 remote target.

3. Defining a GRUU

 URIs have properties. Those properties are granted to the URI based

 on the policies of the domain that owns the URI, and those properties

 are not visible by inspection of the URI. Some of the properties

 that a domain can confer upon a URI are:

 The AOR property: A URI has the Address of Record (AOR) property if a

 domain will allow it to appear in the To header field of REGISTER

 request.

Rosenberg Expires January 15, 2006 [Page 4]

Internet-Draft GRUU Mechanism July 2005

 The alias property: A URI is an alias if its treatment by the domain

 is identical to another URI.

 The service treatment property: A URI has the service treatment

 property if the domain will apply applications, features, and

 services to calls made by, or made to, that URI, possibly based on

 associating that URI with a user that has "subscribed" to various

 features.

 The anonymous property: A URI has the anonymous property when it is

 not possible, by inspection of the URI, to discern the user with

 whom the URI is associated.

 The identity property: A URI is considered an identity when it is one

 that the domain will authorize as a valid value in the From header

 field of a request, such that an authentication service will sign

 a request with that URI [19].

 This specification focuses on a property, called the Globally

 Routable User Agent URI (GRUU) property. A URI possesses this

 property when the following is true:

 Global: It can be used by any UAC connected to the Internet. In that

 regard, it is like the address-of-record (AOR) property. A URI

 with the AOR property (for example, sip:joe@example.com), is meant

 to be used by anyone to reach that user. The same is true for a

 URI with the GRUU property.

 Routes to a Single Instance: A request sent to that URI will be

 routed to a specific UA instance. In that regard, it is unlike

 the address-of-record property. When a request is sent to a URI

 with the AOR property, routing logic is applied in proxies to

 deliver the request to one or more UAs. That logic can result in

 a different routing decision based on the time-of-day, or the

 identity of the caller. However, when a request is made to a URI

 with the GRUU property, the routing logic is dictated by the GRUU

 property. The request has to be delivered to a very specific UA

 instance. That UA instance has to be the same UA instance for all

 requests sent to that URI.

 Long Lived: The URI with the GRUU property persists for relatively

 long periods of time, ideally being valid for the duration of

 existence of the AOR itself. This property cannot be completely

 guaranteed, but providers are supposed to do their best to make

 sure that a GRUU remains viable indefinitely.

 A URI can have any combination of these properties. It is the

 responsibility of the domain which mints the URI to determine what

Rosenberg Expires January 15, 2006 [Page 5]

Internet-Draft GRUU Mechanism July 2005

 properties are conferred upon that URI. This specification imposes

 requirements on a domain that mints a URI with the GRUU property.

 For convenience, a URI that possesses the GRUU property is also

 referred to as a GRUU.

4. Use Cases

 There are several use cases where the GRUU properties are truly

 needed in order for a SIP application to operate.

4.1 REFER

 Consider a blind transfer application [24]. User A is talking to

 user B. User A wants to transfer the call to user C. So, user A

 sends a REFER to user C. That REFER looks like, in part:

 REFER sip:C@example.com SIP/2.0

 From: sip:A@example.com;tag=99asd

 To: sip:C@example.com

 Refer-To: (URI that identifiers B’s UA)

 The Refer-To header field needs to contain a URI that can be used by

 user C to place a call to user B. However, this call needs to route

 to the specific UA instance which user B is using to talk to user A.

 If it didn’t, the transfer service would not execute properly. This

 URI is provided to user A by user B. Because user B doesn’t know who

 user A will transfer the call to, the URI has to be usable by anyone.

 Therefore, it needs to be a GRUU.

4.2 Conferencing

 A similar need arises in conferencing [17]. In that framework, a

 conference is described by a URI which identifies the focus of the

 conference. The focus is a SIP UA that acts as the signaling hub for

 the conference. Each conference participant has a dialog with the

 focus. One case described in the framework is where a user A has

 made a call to user B. User A puts user B on hold, and calls user C.

 Now, user A has two separate dialogs for two separate calls - one to

 user B, and one to user C. User A would like to conference them. To

 do this, user A’s user agent morphs itself into a focus. It sends a

 re-INVITE or UPDATE [4] on both dialogs, and provides user B and user

 C with an updated remote target that now holds the conference URI.

 The URI in the Contact header field also has a callee capabilities

 [11] parameter which indicates that this URI is a conference URI.

 User A proceeds to mix the media streams received from user B and

 user C. This is called an ad-hoc conference.

Rosenberg Expires January 15, 2006 [Page 6]

Internet-Draft GRUU Mechanism July 2005

 At this point, normal conferencing features can be applied. That

 means that user B can send another user, user D, the conference URI,

 perhaps in an email. User D can send an INVITE to that URI, and join

 the conference. For this to work, the conference URI used by user A

 in its re-INVITE or UPDATE has to be usable by anyone, and it has to

 route to the specific UA instance of user A that is acting as the

 focus. If it didn’t, basic conferencing features would fail.

 Therefore, this URI has to be a GRUU.

4.3 Presence

 In a SIP-based presence [25] system, the Presence Agent (PA)

 generates notifications about the state of a user. This state is

 represented with the Presence Information Document Format (PIDF)

 [23]. In a PIDF document, a user is represented by a series of

 tuples, each of which describes the services that the user has. Each

 tuple also has a URI in the <contact> element, which is a SIP URI

 representing that device. A watcher can make a call to that URI,

 with the expectation that the call is routed to the service whose

 presence is represented in the tuple.

 In some cases, the service represented by a tuple may exist on only a

 single user agent associated with a user. In such a case, the URI in

 the presence document has to route to that specific UA instance.

 Furthermore, since the presence document could be used by anyone who

 subscribes to the user, the URI has to be usable by anyone. As a

 result, it has to be a GRUU.

 It is interesting to note that the GRUU may need to be constructed by

 a presence agent, depending on how the presence document is computed

 by the server.

5. Overview of Operation

 This section is tutorial in nature, and does not specify any

 normative behavior.

 This extension allows a UA to obtain a GRUU, and to use a GRUU.

 These two mechanisms are separate, in that a UA can obtain a GRUU in

 any way it likes, and use the mechanisms in this specification to use

 them. This specification defines two mechanisms for obtaining a GRUU

 - through registrations, and through administrative operation. Only

 the former requires protocol operations.

 A UA can obtain a GRUU by generating a normal REGISTER request, as

 specified in RFC 3261 [1]. This request contains a Supported header

 field with the value "gruu", indicating to the registrar that the UA

 supports this extension. The UA includes a "sip.instance" media

Rosenberg Expires January 15, 2006 [Page 7]

Internet-Draft GRUU Mechanism July 2005

 feature tag in the Contact header field of each contact for which a

 GRUU is desired. This media feature tag contains a globally unique

 ID that identifies the UA instance. If the domain that the user is

 registering against also supports GRUU, the REGISTER responses will

 contain the "gruu" parameter in each Contact header field. This

 parameter contains a GRUU which the domain guarantees will route to

 that UA instace. The GRUU is associated with the UA instace. Should

 the client change its contact, but indicate that it represents the

 same instance ID, the server would provide the same GRUU.

 Furthermore, if the registration for the contact expires, and the UA

 registers the contact at a later time with the same instance

 identifier, the server would provide the same GRUU.

 Since the GRUU is a URI like any other, it can be handed out by a UA

 by placing it in any header field which can contain a URI. A UA will

 place the GRUU into the Contact header field of dialog creating

 requests and responses it generates; RFC 3261 mandates that the

 Contact header field have the GRUU property, and this specification

 provides a reliable way for a UA to obtain one. In other words,

 clients use the GRUU as a remote target. However, since the remote

 target used by clients to date has typically not had the GRUU

 properties, implementations have adapted their behaviors (oftentimes

 in proprietary ways) to compensate. To facilitate a transition away

 from these behaviors, it is necessary for a UA receiving the message

 to know whether the remote target is a GRUU or not. To make this

 determination, the UA looks for the presence of the Supported header

 field in the request or response. If it is present with a value of

 "gruu", it means that the remote target is a GRUU.

 A domain can construct a GRUU in any way it chooses. However, it is

 sometimes desirable to construct them in a way which allows for any

 entity that receives the GRUU to determine the AOR for the subscriber

 associated with the UA instance. To facilitate that, the GRUU can be

 constructed by adding the "opaque" URI parameter to the subscriber’s

 AOR. This parameter would contain the context needed for the domain

 to recognize and treat the URI as a GRUU.

 When a UA uses a GRUU, it has the option of adding the "grid" URI

 parameter to the GRUU. This parameter is opaque to the proxy server

 handling the domain. However, when the server maps the GRUU to the

 contact bound to it, the server will add the grid parameter into the

 registered contact, and use the result in the Request URI. As a

 result, when the UA receives the request, the Request URI will

 contain the grid parameter it placed in the corresponding GRUU.

 The "grid" and "opaque" URI parameters play similar roles, but

 complement each other. The "opaque" parameter is added by the owner

 of the domain in order to ensure that the URI has the GRUU property.

Rosenberg Expires January 15, 2006 [Page 8]

Internet-Draft GRUU Mechanism July 2005

 The "grid" parameter is added by the UA instance so that, when a

 request is received by that instance, it can determine the context of

 the request.

6. Creation of a GRUU

 A GRUU is a URI that is created and maintained by a server

 authoritative for the domain in which the GRUU resides.

 Independently of whether the GRUU is created as a result of a

 registration or some other means, a server maintains certain

 information associated with the GRUU. This information, and its

 relationship with the GRUU, is modeled in Figure 2.

 +-----------+ +-----------+

 | | associated | |

 | |1 with n| |

 | AOR |<----------------| GRUU |

 | | | |

 | | | |

 +-----------+ +-----------+

 ^1 is ^^ |n

 | bound //0..1 |

 is| to// |associated

 bound| // |with

 to| // |

 | // |

 |0..n // V1

 +-----------+ // +-----------+

 | | / 0..n | |

 | | | |

 | contact |---------------->| Instance |

 | |1 has 0..1| ID |

 | | | |

 +-----------+ +-----------+

 Figure 2

 The instance ID plays a key role in this specification. It is an

 identifier, represented as a URN, that uniquely identifies a SIP user

 agent amongst all other user agents associated with an AOR. For

 hardware-based user agents, the instance ID would typically be burned

 into the device in the factory, similar to the way a unique serial

Rosenberg Expires January 15, 2006 [Page 9]

Internet-Draft GRUU Mechanism July 2005

 number is encoded into each device. For software-based user agents,

 each installation represents a unique instance. As such, the

 identifier could be generated on installation and then stored on disk

 for persistence.

 A GRUU is associated, in a one-to-one fashion, with the combination

 of an AOR and instance ID. This combination is referred to as an

 instance ID/AOR pair. For each GRUU, there is one instance ID/AOR

 pair, and for each instance ID/AOR pair, there is one GRUU. The

 instance ID/AOR pair serves to uniquely identify a user agent

 instance servicing a specific AOR. The AOR identifies a resource,

 such as a user or service within a domain, and the instance ID

 identifies a specific UA instance servicing requests for that

 resource.

 It is important to understand that GRUU is associated with the

 instance ID/AOR pair, not just the instance ID. For example, if a

 user registered the contact sip:ua@pc.example.com to the AOR

 sip:user@example.com, and included a +sip.instance="urn:foo:1"

 parameter in the Contact header field, and also registered the

 contact sip:ua-112@pc.example.com with the same +sip.instance Contact

 header field parameter to a second AOR, say sip:boss@example.com,

 each of those UA instances would have a different GRUU, since they

 belong to different AORs. That is the reason why a single instance

 ID can be associated with multiple GRUU; there would be one such

 association for each AOR. The same goes for the association of AOR

 to GRUU; there would be one such association for each instance ID.

 In many ways, a GRUU is a parallel to an AOR. A URI cannot have both

 the AOR property and the GRUU property. Just as a contact can be

 bound to an AOR, a contact can be bound to a GRUU. Any number of

 contacts can be bound to an AOR, but only those contacts for a

 particular instance are bound to the GRUU. As discussed in

 Section 8.4.1 If there are more than one contacts of a particular

 instance bound to the AOR, only the most recently registered one is

 used. Similarly, if there are more than one contacts of a particular

 instance bound to the GRUU, only the most recently registered one is

 used. Using only the most recently registered contact from an

 instance ensures that, upon failure and reboot, an instance that

 obtains and registers a new IP address immediately renders its

 previous one inactive. Multiple active registrations from a single

 instance is useful for certain high availability scenarios, and

 mechanisms for achieving that using a GRUU are described in [18].

 The contacts that are bound to the GRUU are always the ones that have

 an instance ID associated with that GRUU. If none of the contacts

 bound to the AOR have the instance ID associated with the GRUU, then

 there are no contacts bound to the GRUU. If a contact should become

Rosenberg Expires January 15, 2006 [Page 10]

Internet-Draft GRUU Mechanism July 2005

 registered to the AOR that has an instance ID equal to the one

 associated with the GRUU, that contact also becomes bound to the

 GRUU. If that contact should expire, it will no longer be bound to

 the AOR, and similarly, it will no longer be bound to the GRUU. The

 URI of the contact is irrelevant in determining whether it is bound

 to a particular GRUU; only the instance ID and AOR are important.

 This specification does not mandate a particular mechanism for

 construction of the GRUU. Several example approaches are given in

 Appendix A. However, the GRUU MUST exhibit the following properties:

 o The domain part of the URI is an IP address present on the public

 Internet, or, if it is a host name, the resolution procedures of

 RFC 3263 [2], once applied, result in an IP address on the public

 Internet.

 o When a request is sent to the GRUU, it routes to a server that can

 make sure the request is delivered to the UA instance. For GRUU

 created through registrations, this means that the GRUU has to

 route to a proxy server with access to registration data.

 o A server in the domain can determine that the URI is a GRUU.

 o For each GRUU, both the SIP and SIPS versions MUST exist.

 Section 8.4 defines additional behaviors that a proxy must exhibit on

 receipt of a GRUU.

 When a domain constructs a URI with the GRUU properties, it MAY

 confer other properties upon this URI as a matter of domain policy.

 Of course, the AOR property cannot also be provided, since the GRUU

 and AOR properties are mututally exclusive. However, a domain can

 elect to confer properties like identity, anonymity, and service

 treatment. There is nothing in this specification that can allow the

 recipient of the GRUU to determine which of these properties besides

 the GRUU property itself have been conferred to the URI.

 The service treatment property merits further discussion. Typically,

 the services a proxy executes upon receipt of a request sent to a

 GRUU will be a subset of those executed when a request is sent to the

 AOR. For requests that are outside of a dialog, it is RECOMMENDED to

 apply screening types of functions, both automated (such as black and

 white list screening) and interactive (such as interactive voice

 response (IVR) applications which confer with the user to determine

 whether to accept a call). However, forwarding services, such as

 call forwarding, SHOULD NOT be provided for requests sent to a GRUU.

 The intent of the GRUU is to target a specific UA instance, and this

 is incompatible with forwarding operations.

Rosenberg Expires January 15, 2006 [Page 11]

Internet-Draft GRUU Mechanism July 2005

 Mid-dialog requests will also be sent to GRUUs, as they are included

 as the remote-target in dialog forming requests and responses. In

 those cases, however, a proxy SHOULD only apply services that are

 meaningful for mid-dialog requests generally speaking. This excludes

 screening functions, as well as forwarding ones.

 The "opaque" URI parameter, defined in Section 9 provides a means for

 a domain to construct a GRUU such that the AOR associated with the

 GRUU is readily extractable from the GRUU. Unless the GRUU is meant

 to also possess the anonymity property, it is RECOMMENDED that GRUUs

 be constructed using this parameter.

 Since the GRUU is associated with both the instance ID and AOR, for

 any particular AOR there can be a potentially infinite number of

 GRUU, one for each instance ID. However, the instance IDs are only

 known to the network when an instance actually registers with one.

 As a result, it is RECOMMENDED that a GRUU exist from the time a

 contact with an instance ID is first registered to an AOR, until the

 time that the AOR is no longer valid in the domain. In this context,

 the GRUU exists if the domain, upon receiving a request for that

 GRUU, recognizes it as a GRUU, can determine the AOR and instance ID

 associated with it, and translate the GRUU to a contact if there is

 one with that instance ID currently registered. This property of the

 GRUU can be difficult to achieve through software failures and power

 outages within a network, and for this reason, the requirement is at

 RECOMMENDED strength, and not MUST.

7. Obtaining a GRUU

 A GRUU can be obtained in many ways. This document defines two -

 through registrations, and through administrative operation.

7.1 Through Registrations

 When a GRUU is associated with a user agent that comes and goes, and

 therefore registers to the network to bind itself to an AOR, a GRUU

 is provided to the user agent through SIP REGISTER messages.

7.1.1 User Agent Behavior

7.1.1.1 Generating a REGISTER Request

 When a UA compliant to this specification generates a REGISTER

 request (initial or refresh), it MUST include the Supported header

 field in the request. The value of that header field MUST include

 "gruu" as one of the option tags. This alerts the registrar for the

 domain that the UA supports the GRUU mechanism.

Rosenberg Expires January 15, 2006 [Page 12]

Internet-Draft GRUU Mechanism July 2005

 Furthermore, for each contact for which the UA desires to obtain a

 GRUU, the UA MUST include a "sip.instance" media feature tag as a UA

 characteristic [11]. As described in [11], this media feature tag

 will be encoded in the Contact header field as the "+sip.instance"

 Contact header field parameter. The value of this parameter MUST be

 a URN [10]. [11] defines equality rules for callee capabilities

 parameters, and according to that specification, the "sip.instance"

 media feature tag will be compared by case sensitive string

 comparison. This means that the URN will be encapsulated by angle

 brackets ("<" and ">") when it is placed within the quoted string

 value of the +sip.instance contact parameter. The case sensitive

 matching rules apply only to the generic usages defined there and in

 the caller preferences specification [22]. When the instance ID is

 used in this specification, it is effectively "extracted" from the

 value in the "sip.instance" media feature tag, and thus equality

 comparisons are performed using the rules for URN equality specific

 to the scheme in the URN. If the element performing the comparisons

 does not understand the URN scheme, it performs the comparisons using

 the lexical equality rules defined in RFC 2141. Lexical equality may

 result in two URN being considered unequal when they are actually

 equal. In this specific usage of URNs, the only element which

 provides the URN is the SIP UA instance identified by that URN. As a

 result, the UA instance SHOULD provide lexically equivalent URNs in

 each registration it generates. This is likely to be normal behavior

 in any case; clients are not likely to modify the value of the

 instance ID so that it remains functionally equivalent to previous

 registrations, but lexigraphically different.

 This specification makes no normative recommendation on the specific

 URN that is to be used in the "+sip.instance" Contact header field

 parameter. However, the URI MUST be selected such that the instance

 can be certain that no other instance registering against the same

 AOR would choose the same URI value. Usage of a URN is a MUST since

 it provides a persistent and unique name for the UA instance,

 allowing it to obtain the same GRUU over time. It also provides an

 easy way to guarantee uniquess within the AOR. However, this

 specification does not require a long-lived and persistent instance

 identifier to properly function, and in some cases, there may be

 cause to use an identifier with weaker temporal persistence.

 One URN that readily meets the requirements of this specification is

 the UUID URN [26], which allows for non-centralized computation of a

 URN based on time, unique names (such as a MAC address) or a random

 number generator. An example of a URN that would not meet the

 requirements of this specification is the national bibliographic

 number [16]. Since there is no clear relationship between an SIP UA

 instance and a URN in this namespace, there is no way a selection of

 a value can be performed that guarantees that another UA instance

Rosenberg Expires January 15, 2006 [Page 13]

Internet-Draft GRUU Mechanism July 2005

 doesn’t choose the same value.

 If a UA instance is registering against multiple AOR, it is

 RECOMMENDED that a UA instance provide a different contact URI for

 each AOR. This is needed for the UA to determine which GRUU to use

 as the remote target in responses to incoming dialog forming

 requests, as discussed in Section 8.1.

 Besides the procedures discussed above, the REGISTER request is

 constructed identically to the case where this extension was not

 understood. Specifically, the contact in the REGISTER request SHOULD

 NOT contain the gruu Contact header field parameter, and the contact

 URI itself SHOULD NOT contain the grid parameter defined below. Any

 such parameters are ignored by the registrar, as the UA cannot

 propose a GRUU for usage with the contact.

 If a UA wishes to guarantee that the request is not processed unless

 the domain supports and uses this extension, it MAY include a Require

 header field in the request with a value that contains the "gruu"

 option tag.

7.1.1.2 Processing the REGISTER Response

 If the response is a 2xx, each Contact header field that contained

 the "+sip.instance" Contact header field parameter may also contain a

 "gruu" parameter. This parameter contains a SIP or SIPS URI that

 represents a GRUU corresponding to the UA instance that registered

 the contact. The URI will be a SIP URI if the To header field in the

 REGISTER request contained a SIP URI, else it will be a SIPS URI if

 the To header field in the REGISTER request contained a SIPS URI.

 Any requests sent to the GRUU URI will be routed by the domain to the

 contact with that instance ID. The GRUU will not normally change in

 subsequent 2xx responses to REGISTER. Indeed, even if the UA lets

 the contact expire, when it re-registers it at any later time, the

 registrar will normally provide the same GRUU for the same address-

 of-record and instance ID. However, as discussed above, this

 property cannot be completely guaranteed, as network failures may

 make it impossible to provide an identifier that persists for all

 time. As a result, a UA MUST be prepared to receive a different GRUU

 for the same instance ID/AOR pair in a subsequent registration

 response.

 A non-2xx response to the REGISTER request has no impact on any

 existing GRUU previously provided to the UA. Specifically, if a

 previously successful REGISTER request provided the UA with a GRUU, a

 subsequent failed request does not remove, delete, or otherwise

 invalidate the GRUU.

Rosenberg Expires January 15, 2006 [Page 14]

Internet-Draft GRUU Mechanism July 2005

7.1.2 Registrar Behavior

 A registrar MAY create a GRUU for a particular instance ID/AOR pair

 at any time. Of course, if a UA requests a GRUU in a registration,

 and the registrar has not yet created one, it will need to do so in

 order to respond to the registration request. However, the registrar

 can create the GRUU in advance of any request from a UA.

 A registrar MUST create both the SIP and SIPS versions of the GRUU,

 such that if the GRUU exists, both URI exist.

7.1.2.1 Processing a REGISTER Request

 When a registrar compliant to this specification receives a REGISTER

 request, it checks for the presence of the Require header field in

 the request. If present, and if it contains the "gruu" option tag,

 the registrar MUST follow the procedures in the remainder of this

 section and Section 7.1.2.2 (that is, the procedures which result in

 the creation of new GRUUs for contacts indicating an instance ID, and

 the listing of GRUUs in the REGISTER response). If not present, but

 a Supported header field was present with the "gruu" option tag, the

 registrar SHOULD follow the procedures in the remainder of this

 section and Section 7.1.2.2. If the Supported header field was not

 present, or it if was present but did not contain the value "gruu",

 the registrar SHOULD NOT follow the procedures in the remainder of

 this section or Section 7.1.2.2.

 As the registrar is processing the contacts in the REGISTER request

 according to the procedures of step 7 in Section 10.3 of RFC 3261,

 the registrar additionally checks whether each Contact header field

 in the REGISTER message contains a "+sip.instance" header field

 parameter. If present, the contact is processed further. If the

 registrar had not yet created a GRUU for that instance ID/AOR pair,

 it MUST do so at this time according to the procedures of Section 6.

 If the contact contained a "gruu" Contact header field parameter, it

 MUST be ignored by the registrar. A UA cannot suggest or otherwise

 provide a GRUU to the registrar.

 Registration processing then continues as defined in RFC 3261. If,

 after that processing, that contact is bound to the AOR, it also

 becomes bound to the GRUU associated with that instance ID/AOR pair.

 If, after that processing, the contact was not bound to the AOR (due,

 for example, to an expires value of zero), the contact is not bound

 to the GRUU either. The registrar MUST store the instance ID along

 with the contact.

 When generating the 200 (OK) response to the REGISTER request, the

 procedures of step 8 of Section 10.3 of RFC 3261 are followed.

Rosenberg Expires January 15, 2006 [Page 15]

Internet-Draft GRUU Mechanism July 2005

 Furthermore, for each Contact header field value placed in the

 response, if the registrar has stored an instance ID associated with

 that contact, that instance ID is returned as a Contact header field

 parameter, and furthermore, the server MUST add a "gruu" Contact

 header field parameter. The value of the gruu parameter is a quoted

 string containing the URI that is the GRUU for the associated

 instance ID/AOR pair. If the To header field in the REGISTER request

 had contained a SIP URI, the SIP version of the GRUU is returned. If

 the To header field in the REGISTER request had contained a SIPS URI,

 the SIPS version of the GRUU is returned.

 The REGISTER response MUST contain a Require header field with the

 value "gruu". This is because the client needs to extract its GRUU

 from the REGISTER response, and utilize them as the remote target of

 dialog initiating requests and responses.

 Note that handling of a REGISTER request containing a Contact header

 field with value "*" and an expiration of 0 still retains the meaning

 defined in RFC 3261 - all contacts, not just ones with a specific

 instance ID, are deleted. This removes their binding to the AOR and

 to any GRUU.

 Inclusion of a GRUU in the "gruu" Contact header field parameter of a

 REGISTER response is separate from the computation and storage of the

 GRUU. It is possible that the registrar has computed a GRUU for one

 UA, but a different UA that queries for the current set of

 registrations doesn’t understand GRUU. In that case, the REGISTER

 response sent to that second UA would not contain the "gruu" Contact

 header field parameter, even though the UA has a GRUU for that

 contact.

7.1.2.2 Timing Out a Registration

 When a registered contact expires, its binding to the AOR is removed

 as normal. In addition, its binding to the GRUU is removed at the

 same time.

7.2 Administratively

 Administrative creation of GRUUs is useful when a UA instance is a

 network server that is always available, and therefore doesn’t

 register to the network. Examples of such servers are voicemail

 servers, application servers, and gateways.

 There are no protocol operations required to administratively create

 a GRUU. The proxy serving the domain is configured with the GRUU,

 and with the contact it should be translated to. It is not strictly

 necessary to also configure the instance ID and AOR, since the

Rosenberg Expires January 15, 2006 [Page 16]

Internet-Draft GRUU Mechanism July 2005

 translation can be done directly. However, they serve as a useful

 tool for determining which resource and UA instance the GRUU is

 supposed to map to.

 In addition to configuring the GRUU and its associated contact in the

 proxy serving the domain, the GRUU will also need to be configured

 into the UA instance associated with the GRUU.

 It is also reasonable to model certain network servers as logically

 containing both a proxy and a UA instance. The proxy receives the

 request from the network, and passes it internally to the UA

 instance. In such a case, the GRUU routes directly to the server,

 and there is no need for a translation of the GRUU to a contact. The

 server itself would construct its own GRUU.

8. Using the GRUU

8.1 Sending a Message Containing a GRUU

 A UA first obtains a GRUU using the procedures of Section 7, or by

 other means outside the scope of this specification.

 A UA can use the GRUU in the same way it would use any other SIP or

 SIPS URI. However, a UA compliant to this specification MUST use a

 GRUU when populating the Contact header field of dialog-creating

 requests and responses. In other words, a UA compliant to this

 specification MUST use its GRUU as its remote target. This includes

 the INVITE request and its 2xx response, the SUBSCRIBE [6] request,

 its 2xx response, the NOTIFY request, and the REFER [7] request and

 its 2xx response.

 If the UA instance has obtained multiple GRUUs (each for a different

 AOR) through a registration, it MUST use the one corresponding to the

 AOR used to send or receive the request. For sending a request, this

 means that the GRUU corresponds to the AOR present in the From header

 field, and furthermore the credentials used for authentication of the

 request correspond to the ones associated with that AOR. When

 receiving a request, the GRUU in the response corresponds to the AOR

 to which the original request was targeted. That AOR, however, will

 be rewritten by the proxy to correspond to the UA’s registered

 contact. It is for this reason that different contacts are needed

 for each AOR that an instance registers against. In this way, when

 an incoming request arrives, the Request URI can be examined. It

 will be equal to a registered contact. That contact can be used to

 map directly to the AOR, and from there, the correct GRUU can be

 selected.

 In those requests and responses where the GRUU is used as the remote

Rosenberg Expires January 15, 2006 [Page 17]

Internet-Draft GRUU Mechanism July 2005

 target, the UA MUST include a Supported header field that contains

 the option tag "gruu". However, it is not necessary for a UA to know

 whether or not its peer in the dialog supports this specification

 before using one as a remote target.

 When using the GRUU as a remote target, a UA MAY add the "grid" URI

 parameter to the GRUU. This parameter MAY take on any value

 permitted by the grammar for the parameter. Note that there are no

 limitations on the size of this parameter. When a UA sends a request

 to the GRUU, the proxy for the domain that owns the GRUU will

 translate the GRUU in the Request-URI, replacing it with the URI

 bound to that GRUU. However, it will retain the "grid" parameter

 when this translation is performed. As a result, when the UA

 receives the request, the Request-URI will contain the "grid" created

 by the UA. This allows the UA to effectively manufacture an infinite

 supply of GRUU, each of which differs by the value of the "grid"

 parameter. When a UA receives a request that was sent to the GRUU,

 it will be able to tell which GRUU was invoked by the "grid"

 parameter.

 An implication of this behavior is that all mid-dialog requests will

 be routed through intermediate proxies. There will never be direct,

 UA to UA signaling. It is anticipated that this limitation will be

 addressed in future specifications.

 Once a UA knows that the remote target provided by its peer is a

 GRUU, it can use it in any application or SIP extension which

 requires a globally routable URI to operate. One such example is

 assisted call transfer.

8.2 Sending a Message to a GRUU

 There is no new behavior associated with sending a request to a GRUU.

 A GRUU is a URI like any other. When a UA receives a request or

 response, it can know that the remote target is a GRUU if the request

 or response had a Supported header field that included the value

 "gruu". The UA can take the GRUU, and send a request to it, and then

 be sure that it is delivered to the UA instance which sent the

 request or response.

 If the GRUU contains the "opaque" URI parameter, a UA can obtain the

 AOR for the user by stripping the parameter. The resulting URI is

 the AOR. If the GRUU does not have the "opaque" URI parameter, there

 is no mechanism defined for determining the AOR from the GRUU.

 Extraction of the AOR from the GRUU is useful for call logs and other

 accounting functions, where it is desirable to know the user to whom

 the request was directed.

Rosenberg Expires January 15, 2006 [Page 18]

Internet-Draft GRUU Mechanism July 2005

 Since the instance ID is a callee capabilities parameter, a UA might

 be tempted to send a request to the AOR of a user, and include an

 Accept-Contact header field [22] which indicates a preference for

 routing the request to a UA with a specific instance ID. Although

 this would appear to have the same effect as sending a request to the

 GRUU, it does not. The caller preferences expressed in the Accept-

 Contact header field are just preferences. Its efficacy depends on a

 UA constructing an Accept-Contact header field that interacts with

 domain processing logic for an AOR, to cause it to route to a

 particular instance. Given the variability in routing logic in a

 domain (for example, time based routing to only selected contacts),

 this doesn’t work for many domain routing policies. However, this

 specification does not forbid a client from attempting such a

 request, as there may be cases where the desired operation truly is a

 preferential routing request.

8.3 Receiving a Request Sent to a GRUU

 When a UAS receives a request sent to its GRUU, the incoming request

 URI will be equal to the contact that was registered (through

 REGISTER or some other action) by that UA instance. If the user

 agent had previously handed out its GRUU with a grid parameter, the

 incoming request URI may contain that parameter. This indicates to

 the UAS that the request is being received as a result of a request

 sent by the UAC to that GRUU/grid combination. This specification

 makes no normative statements about when to use a grid parameter, or

 what to do when receiving a request made to a GRUU/grid combination.

 Generally, any differing behaviors are a matter of local policy.

 It is important to note that, when a user agent receives a request,

 and the request URI does not have a grid parameter, the user agent

 cannot tell whether the request was sent to the AOR or to the GRUU.

 As such, the UAS will process such requests identically. If a user

 agent needs to differentiate its behavior based on these cases, it

 will need to use a grid parameter.

8.4 Proxy Behavior

 Proxy behavior is fully defined in Section 16 of RFC 3261. GRUU

 processing impacts that processing in two places - request targeting

 and record-routing.

8.4.1 Request Targeting

 When a proxy server receives a request, and the proxy owns the domain

 in the Request URI, and the proxy is supposed to access a Location

 Service in order to compute request targets (as specified in Section

 16.5 of RFC 3261 [1]), the proxy examines the Request URI. If the

Rosenberg Expires January 15, 2006 [Page 19]

Internet-Draft GRUU Mechanism July 2005

 Request URI is an AOR against which there are multiple registered

 contacts with the same instance ID parameter, the proxy MUST use only

 the most recently registered contact for inclusion in the target set.

 The contact that is the most recently registered is the one that has

 been bound to the AOR is the shortest period of time. This

 corresponds to the minimum value for the "duration-registered"

 attribute from the registration event package [27]. It is important

 to note that a refresh of the contact in a REGISTER message does not

 reset the duration it has been registered to zero. For example, if a

 softphone is started at 9am when a user logs into their computer, and

 the softphone refreshes its registration every hour, by 1230pm the

 contact has been registered for three and a half hours.

 If the request URI is within the domain of the proxy, and the URI has

 been constructed by the domain such that the proxy is able to

 determine that it has the form of a GRUU for an AOR that is unknown

 within the domain, the proxy rejects the request with a 404. If the

 request URI is within the domain of the proxy, and the URI has been

 constructed by the domain such that the proxy is able to determine

 that it has the form of a GRUU for an AOR that known within the

 domain, but the instance ID is unknown, the proxy SHOULD generate a

 480.

 If the GRUU does exist, handling of the GRUU proceeds as specified in

 RFC 3261 Section 16. For GRUUs, the abstract location service

 described in Section 16.5 is utilized, producing a set of zero or

 more contacts, each of which is associated with the same instance ID.

 If there are more than one contacts bound to the GRUU, the proxy MUST

 select the one that has been most recently registered, as defined

 above. This produces zero or one contacts. The request target MUST

 be obtained by taking that one contact, and if the GRUU in the

 Request URI contained a "grid" URI parameter, adding that parameter

 to the request target. If the grid was already present in the

 contact bound to the GRUU, it is overwritten in this process. If no

 contacts were bound to the GRUU, the lookup of the GRUU in the

 abstract location service will result in zero target URI, eventually

 causing the proxy to reject the request with a 480 (Temorarily

 Unavailable) response.

 If the contact had been registered using a Path header field [3],

 then that Path is used to construct the route set for reaching that

 contact through the GRUU as well as through the AOR, using the

 procedures specified in RFC 3327.

 A proxy MAY apply other processing to the request, such as execution

 of called party features, as discussed in Section 6.

 A request sent to a GRUU SHOULD NOT be redirected. In many

Rosenberg Expires January 15, 2006 [Page 20]

Internet-Draft GRUU Mechanism July 2005

 instances, a GRUU is used by a UA in order to assist in the traversal

 of NATs and firewalls, and a redirection may prevent such a case from

 working.

8.4.2 Record Routing

 As described above, a user agent uses its GRUU as a remote target.

 This has an impact on the path taken by subsequent mid-dialog

 requests. Depending on the desires of the proxies involved, this may

 impact record route processing.

 Two cases can be considered. The first is shown in Figure 3. In

 this case, there is a single proxy in the user’s domain. An incoming

 INVITE request arrives for the users AOR (1) and is forwarded to the

 user agent at its registered contact C1 (2). The proxy inserts a

 Record-Route header field into the proxied request, with a value of

 R1. The user agent generates a 200 OK to the request, using its GRUU

 G1 as the remote target.

 (1) + (2): initial INVITE

 (3) + (4): mid-dialog request

 (1) +-----------+ (2) +-----------+

 ------>| |--------------->| |

 | | | |

 (3) | Proxy | (4) | User |

 ------>| |--------------->| Agent |

 | | | |

 +-----------+ +-----------+

 Figure 3

 When a mid-dialog request shows up destined for the user agent

 (message 3), it will arrive at the proxy in the following form:

 INVITE G1

 Route: R1

 Since the top Route header field value identifies the proxy, the

 proxy removes it. As there are no more Route header field values,

 the proxy processes the request URI. However, the request URI is a

 GRUU, and is therefore a domain under the control of the proxy. The

 proxy will need to perform the processing of Section 8.4.1, which

Rosenberg Expires January 15, 2006 [Page 21]

Internet-Draft GRUU Mechanism July 2005

 will result in the translation of the GRUU into the contact C1,

 followed by transmission of the request to the user agent (message

 4).

 This sequence of processing in the proxy is somewhat unusual, in that

 mid-dialog requests (that is, requests with a Route header field that

 a proxy inserted as a result of a Record-Route operation) do not

 normally cause a proxy to have to invoke a location service to

 process the request URI. It is for this reason that this is called

 out here.

 The previous case assumed that there was a single proxy in the

 domain. In more complicated cases, there can be two or more proxies

 within a domain on the initial request path. This is shown in

 Figure 5. In this figure, there is a home proxy, to which requests

 targeted to the AOR are sent. The home proxy executes the abstract

 location service and runs user features. The edge proxy acts as the

 outbound proxy for users, performs authentication, manages TCP/TLS

 connections to the client, and does other functions associated with

 the transition from the provider proxy network to the client. This

 specific division of responsibilities between home and edge proxy is

 just for the purposes of illustration; the discussion applies to a

 disaggregation of proxy logic into any number of proxies. In such a

 configuration, registrations from the user agent would pass through

 the edge proxy, which would insert a Path header field [3] for

 itself.

 (1) + (2) + (3): initial INVITE

 (4) - (9): mid-dialog request

 (1) +-----------+ (2) +-----------+ (3) +-----------+

 ---->| |------->| |-------->| |

 (4) | | (5) | | | |

 ---->| Home |------->| Edge | | User |

 | Proxy | (7) | Proxy | (8) | Agent |

 +-->| |------->| |-------->| |

 | +-----------+ +-----------+ +-----------+

 | |

 | |

 +------------------------------+

 (6)

 Figure 5

Rosenberg Expires January 15, 2006 [Page 22]

Internet-Draft GRUU Mechanism July 2005

 When an incoming request arrives for the AOR (message 1), the home

 proxy would look it up, discover the registered contact and Path, and

 then send the request to the edge proxy as a result of the Route

 header field inserted with the Path value. The home proxy record

 routes with the URI H1. The edge proxy would forward the request to

 the request URI (which points to the client), and insert a Record-

 Route header field value with the URI E1 (message 2). This request

 is accepted by the user agent, which inserts its GRUU G1 as the

 remote target.

 When the peer in the dialog sends a mid-dialog request, it will have

 the following form:

 INVITE G1

 Route: H1, E1

 This request will arrive at the home proxy (due to H1 in the Route

 header field) (message 4). The home proxy will forward it to the

 edge proxy (due to E1 in the Route header field) (message 5). The

 edge proxy, seeing no more Route header field values, sends the

 request to the Request URI. This is a GRUU, and like an AOR, will

 route to the home proxy. This causes the request to loop back around

 (message 6). The home proxy performs the GRUU processing of

 Section 8.4.1, causing the request to be forwarded to the edge proxy

 a second time (this time, as a result of a Route header field value

 obtained from the Path header in the registration) (message 7), and

 then delivered to the client (message 8).

 While this flow works, it is highly inefficient, as it causes each

 mid-dialog request to spiral route. If this behavior is not

 desirable. To prevent it, the following procedures SHOULD be

 followed. When a client generates a REGISTER request, this request

 passes through the edge proxy on its way to the home proxy. The

 REGISTER request will contain the AOR of the user (in the To header

 field) and also indicate whether or not the GRUU extension is

 supported. The proxy can decide to insert itself on the Path on a

 case by case basis. However, if it does so for one registration, it

 SHOULD do so for all registrations for the same AOR. The value of

 the Path header field inserted by the proxy SHOULD be constructed so

 that it indicates whether or not the proxy inserted itself on the

 Path for this AOR.

 When a request arrives from the home proxy towards the client, the

 proxy inspects the Route header field. This header field will

 contain the URI the edge proxy had placed into the Path. If the

 value indicates that the edge proxy had put itself on the Path for

 the registration from this client, there is no need for the proxy to

Rosenberg Expires January 15, 2006 [Page 23]

Internet-Draft GRUU Mechanism July 2005

 retain its record-route in the response. The proxy MAY remove its

 record-route value from the 200 OK response in this case. If the

 value indicates that the proxy had not put itself on the Path, it

 would retain the Record-Route in the response.

 Similarly, if a request arrives from the client towards the home

 proxy, the edge proxy would look at the identity of the sender of the

 request. If the proxy knows that it is placing itself on the Path

 for registrations from that AOR, the edge proxy would insert a

 Record-Route into the request, and then remove it in the response.

 Similarly, if the identity of the sender of the request is one for

 which the client has not put itself on the Path, the edge proxy would

 keep its Record-Route in the response.

 Removing its Record-Route value from the response will result in a

 different route set as seen by the caller and callee; the callee

 (which is the user agent in the figure) will have a route set entry

 for its edge proxy, while the caller will not. The caller will have

 a route set entry for its edge proxy, while the callee will not.

 In such a case, a mid-dialog request that arrives at the home proxy

 will be of the form:

 INVITE G1

 Route: H1

 This does the "right thing" and causes the request to be routed from

 the home proxy to the edge proxy to the client, without the

 additional spiral.

9. The opaque SIP URI Parameter

 This specification defines a new SIP URI parameter, "opaque". This

 parameter is useful for constructing GRUUs, but is a generally

 valuable tool for building URI that are linked to another URI in some

 way.

 The "opaque" parameter has no explicit semantics. It is merely a

 repository of information whose interpretation is at the discretion

 of the entity that creates the URI. This means that an element that

 constructs a URI with the "opaque" parameter MUST ensure that it

 routes back to itself or another element that can interpret the

 content of the parameter. The "opaque" parameter can be viewed as a

 form of cookie for this reason.

 If the "opaque" parameter in the URI is removed, the resulting URI

 MUST correspond to a valid resource in the domain to which the URI

Rosenberg Expires January 15, 2006 [Page 24]

Internet-Draft GRUU Mechanism July 2005

 with the "opaque" parameter is associated. The nature of the

 association is determined from the context in which the URI was

 obtained. When used to construct a GRUU, it means that the URI

 formed by stripping the "opaque" parameter MUST correspond to the AOR

 associated with the GRUU. The recipient of a GRUU cannot determine

 that it is a GRUU by direct examination of the URI. However, the

 recipient may know if it received the GRUU in the Contact header

 field of a SIP request or response that contained a Supported header

 field with the option tag "gruu". If it knows its a GRUU through

 such context, and the GRUU contains the "opaque" parameter, the UA

 knows it can obtain the AOR by removing the "opaque" parameter.

 Other possible uses of the "opaque" URI parameter include

 constructing of service URIs for a user, such as their voicemail

 inbox or personal conference bridge.

10. Grammar

 This specification defines two new Contact header field parameters,

 gruu and +sip.instance, and two new URI parameters, "grid" and

 "opaque". The grammar for string-value is obtained from [11], and

 the grammar for uric is defined in RFC 3986 [9].

 contact-params = c-p-q / c-p-expires / c-p-gruu / cp-instance

 / contact-extension

 c-p-gruu = "gruu" EQUAL DQUOTE (SIP-URI / SIPS-URI) DQUOTE

 cp-instance = "+sip.instance" EQUAL LDQUOT "<"

 instance-val ">" RDQUOT

 uri-parameter = transport-param / user-param / method-param

 / ttl-param / maddr-param / lr-param / grid-param

 / opaque-param / other-param

 grid-param = "grid=" pvalue ; defined in RFC3261

 opaque-param = "opaque=" pvalue ; defined in RFC3261

 instance-val = *uric ; defined in RFC 2396

11. Requirements

 This specification was created in order to meet the following

 requirements:

 REQ 1: When a UA invokes a GRUU, it MUST cause the request to be

 routed to the specific UA instance to which the GRUU refers.

Rosenberg Expires January 15, 2006 [Page 25]

Internet-Draft GRUU Mechanism July 2005

 REQ 2: It MUST be possible for a GRUU to be invoked from anywhere on

 the Internet, and still cause the request to be routed

 appropriately. That is, a GRUU MUST NOT be restricted to use

 within a specific addressing realm.

 REQ 3: It MUST be possible for a GRUU to be constructed without

 requiring the network to store additional state.

 REQ 4: It MUST be possible for a UA to obtain a multiplicity of

 GRUUs, each one of which routes to that UA instance. This is

 needed to support ad-hoc conferencing, for example, where a UA

 instance needs a different URI for each conference it is hosting.

 REQ 5: When a UA receives a request sent to a GRUU, it MUST be

 possible for the UA to know the GRUU which was used to invoke the

 request. This is necessary as a consequence of requirement 4.

 REQ 6: It MUST be possible for a UA to add opaque content to a GRUU,

 which is not interpreted or altered by the network, and used only

 by the UA instance to whom the GRUU refers. This provides a basic

 cookie type of functionality, allowing a UA to build a GRUU with

 state embedded within it.

 REQ 7: It MUST be possible for a proxy to execute services and

 features on behalf of a UA instance represented by a GRUU. As an

 example, if a user has call blocking features, a proxy may want to

 apply those call blocking features to calls made to the GRUU in

 addition to calls made to the user’s AOR.

 REQ 8: It MUST be possible for a UA in a dialog to inform its peer of

 its GRUU, and for the peer to know that the URI represents a GRUU.

 This is needed for the conferencing and dialog reuse applications

 of GRUUs, where the URIs are transferred within a dialog.

 REQ 9: When transferring a GRUU per requirement 8, it MUST be

 possible for the UA receiving the GRUU to be assured of its

 integrity and authenticity.

 REQ 10: It MUST be possible for a server, authoritative for a domain,

 to construct a GRUU which routes to a UA instance bound to an AOR

 in that domain. In other words, the proxy can construct a GRUU

 too. This is needed for the presence application.

12. Example Call Flow

 The following call flow shows a basic registration and call setup,

 followed by a subscription directed to the GRUU. It then shows a

Rosenberg Expires January 15, 2006 [Page 26]

Internet-Draft GRUU Mechanism July 2005

 failure of the callee, followed by a re-registration. The

 conventions of [21] are used to describe representation of long

 message lines.

 Caller Proxy Callee

 | |(1) REGISTER |

 | |<--------------------|

 | |(2) 200 OK |

 | |-------------------->|

 |(3) INVITE | |

 |-------------------->| |

 | |(4) INVITE |

 | |-------------------->|

 | |(5) 200 OK |

 | |<--------------------|

 |(6) 200 OK | |

 |<--------------------| |

 |(7) ACK | |

 |-------------------->| |

 | |(8) ACK |

 | |-------------------->|

 |(9) SUBSCRIBE | |

 |-------------------->| |

 | |(10) SUBSCRIBE |

 | |-------------------->|

 | |(11) 200 OK |

 | |<--------------------|

 |(12) 200 OK | |

 |<--------------------| |

 | |(13) NOTIFY |

 | |<--------------------|

 |(14) NOTIFY | |

 |<--------------------| |

 |(15) 200 OK | |

 |-------------------->| |

 | |(16) 200 OK |

 | |-------------------->|

 | | |Crashes, Reboots

 | |(17) REGISTER |

 | |<--------------------|

 | |(18) 200 OK |

 | |-------------------->|

 The Callee supports the GRUU extension. As such, its REGISTER (1)

 looks like:

Rosenberg Expires January 15, 2006 [Page 27]

Internet-Draft GRUU Mechanism July 2005

 REGISTER sip:example.com SIP/2.0

 Via: SIP/2.0/UDP 192.0.2.1;branch=z9hG4bKnashds7

 Max-Forwards: 70

 From: Callee <sip:callee@example.com>;tag=a73kszlfl

 Supported: gruu

 To: Callee <sip:callee@example.com>

 Call-ID: 1j9FpLxk3uxtm8tn@192.0.2.1

 CSeq: 1 REGISTER

 Contact: <sip:callee@192.0.2.1>

 ;+sip.instance="<urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6>"

 Content-Length: 0

 The REGISTER response would look like:

 SIP/2.0 200 OK

 Via: SIP/2.0/UDP 192.0.2.1;branch=z9hG4bKnashds7

 From: Callee <sip:callee@example.com>;tag=a73kszlfl

 To: Callee <sip:callee@example.com> ;tag=b88sn

 Require: gruu

 Call-ID: 1j9FpLxk3uxtm8tn@192.0.2.1

 CSeq: 1 REGISTER

 <allOneLine>

 Contact: <sip:callee@192.0.2.1>

 ;gruu="sip:callee@example.com;

 opaque=urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6"

 ;+sip.instance="<urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6>"

 ;expires=3600

 </allOneLine>

 Content-Length: 0

 Note how the Contact header field in the REGISTER response contains

 the gruu parameter with the URI sip:callee@

 example.com;opaque=urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6.

 This represents a GRUU that translates to the contact

 sip:callee@192.0.2.1.

 The INVITE from the caller is a normal SIP INVITE. The 200 OK

 generated by the callee (message 5), however, now contains a GRUU as

 the remote target. The UA has also chosen to include a grid URI

 parameter into the GRUU.

Rosenberg Expires January 15, 2006 [Page 28]

Internet-Draft GRUU Mechanism July 2005

 SIP/2.0 200 OK

 Via: SIP/2.0/UDP proxy.example.com;branch=z9hG4bKnaa8

 Via: SIP/2.0/UDP host.example.com;branch=z9hG4bK99a

 From: Caller <sip:caller@example.com>;tag=n88ah

 To: Callee <sip:callee@example.com> ;tag=a0z8

 Call-ID: 1j9FpLxk3uxtma7@host.example.com

 CSeq: 1 INVITE

 Supported: gruu

 Allow: INVITE, OPTIONS, CANCEL, BYE, ACK

 <allOneLine>

 Contact:

 <sip:callee@example.com

 ;opaque=urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6;grid=99a>

 </allOneLine>

 Content-Length: --

 Content-Type: application/sdp

 [SDP Not shown]

 At some point later in the call, the caller decides to subscribe to

 the dialog event package [20] at that specific UA. To do that, it

 generates a SUBSCRIBE request (message 9), but directs it towards the

 remote target, which is a GRUU:

 <allOneLine>

 SUBSCRIBE sip:callee@example.com;opaque=urn:uuid:f8

 1d4fae-7dec-11d0-a765-00a0c91e6bf6;grid=99a

 SIP/2.0

 </allOneLine>

 Via: SIP/2.0/UDP host.example.com;branch=z9hG4bK9zz8

 From: Caller <sip:caller@example.com>;tag=kkaz-

 To: Callee <sip:callee@example.com>

 Call-ID: faif9a@host.example.com

 CSeq: 2 SUBSCRIBE

 Supported: gruu

 Event: dialog

 Allow: INVITE, OPTIONS, CANCEL, BYE, ACK

 Contact: <sip:caller@example.com;opaque=hdg7777ad7aflzig8sf7>

 Content-Length: 0

 In this example, the caller itself supports the GRUU extension, and

 is using its own GRUU to populate its remote target.

 This request is routed to the proxy, which proceeds to perform a

 location lookup on the request URI. It is translated into the

 contact for that instance, and then proxied there (message 10 below).

 Note how the grid parameter is maintained.

Rosenberg Expires January 15, 2006 [Page 29]

Internet-Draft GRUU Mechanism July 2005

 SUBSCRIBE sip:callee@192.0.2.1;grid=99a SIP/2.0

 Via: SIP/2.0/UDP proxy.example.com;branch=z9hG4bK9555

 Via: SIP/2.0/UDP host.example.com;branch=z9hG4bK9zz8

 From: Caller <sip:caller@example.com>;tag=kkaz-

 To: Callee <sip:callee@example.com>

 Call-ID: faif9a@host.example.com

 CSeq: 2 SUBSCRIBE

 Supported: gruu

 Event: dialog

 Allow: INVITE, OPTIONS, CANCEL, BYE, ACK

 Contact: <sip:caller@example.com;opaque=hdg7777ad7aflzig8sf7>

 Content-Length: 0

 At some point after message 16 is received, the callee’s machine

 crashes and recovers. It obtains a new IP address, 192.0.2.2.

 Unaware that it had previously had an active registration, it creates

 a new one (message 17 below). Notice how the instance ID remains the

 same, as it persists across reboot cycles:

 REGISTER sip:example.com SIP/2.0

 Via: SIP/2.0/UDP 192.0.2.2;branch=z9hG4bKnasbba

 Max-Forwards: 70

 From: Callee <sip:callee@example.com>;tag=ha8d777f0

 Supported: gruu

 To: Callee <sip:callee@example.com>

 Call-ID: hf8asxzff8s7f@192.0.2.2

 CSeq: 1 REGISTER

 Contact: <sip:callee@192.0.2.2>

 ;+sip.instance="<urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6>"

 Content-Length: 0

 The registrar notices that a different contact, sip:callee@192.0.2.1,

 is already associated with the same instance ID. It registers the

 new one too and returns both in the REGISTER response. Both have the

 same GRUU. However, only this new contact (the most recently

 registered one) will be used by the proxy for population in the

 target set. It then generates the following response:

Rosenberg Expires January 15, 2006 [Page 30]

Internet-Draft GRUU Mechanism July 2005

 SIP/2.0 200 OK

 Via: SIP/2.0/UDP 192.0.2.2;branch=z9hG4bKnasbba

 From: Callee <sip:callee@example.com>;tag=ha8d777f0

 To: Callee <sip:callee@example.com>;tag=99f8f7

 Require: gruu

 Call-ID: hf8asxzff8s7f@192.0.2.2

 CSeq: 1 REGISTER

 <allOneLine>

 Contact: <sip:callee@192.0.2.2>

 ;gruu="sip:callee@example.com;opaque=urn:

 uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6"

 ;+sip.instance="<urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6>"

 ;expires=3600

 </allOneLine>

 Contact: <sip:callee@192.0.2.1>

 ;gruu="sip:callee@example.com;opaque=urn:

 uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6"

 ;+sip.instance="<urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6>"

 ;expires=400

 </allOneLine>

 Content-Length: 0

13. Security Considerations

 GRUUs do not provide a solution for privacy. In particular, since

 the GRUU does not change during the lifetime of a registration, an

 attacker could correlate two calls as coming from the same source,

 which in and of itself reveals information about the caller.

 Furthermore, GRUUs do not address other aspects of privacy, such as

 the addresses used for media transport. For a discussion of how

 privacy services are provided in SIP, see RFC 3323 [14].

 It is important for a UA to be assured of the integrity of a GRUU

 when it is given one in a REGISTER response. If the GRUU is tampered

 with by an attacker, the result could be denial of service to the UA.

 As a result, it is RECOMMENDED that a UA use the SIPS URI scheme in

 the Request-URI when registering.

 The example GRUU construction algorithm in Appendix A.1 makes no

 attempt to create a GRUU that hides the AOR and instance ID

 associated with the GRUU. In general, determination of the AOR

 associated with a GRUU is considered a good property, since it allows

 for easy tracking of the target of a particular call. Learning the

 instance ID provides little benefit to an attacker. To register or

 otherwise impact registrations for the user, an attacker would need

 to obtain the credentials for the user. Knowing the instance ID is

 insufficient.

Rosenberg Expires January 15, 2006 [Page 31]

Internet-Draft GRUU Mechanism July 2005

 The example GRUU construction algorithm in Appendix A.1 makes no

 attempt to create a GRUU that prevents users from guessing a GRUU

 based on knowledge of the AOR and instance ID. A user that is able

 to do that will be able to direct a new request at a particular

 instance. However, this specification recommends that service

 treatment be given to requests that are sent to a GRUU, including

 screening features in particular. That treatment will make sure that

 the GRUU does not provide a back door for attackers to contact a user

 that has tried to block the attacker.

14. IANA Considerations

 This specification defines a new Contact header field parameter, two

 SIP URI parameters, a media feature tag and a SIP option tag.

14.1 Header Field Parameter

 This specification defines a new header field parameter, as per the

 registry created by [12]. The required information is as follows:

 Header field in which the parameter can appear: Contact

 Name of the Parameter gruu

 RFC Reference RFC XXXX [[NOTE TO IANA: Please replace XXXX with the

 RFC number of this specification.]]

14.2 URI Parameters

 This specification defines two new SIP URI parameters, as per the

 registry created by [13].

 Name of the Parameter grid

 RFC Reference RFC XXXX [[NOTE TO IANA: Please replace XXXX with the

 RFC number of this specification.]]

 Name of the Parameter opaque

 RFC Reference RFC XXXX [[NOTE TO IANA: Please replace XXXX with the

 RFC number of this specification.]]

14.3 Media Feature Tag

 This section registers a new media feature tag, per the procedures

 defined in RFC 2506 [8]. The tag is placed into the sip tree, which

Rosenberg Expires January 15, 2006 [Page 32]

Internet-Draft GRUU Mechanism July 2005

 is defined in [11].

 Media feature tag name: sip.instance

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: This feature tag

 contains a string containing a URI, and ideally a URN, that

 indicates a unique identifier associated with the UA instance

 registering the Contact.

 Values appropriate for use with this feature tag: String.

 The feature tag is intended primarily for use in the following

 applications, protocols, services, or negotiation mechanisms: This

 feature tag is most useful in a communications application, for

 describing the capabilities of a device, such as a phone or PDA.

 Examples of typical use: Routing a call to a specific device.

 Related standards or documents: RFC XXXX [[Note to IANA: Please

 replace XXXX with the RFC number of this specification.]]

 Security Considerations: This media feature tag can be used in ways

 which affect application behaviors. For example, the SIP caller

 preferences extension [22] allows for call routing decisions to be

 based on the values of these parameters. Therefore, if an

 attacker can modify the values of this tag, they may be able to

 affect the behavior of applications. As a result of this,

 applications which utilize this media feature tag SHOULD provide a

 means for ensuring its integrity. Similarly, this feature tag

 should only be trusted as valid when it comes from the user or

 user agent described by the tag. As a result, protocols for

 conveying this feature tag SHOULD provide a mechanism for

 guaranteeing authenticity.

14.4 SIP Option Tag

 This specification registers a new SIP option tag, as per the

 guidelines in Section 27.1 of RFC 3261.

 Name: gruu

 Description: This option tag is used to identify the Globally

 Routable User Agent URI (GRUU) extension. When used in a

 Supported header, it indicates that a User Agent understands the

 extension, and has included a GRUU in the Contact header field of

Rosenberg Expires January 15, 2006 [Page 33]

Internet-Draft GRUU Mechanism July 2005

 its dialog initiating requests and responses. When used in a

 Require header field of a REGISTER request, it indicates that the

 registrar should assign a GRUU to the Contact URI.

15. Acknowledgements

 The author would like to thank Rohan Mahy, Paul Kyzivat, Alan

 Johnston, and Cullen Jennings for their contributions to this work.

16. References

16.1 Normative References

 [1] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,

 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:

 Session Initiation Protocol", RFC 3261, June 2002.

 [2] Rosenberg, J. and H. Schulzrinne, "Session Initiation Protocol

 (SIP): Locating SIP Servers", RFC 3263, June 2002.

 [3] Willis, D. and B. Hoeneisen, "Session Initiation Protocol (SIP)

 Extension Header Field for Registering Non-Adjacent Contacts",

 RFC 3327, December 2002.

 [4] Rosenberg, J., "The Session Initiation Protocol (SIP) UPDATE

 Method", RFC 3311, October 2002.

 [5] Bradner, S., "Key words for use in RFCs to Indicate Requirement

 Levels", BCP 14, RFC 2119, March 1997.

 [6] Roach, A., "Session Initiation Protocol (SIP)-Specific Event

 Notification", RFC 3265, June 2002.

 [7] Sparks, R., "The Session Initiation Protocol (SIP) Refer

 Method", RFC 3515, April 2003.

 [8] Holtman, K., Mutz, A., and T. Hardie, "Media Feature Tag

 Registration Procedure", BCP 31, RFC 2506, March 1999.

 [9] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

 Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986,

 January 2005.

 [10] Moats, R., "URN Syntax", RFC 2141, May 1997.

 [11] Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Indicating

 User Agent Capabilities in the Session Initiation Protocol

Rosenberg Expires January 15, 2006 [Page 34]

Internet-Draft GRUU Mechanism July 2005

 (SIP)", RFC 3840, August 2004.

 [12] Camarillo, G., "The Internet Assigned Number Authority (IANA)

 Header Field Parameter Registry for the Session Initiation

 Protocol (SIP)", BCP 98, RFC 3968, December 2004.

 [13] Camarillo, G., "The Internet Assigned Number Authority (IANA)

 Uniform Resource Identifier (URI) Parameter Registry for the

 Session Initiation Protocol (SIP)", BCP 99, RFC 3969,

 December 2004.

16.2 Informative References

 [14] Peterson, J., "A Privacy Mechanism for the Session Initiation

 Protocol (SIP)", RFC 3323, November 2002.

 [15] Rosenberg, J., Weinberger, J., Huitema, C., and R. Mahy, "STUN

 - Simple Traversal of User Datagram Protocol (UDP) Through

 Network Address Translators (NATs)", RFC 3489, March 2003.

 [16] Hakala, J., "Using National Bibliography Numbers as Uniform

 Resource Names", RFC 3188, October 2001.

 [17] Rosenberg, J., "A Framework for Conferencing with the Session

 Initiation Protocol",

 draft-ietf-sipping-conferencing-framework-05 (work in

 progress), May 2005.

 [18] Jennings, C. and R. Mahy, "Managing Client Initiated

 Connections in the Session Initiation Protocol (SIP)",

 draft-ietf-sip-outbound-00 (work in progress), July 2005.

 [19] Peterson, J. and C. Jennings, "Enhancements for Authenticated

 Identity Management in the Session Initiation Protocol (SIP)",

 draft-ietf-sip-identity-05 (work in progress), May 2005.

 [20] Rosenberg, J., "An INVITE Inititiated Dialog Event Package for

 the Session Initiation Protocol (SIP)",

 draft-ietf-sipping-dialog-package-06 (work in progress),

 April 2005.

 [21] Sparks, R., "Session Initiation Protocol Torture Test

 Messages", draft-ietf-sipping-torture-tests-07 (work in

 progress), May 2005.

 [22] Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Caller

 Preferences for the Session Initiation Protocol (SIP)",

 RFC 3841, August 2004.

Rosenberg Expires January 15, 2006 [Page 35]

Internet-Draft GRUU Mechanism July 2005

 [23] Sugano, H., Fujimoto, S., Klyne, G., Bateman, A., Carr, W., and

 J. Peterson, "Presence Information Data Format (PIDF)",

 RFC 3863, August 2004.

 [24] Sparks, R. and A. Johnston, "Session Initiation Protocol Call

 Control - Transfer", draft-ietf-sipping-cc-transfer-04 (work in

 progress), April 2005.

 [25] Rosenberg, J., "A Presence Event Package for the Session

 Initiation Protocol (SIP)", RFC 3856, August 2004.

 [26] Leach, P., Mealling, M., and R. Salz, "A Universally Unique

 IDentifier (UUID) URN Namespace", RFC 4122, July 2005.

 [27] Rosenberg, J., "A Session Initiation Protocol (SIP) Event

 Package for Registrations", RFC 3680, March 2004.

Author’s Address

 Jonathan Rosenberg

 Cisco Systems

 600 Lanidex Plaza

 Parsippany, NJ 07054

 US

 Phone: +1 973 952-5000

 Email: jdrosen@cisco.com

 URI: http://www.jdrosen.net

Appendix A. Example GRUU Construction Algorithms

 The mechanism for constructing a GRUU is not subject to

 specification. This appendix provides two examples that can be used

 by a registar. Others are, of course, permitted, as long as they

 meet the constraints defined for a GRUU.

A.1 Instance ID in opaque URI Parameter

 The most basic approach for constructing a GRUU is to utilize the

 "opaque" URI parameter. The user and domain portions of the URI are

 equal to the AOR, and the "opaque" parameter is populated with the

 instance ID.

A.2 Encrypted Instance ID and AOR

 In many cases, it will be desirable to construct the GRUU in such a

 way that it will not be possible, based on inspection of the URI, to

Rosenberg Expires January 15, 2006 [Page 36]

Internet-Draft GRUU Mechanism July 2005

 determine the Contact URI that the GRUU translates to. It may also

 be desirable to construct it so that it will not be possible to

 determine the instance ID/AOR pair associated with the GRUU. Whether

 or not a GRUU should be constructed with this property is a local

 policy decision.

 With these rules, it is possible to construct a GRUU without

 requiring the maintenance of any additional state. To do that, the

 URI would be constructed in the following fashion:

 user-part = "GRUU" | BASE64(E(K, (salt | " " | AOR | " " |

 instance ID)))

 Where E(K,X) represents a suitable encryption function (such as AES

 with 128 bit keys) with key K applied to data block X, and the "|"

 operator implies concatenation. The single space (" ") between

 components is used as a delimeter, so that the components can easily

 be extracted after decryption. Salt represents a random string that

 prevents a client from obtaining pairs of known plaintext and

 ciphertext. A good choice would be at least 128 bits of randomness

 in the salt.

 This mechanism uses the user-part of the SIP URI to convey the

 encrypted AOR and instance ID. The user-part is used instead of the

 "opaque" URI parameter because of the desired anonymity properties.

 The benefit of this mechanism is that a server need not store

 additional information on mapping a GRUU to its corresponding

 contact. The user part of the GRUU contains the instance ID and AOR.

 Assuming that the domain stores registrations in a database indexed

 by the AOR, the proxy processing the GRUU would look up the AOR,

 extract the currently registered contacts, and find the one matching

 the instance ID encoded in the request URI. The contact whose

 instance ID is that instance ID is then used as the translated

 version of the GRUU. Encryption is needed to prevent attacks whereby

 the server is sent requests with faked GRUU, causing the server to

 direct requests to any named URI. Even with encryption, the proxy

 should validate the user part after decryption. In particular, the

 AOR should be managed by the proxy in that domain. Should a UA send

 a request with a fake GRUU, the proxy would decrypt and then discard

 it because there would be no URI or an invalid URI inside.

 While this approach has many benefits, it has the drawback of

 producing fairly long GRUUs.

Rosenberg Expires January 15, 2006 [Page 37]

Internet-Draft GRUU Mechanism July 2005

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any

 Intellectual Property Rights or other rights that might be claimed to

 pertain to the implementation or use of the technology described in

 this document or the extent to which any license under such rights

 might or might not be available; nor does it represent that it has

 made any independent effort to identify any such rights. Information

 on the procedures with respect to rights in RFC documents can be

 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any

 assurances of licenses to be made available, or the result of an

 attempt made to obtain a general license or permission for the use of

 such proprietary rights by implementers or users of this

 specification can be obtained from the IETF on-line IPR repository at

 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any

 copyrights, patents or patent applications, or other proprietary

 rights that may cover technology that may be required to implement

 this standard. Please address the information to the IETF at

 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an

 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS

 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET

 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,

 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE

 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED

 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject

 to the rights, licenses and restrictions contained in BCP 78, and

 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the

 Internet Society.

Rosenberg Expires January 15, 2006 [Page 38]

SIP WG C. Jennings, Ed.

Internet-Draft Cisco Systems

Expires: January 12, 2006 R. Mahy, Ed.

 SIP Edge LLC

 July 11, 2005

Managing Client Initiated Connections in the Session Initiation Protocol

 (SIP)

 draft-ietf-sip-outbound-00

Status of this Memo

 By submitting this Internet-Draft, each author represents that any

 applicable patent or other IPR claims of which he or she is aware

 have been or will be disclosed, and any of which he or she becomes

 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF), its areas, and its working groups. Note that

 other groups may also distribute working documents as Internet-

 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at

 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at

 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 12, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 Session Initiation Protocol (SIP) allows proxy servers to initiate

 TCP connections and send asynchronous UDP datagrams to User Agents in

 order to deliver requests. However, many practical considerations,

 such as the existence of firewalls and NATs, prevent servers from

 connecting to User Agents in this way. Even when a proxy server can

 open a TCP connection to a User Agent, most User Agents lack a

Jennings & Mahy Expires January 12, 2006 [Page 1]

Internet-Draft Client Initiated Connections in SIP July 2005

 certificate suitable to act as a TLS server. This specification

 defines behaviors for user agents, registrars and proxy servers that

 allow requests to be delivered on existing connections established by

 the User Agent. It also defines keep alive behaviors needed to keep

 NAT bindings open and specifies the usage of multiple connections for

 high availability systems.

Table of Contents

 1. Introduction . 3

 2. Conventions and Terminology 3

 2.1 Definitions . 3

 3. Overview . 4

 3.1 Summary of Mechanism 4

 3.2 Single Registrar and UA 5

 3.3 Multiple Connections from a User Agent 6

 3.4 Edge Proxies . 7

 3.5 Keep Alive Techniques 8

 4. User Agent Mechanisms . 9

 4.1 Forming Flows . 9

 4.1.1 Instance-ID Selection 10

 4.2 Detecting Flow Failure 10

 4.3 Flow Failure Recovery 11

 4.4 Registration by other other instances 11

 5. Registrar Mechanisms . 12

 5.1 Processing Register Requests 12

 5.2 Forwarding Requests 12

 6. Edge Proxy Mechanisms . 13

 6.1 Processing Register Requests 13

 6.2 Forwarding Requests 14

 7. Mechanisms for All Servers 14

 8. Example Message Flow . 15

 9. Grammar . 18

 10. IANA Considerations . 18

 11. Security Considerations 19

 12. Open Issues . 20

 13. Requirements . 20

 14. Changes from 01 Version 20

 15. Changes from 00 Version 20

 16. Acknowledgments . 21

 17. References . 21

 17.1 Normative References 21

 17.2 Informative References 22

 Authors’ Addresses . 22

 Intellectual Property and Copyright Statements 24

Jennings & Mahy Expires January 12, 2006 [Page 2]

Internet-Draft Client Initiated Connections in SIP July 2005

1. Introduction

 There are many environments for SIP deployments in which the User

 Agent (UA) can form a connection to a Registrar or Proxy but in which

 the connections in the reverse direction to the UA are not possible.

 This can happen for several reasons. Connection to the UA can be

 blocked by a firewall device between the UA and the proxy or

 registrar, which will only allow new connections in the direction of

 the UA to the Proxy. Similarly there may be a NAT, which are only

 capable of allowing new connections from the private address side to

 the public side. It is worth noting that most UAs in the world are

 deployed behind firewalls or NATs.

 Most IP phones and personal computers get their network

 configurations dynamically via a protocol such as DHCP. These

 systems typically do not have a useful name in DNS, and they

 definitely do not have a long-term, stable DNS name that is

 appropriate for binding to a certificate. It is impractical for them

 to have a certificate that can be used as a client-side TLS

 certificate for SIP. However, these systems can still form TLS

 connections to a proxy or registrar such that the UA authenticates

 the server certificate, and the server authenticates the UA using a

 shared secret in a digest challenge.

 The key idea of this specification is that when a UA sends a REGISTER

 request, the proxy can later use this same connection to forward any

 requests that need to go to this UA. For a UA to receive incoming

 requests, the UA has to connect to the server. Since the server

 can’t connect to the UA, the UA has to make sure that a connection is

 always active. This requires the UA to detect when a connection

 fails. Since, such detection takes time and leaves a window of

 opportunity for missed incoming requests, this mechanism allows the

 UA to use multiple connections, referred to as "flows", to the proxy

 or registrar and using a keep alive mechanism on each flow so that

 the UA can detect when a flow has failed.

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

 document are to be interpreted as described in RFC 2119 [2].

2.1 Definitions

Jennings & Mahy Expires January 12, 2006 [Page 3]

Internet-Draft Client Initiated Connections in SIP July 2005

 Edge Proxy: An Edge Proxy is any proxy that is located topologically

 between the registering user agent and the registrar.

 flow: A Flow is a network protocol layer connection between two hosts

 that is represented by the network address of both ends and the

 protocol. For TCP and UDP this would include the IP addresses and

 ports of both ends and the protocol (TCP or UDP). With TCP, a

 flow would often have to one to one correspondence with a single

 file descriptor in the operating system.

 flow-id: This refers to the value of a new header parameter value for

 the contact header. When UA register multiple times, each

 registration gets a unique flow-id value.

 instance-id: This specification uses the word instance-id to refer to

 the value of the "sip.instance" media feature tag in the Contact

 header field. This is a URN that uniquely identifies the UA.

3. Overview

 Several scenarios in which this technique is useful are discussed

 below, including the simple collocated registrar and proxy, a user

 agent desiring multiple connections to a resource (for redundancy for

 example), and an system that uses Edge Proxies.

3.1 Summary of Mechanism

 The overall approach is fairly simple. Each UA has a unique

 instance-id that stays the same for this UA even if the UA reboots or

 is power cycled. Each UA can register multiple times. Each

 registration includes the instance-id for the UA and a flow-id label

 that is different for each connection.

 UAs use a keep alive mechanism to keep their flow to the proxy or

 registrar alive. For TCP, TLS, and other connection oriented

 protocols this is a burst containing a single CRLF. For UDP it is a

 STUN request sent over the flow. A UA can create more than one flow

 using multiple registrations for the same AOR. The instance-id

 parameter is used by the proxy to identify with which UA a flow is

 associated. The flow-id is used by the proxy and registrar to tell

 the difference between a UA re-registering and one that is

 registering over an additional flow. The proxies keep track of the

 flows used for successful registrations.

 When a proxy goes to route a message to a UA for which it has a

 binding, it can use any one of the flows on which a successful

 registration has been completed. A failure on a particular flow can

 be tried again on an alternate flow. Proxies can determine which

 flows go to the same UA by looking at the instance-id. Proxies can

 tell that a flow replaces a previous abandoned flow by looking at the

 flow-id.

Jennings & Mahy Expires January 12, 2006 [Page 4]

Internet-Draft Client Initiated Connections in SIP July 2005

3.2 Single Registrar and UA

 In this example there is single server acting as both a registrar and

 proxy.

 +-----------+

 | Registrar |

 | Proxy |

 +-----+-----+

 |

 |

 +----+--+

 | User |

 | Agent |

 +-------+

 User Agents forming only a single connection continue to register

 normally but include the instance-id as described in the GRUU [1]

 specification and can also add a flow-id parameter to the Contact

 header field value. The flow-id parameter is used to allow the

 registrar to detect and avoid using invalid contacts when a UA

 reboots, as described later in this section.

 For clarity, here is an example. Bob’s UA creates a new TCP flow to

 the registrar and sends the following REGISTER request.

 REGISTER sip:example.com SIP/2.0

 Via: SIP/2.0/UDP 192.0.2.1;branch=z9hG4bK-bad0ce-11-1036

 Max-Forwards: 70

 From: Bob <sip:bob@example.com>;tag=d879h76

 To: Bob <sip:bob@example.com>

 Call-ID: 8921348ju72je840.204

 CSeq: 1 REGISTER

 Contact: <sip:line1@192.168.0.2>; flow-id=1;

 ;+sip.instance="<urn:uuid:00000000-0000-0000-0000-000A95A0E128>"

 Content-Length: 0

 Implementors often ask why the value of the sip.instance is inside

 angle brackets. This is a requirement of RFC 3840 [8] which

 defines that media feature tags in SIP. Feature tags which are

 strings are compared by case sensitive string comparison. To

 differentiate these tags from tokens (which are not case

 sensitive), case sensitive parameters such as the sip.instance

 media feature tag are placed inside angle brackets.

 The registrar challenges this registration to authenticate Bob. When

 the registrar adds an entry for this contact under the AOR for Bob,

Jennings & Mahy Expires January 12, 2006 [Page 5]

Internet-Draft Client Initiated Connections in SIP July 2005

 the registrar also keeps track of the connection over which it

 received this registration.

 The registrar saves the instance-id (as defined in [1]) and flow-id

 (as defined in Section 9) along with the rest of the Contact header.

 If the instance-id and flow-id are the same as a previous

 registration for the same AOR, the proxy uses the most recently

 created registration first. This allows a UA that has rebooted to

 replace its previous registration for each flow with minimal impact

 on overall system load.

 Later when Alice sends a request to Bob, his proxy selects target

 set. The proxy forwards the request to elements in the target set

 based on the proxies policy. The proxy looks at the the target set

 and uses the instance-id to understand that two targets both end up

 routing to the same UA. When the proxy goes for forward a request to

 a given target, it looks and finds the flows that received this

 registrations. The proxy then forwards the request on that flow

 instead of trying to form a new flow to that contact. This allows

 the proxy to forward a request to a particular contact down the same

 flow that did the registration for this AOR. If the proxy had

 multiple flows that all went to this UA, it could choose any one of

 registration binding that it had for this AOR and had the same

 instance-id as the selected UA. In general, if two registrations

 have the same flow-id and instance-id, the proxy would favor the most

 recently registered flow. This is so that if a UA reboots, the proxy

 will prefer to use the most recent flow that goes to this UA instead

 of trying one of the old flows which will presumably fail.

3.3 Multiple Connections from a User Agent

 In this example system, the logical proxy/registrar for the domain is

 running on two hosts that share the appropriate state and can both

 provide registrar and proxy functionality for the domain. The UA

 will form connections to two of the physical hosts for the domain.

Jennings & Mahy Expires January 12, 2006 [Page 6]

Internet-Draft Client Initiated Connections in SIP July 2005

 +-------------------+

 | Domain |

 | Logical Proxy/Reg |

 | |

 |+-----+ +-----+|

 ||Host1| |Host2||

 |+-----+ +-----+|

 +---\------------/--+

 \ /

 \ /

 \ /

 \ /

 +------+

 | User |

 | Agent|

 +------+

 The UA is configured with a primary and backup registration URI. The

 administrative domain that created these URIs MUST insure that the

 two URIs resolve to separate hosts. These URI have normal SIP

 processing so things like SRV can be used to do load balance across a

 proxy farm.

 The proxies can all use the Path header (as described in the next

 section) to insure that a route to each connection is available to

 each host, or the logical proxy can implement its own mechanism.

 When a single server fails, all the UAs that have a registration with

 it will detect this and try and reconnect. This can cause large

 loads on the server and is referred to as the avalanche restart

 problem. The multiple flows to many servers help reduce the load

 caused by the avalanche restart. If a UA has multiple flows, and one

 os the servers fails, it can delay some significant time before

 trying to form a new connection to replace the flow to the server

 that failed. By spreading out the time used for all the UA to

 reconnect to a server, the load on the server is reduced.

3.4 Edge Proxies

 Some SIP deployments use edge proxies such that the UA sends the

 REGISTER to an edge proxy that then forwards the REGISTER to the

 Registrar. The edge proxy includes a Path header [11] so that when

 the registrar later forwards a request to this UA, the request is

 routed through the edge proxy. There could be a NAT for FW between

 the UA and the edge proxy and there could also be one between the

 edge proxy and the Registrar. This second case typically happens

 when the Edge proxy is in an enterprise the the registrar is at a

 service provider.

Jennings & Mahy Expires January 12, 2006 [Page 7]

Internet-Draft Client Initiated Connections in SIP July 2005

 +---------+

 |Registrar|

 |Proxy |

 +---------+

 / \

 ----------------------------NAT/FW

 / \

 +-----+ +-----+

 |Edge1| |Edge2|

 +-----+ +-----+

 \ /

 \ /

 ----------------------------NAT/FW

 \ /

 \ /

 +------+

 |User |

 |Agent |

 +------+

 These systems can use effectively the same mechanism as described in

 the previous sections but need to use the Path header. When the edge

 proxy receives a registration, it needs to create an identifier value

 that is unique to this flow (and not a subsequent flow with the same

 addresses) and put this identifier in the path header. This is done

 by putting the value in the user portion of a loose route in the path

 header. If the registration succeeds, the edge proxy needs to map

 future requests that are routed to the identifier value that was put

 in the Path header to the associated flow.

3.5 Keep Alive Techniques

 A keep alive mechanism needs to detect both failure of a connection

 and changes to the NAT public mapping. When a residential NAT is

 rebooted, the UA needs to understand that its bindings are no longer

 valid and it needs to re-register. Simply sending keep alive packets

 will not detect this failure when using UDP. With connection

 oriented transports such as TCP or TLS, the keep alive will detect

 failure after a NAT reboot. Connection oriented transport failures

 are detected by having the UA periodically sends a CRLF over the

 connection; if the connection has failed, a connection level error

 will be reported to the UA. A CRLF can be considered the beginning

 of the next message that will be sent, and therefore this approach is

 backwards compatible with the core SIP specification.

 Note: The TCP KEEP_ALIVE mechanism is not used because most

 operating systems do not allow the time to be set on a per

 connection basis. Linux, Solaris, OS X, and Windows all allow

Jennings & Mahy Expires January 12, 2006 [Page 8]

Internet-Draft Client Initiated Connections in SIP July 2005

 KEEP_ALIVEs to be turned on or off on a single socket using the

 SO_KEEPALIVE socket options but can not change the duration of the

 timer for an individual socket. The length of the timer typically

 defaults to 7200 seconds. The length of the timer can be changed

 to a smaller value by setting a kernel parameter but that affects

 all TCP connections on the host and thus is not appropriate to

 use.

 The keep alive mechanism for UDP is quite different. The UA needs to

 detect when the connection is working but also when the flow

 definition has changed. A flow definition could change because a NAT

 device in the network path reboots and the resulting public IP

 address or port mapping for the UA changes. To detect this, STUN [5]

 requests are sent over the connection that is being used for the UDP

 SIP traffic. The proxy or registrar acts as a STUN server on the SIP

 signaling port.

 Note: The STUN mechanism is very robust and allows the detection

 of a changed IP address. It may also be possible to do this with

 OPTIONS messages and rport; although this approach has the

 advantage of being backwards compatible, it also increases the

 load on the proxy or registrar server.

 If the UA detects that the connection has failed or that the flow

 definition has changed, it needs to re-register using a back-off

 mechanism described in Section 4 in order to provide congestion

 relief when a large number of agents simultaneously reboot.

4. User Agent Mechanisms

 The UA behavior is divided up into sections. The first describes

 what a client must do when forming a new connection, the second when

 detecting failure of a connection, and the third on failure recovery.

4.1 Forming Flows

 UAs are configured one of more SIP URIs with which to register. A UA

 MUST support sets with at least two URIs (primary and backup) and

 SHOULD support sets with up to four URIs. For each URI in the

 redundancy set, the UA MUST send a REGISTER with a loose route set to

 the URI from the set. The UA MUST include the the instance-id as

 described in the [1]. The UA MUST also add a distinct flow-id

 parameter to the contact header. The UA SHOULD use a flow-id value

 of 1 for the first URI in the set, and a flow-id value of 2 for the

 second, and so on. Each one of these registrations will form a new

 flow from the UA to the proxy.

 Note that the UA needs to honor 503 responses to registrations as

Jennings & Mahy Expires January 12, 2006 [Page 9]

Internet-Draft Client Initiated Connections in SIP July 2005

 described in RFC 3261 and RFC 3263. In particular implementers

 should note that a 503 with a Retry-After is not considered a failure

 to form the connection. The UA should wait the indicated amount of

 time and retry the connection. A Retry-After header field value of 0

 is valid and indicates the UA should retry the REGISTER immediately.

 Implementations need to ensure that when retrying the REGISTER they

 redo the DNS resolution process such that if multiple hosts are

 reachable from the URI, there is a chance that the UA will select an

 alternate host from the one it chose the previous time the URI was

 resolved.

4.1.1 Instance-ID Selection

 The instance-id needs to be a URN but there are many ways one can be

 generated. A particularly simple way for both "hard" phones and

 "soft" phones is to use a UUID as defined in [7]. A device like a

 soft-phone, when first installed, should generate a UUID [7] and then

 save this in persistent storage for all future use. For a device

 such as a hard phone, which will only ever have a single SIP UA

 present, the UUID can be generated at any time because it is

 guaranteed that no other UUID is being generated at the same time on

 that physical device. This means the value of the time component of

 the UUID can be arbitrarily selected to be any time less than the

 time when the device was manufactured. A time of 0 (as shown in the

 example in Section 3.2) is perfectly legal as long as the device

 knows no other UUIDs were generated at this time.

4.2 Detecting Flow Failure

 The UA needs to detect if a given flow has failed, and if it does

 fail, follow the procedures in Section 4.1 to form a new flow to

 replace the failed one.

 User Agents that form flows with stream oriented protocols such as

 TCP, TLS, or SCTP SHOULD periodically send a CRLF over the connection

 to detect liveness of the flow. If when sending the CRLF, the

 transport reports an error, then the connection is considered to have

 failed. It is RECOMMENDED that a CRLF be sent if the flow has not

 had any data sent or received in the previous 500 to 600 seconds.

 The exact time in the 500 to 600 second range SHOULD be randomly

 selected. These times MAY be configurable.

 User Agents that form flows with datagram oriented protocols such as

 UDP SHOULD check if the URI has the "stun" tag (defined in

 Section 10) and, if the tag is present, then the UA needs to

 periodically perform STUN [5] requests over the flow. The time

 between STUN request SHOULD be a random number between 25 and 30

 seconds. The times MAY be configurable. If the mapped address in

Jennings & Mahy Expires January 12, 2006 [Page 10]

Internet-Draft Client Initiated Connections in SIP July 2005

 the STUN response changes, the UA must treat this as a failure on the

 flow.

 Any time a SIP message is sent and the proxy does not respond, this

 is also considered a failure, the flow is closed and the procedures

 in Section 4.1 are followed to form a new flow.

4.3 Flow Failure Recovery

 When a flow to a particular URI in the proxy set fails, the UA needs

 to form a new flow to replace it. The new flow MUST have the same

 flow-id as the flow it is replacing. This is done in much the same

 way as the forming flows described in Section 4.1; however, if there

 is a failure in forming this flow, the UA needs to wait a certain

 amount of time before retrying to form a flow to this particular URI

 in the proxy set. The time to wait is computed in the following way.

 If all of the flows to every URI in the proxy set have failed, the

 base time is set to 30 seconds; otherwise, in the case where at least

 one of the flows has not failed, the base time is set to 90 seconds.

 The wait time is computed by taking the minimum of 1800 seconds, or

 the base time multiplied by two to power of the number of consecutive

 registration failures to that URI.

 wait-time = min(1800, (30 * (2 ^ consecutive-failures)))

 These three times SHOULD be configurable in the UA. For example if

 the base time was 30 seconds, and there had been three failures, then

 the wait time would be min(1800,30*(2^3)) or 240 seconds. The delay

 time is computed by selecting a uniform random time between 50 and

 100 percent of the the wait time. The UA MUST wait for the value of

 the delay time before trying another registration to form a new flow

 for that URI.

 To be explicitly clear on the boundary conditions, when the UA boots

 it immediately tries to register. If this fails and no registration

 on other flows had succeeded, the first retry would happen somewhere

 between 30 and 60 seconds after the failure of the first registration

 request.

4.4 Registration by other other instances

 A User Agent MUST NOT include an instance-id or flow-id in the

 Contact header field of a registration if the registering UA is not

 the same instance as the UA referred to by the target Contact. (This

 practice is occasionally used to install forwarding policy into

 registrars.)

Jennings & Mahy Expires January 12, 2006 [Page 11]

Internet-Draft Client Initiated Connections in SIP July 2005

5. Registrar Mechanisms

5.1 Processing Register Requests

 Registrars which implement this specification, processes REGISTER

 requests as described in Section 10 of RFC 3261 with the following

 change. Any time the registrar checks if a new contact matches an

 existing contact in the location database, it MUST also check and see

 if both the instance-id and flow-id match. If they do not match,

 then the they are not the same contact. The registrar MUST be

 prepared to receive some registrations that use instance-id and

 flow-id and some that do not, simultaneously for the same AOR.

 In addition to the normal information stored in the binding record,

 some additional information MUST be stored for any registration that

 contains a flow-id header parameter in the Contact header field

 value. The registrar MUST store enough information to uniquely

 identify the network flow over which the request arrived. For common

 operating systems with TCP, this would typically just be the file

 descriptor. For common operating systems with UDP this would

 typically be the file descriptor for the local socket that received

 the request and the IP address and port number of the remote side

 that sent the request.

 The registrar MUST also store all the Contact header field

 information including the flow-id and instance-id and SHOULD also

 store the time at which the binding was last updated. If the

 registrar receives a re-registration, it MUST update the information

 that uniquely identifies the network flow over which the request

 arrived and the time the binding was last updated.

5.2 Forwarding Requests

 When a proxy uses the location service to look up a registration

 binding and then proxies a request to a particular contact, it

 selects a contact to use normally, with a few additional rules:

 o The proxy MUST NOT populate the target set with more than one

 contact with the same AOR and instance-id at a time. If a request

 for a particular AOR and instance-id fails with a 410 response,

 the proxy SHOULD replace the failed branch with another target

 with the same AOR and instance-id, but a different flow-id.

 o If two bindings have the same instance-id and flow-id, it MUST

 prefer the contact that was most recently updated.

 Note that if the request URI is a GRUU, the proxy will only select

 contacts with the AOR and instance-id associated with the GRUU. The

 rules above still apply to a GRUU. This allows a request routed to a

Jennings & Mahy Expires January 12, 2006 [Page 12]

Internet-Draft Client Initiated Connections in SIP July 2005

 GRUU to first try one of the flows to a UA, then if that fails, try

 another flow to the same UA instance.

 Proxies MUST Record-Route so that mid dialog requests are routed over

 the correct flow.

 When the proxy forwards a request to a binding that contains a

 flow-id, the proxy MUST send the request over the same network flow

 that was saved with the binding. For TCP, the request MUST be sent

 on the same TCP socket that received the REGISTER request. For UDP,

 the request MUST be sent from the same local IP address and port over

 which the registration was received to the same IP address and port

 from which the REGISTER was received.

 If a proxy or registrar receives a network error when sending a SIP

 message over a particular flow, it MUST remove all the bindings that

 use that flow (regardless of AOR). Similarly, if a proxy closes a

 file descriptor, it MUST remove all the bindings that use that flow.

6. Edge Proxy Mechanisms

6.1 Processing Register Requests

 When an edge proxy receives a registration request it MUST form a

 flow identifier token that is unique to this network flow and use

 this token as the user part of the URI that this proxy inserts into

 the Path header. A trivial way to satisfy this requirement involves

 storing a mapping between an incrementing counter and the connection

 information, however this would require the edge proxy to keep an

 impractical amount of state. It is unclear when this state could be

 removed and the approach would have problems if the proxy crashed and

 lost the value of the counter. Two stateless examples are provided

 below. A proxy can use any algorithm it wants as long as the flow

 token is unique to a flow.

 Algorithm 1: The proxy generates a flow token for connection-oriented

 transports by concatenating the file descriptor (or equivalent)

 with the NTP time the connection was created, and base64 encoding

 the result. This results in an approximately 16 octet identifier.

 The proxy generates a flow token for UDP by concatenating the file

 descriptor and the remote IP address and port, then base64

 encoding the result.

 Algorithm 2: When the proxy boots it selects a 20 byte crypto random

 key called K that only the edge proxy knows. A byte array, called

 S, is formed that contains the following information about the

 flow the request was received on: an enumeration indicating the

 protocol, the local IP address and port, the remote IP address and

 port. The HMAC of S is computed using the key K and the HMAC-

Jennings & Mahy Expires January 12, 2006 [Page 13]

Internet-Draft Client Initiated Connections in SIP July 2005

 SHA1-80 algorithm, as defined in [9]. The concatenation of the

 HMAC and S are base64 encoded, as defined in [10], and used as the

 flow identifier. With IPv4 address, this will result in a 32

 octet identifier.

6.2 Forwarding Requests

 When the edge proxy receives a request that is routed to a URI with a

 flow identifier token that this proxy created, then the proxy MUST

 forward the request over the flow that received the REGISTER request

 that caused the flow identifier token to be created. For connection-

 oriented transports, if the flow no longer exists the proxy SHOULD

 send a 410 response to the request. The advantage to a stateless

 approach to managing the flow information is that there is no state

 on the edge proxy that requires clean up that has to be synchronized

 with the registrar.

 Algorithm 1: The proxy base64 decodes the user part of the Route

 header. For TCP, if a connection specified by the file descriptor

 is present and the creation time of the file descriptor matches

 the creation time encoded in the Route header, then proxy forwards

 the request over that connection. For UDP, the proxy forwards the

 request from the encoded file descriptor to the source IP address

 and port.

 Algorithm 2: To decode the flow token take the flow identifier in the

 user portion of the URI, and base64 decode it, then verity the

 HMAC is correct by recomputing the HMAC and checking it matches.

 If the HMAC is not correct, the proxy SHOULD send a 403 response.

 If the HMAC was correct then the proxy should forward the request

 on the flow that was specified by the information in the flow

 identifier. If this flow no longer exists, the proxy SHOULD send

 a 410 response to the request.

 Edge Proxies MUST Record-Route with the same URI that was used in the

 path so that mid dialog requests still are routed over the correct

 flow.

7. Mechanisms for All Servers

 A SIP device that receives UDP datagrams directly from a UA needs to

 behave as specified in this section. Such devices would generally

 include a Registrar and an Edge Proxy, as they both receive register

 requests directly from a UA.

 If the server receives UDP SIP requests on a given interface and

 port, it MUST also provide a limited version of the STUN server on

 the same interface and port. Specifically it MUST be capable of

 receiving and responding to UDP STUN requests with the exception that

Jennings & Mahy Expires January 12, 2006 [Page 14]

Internet-Draft Client Initiated Connections in SIP July 2005

 it does not need to support STUN requests with the changed port or

 changed address flag set. This allows the STUN server to run with

 only one port and IP address.

 It is easy to distinguish STUN and SIP packets because the first

 octet of a STUN packet has a value of 0 or 1 while the first octet of

 a SIP message never a 0 or 1.

 When a URI is created that refers to a SIP device that supports STUN

 as described in this section, the URI parameter "stun", as defined in

 Section 10 SHOULD be added to the URI. This allows a UA to inspect

 the URI to decide if it should attempt to send STUN requests to this

 location.

8. Example Message Flow

 The following call flow shows a basic registration and an incoming

 call. Part way through the call, the flow to the Primary proxy is

 lost. The BYE message for the call is rerouted to the callee via the

 Backup proxy. When connectivity to the primary proxy is established,

 the Callee registers again to replace the lost flow as shown in

 message 15.

Jennings & Mahy Expires January 12, 2006 [Page 15]

Internet-Draft Client Initiated Connections in SIP July 2005

 Caller Backup Primary Callee

 | | | (1) REGISTER |

 | | |<-----------------|

 | | |(2) 200 OK |

 | | |----------------->|

 | | | (3) REGISTER |

 | |<------------------------------------|

 | |(4) 200 OK | |

 | |------------------------------------>|

 |(5) INVITE | | |

 |----------------------------------->| |

 | | |(6) INVITE |

 | | |----------------->|

 | | | (7) 200 OK |

 | | |<-----------------|

 | | (8) 200 OK | |

 |<-----------------------------------| |

 |(9) ACK | | |

 |----------------------------------->| |

 | | |(10) ACK |

 | | |----------------->|

 | | CRASH X |

 |(11) BYE | |

 |---------------->| |

 | | (12) BYE |

 | |------------------------------------>|

 | | (13) 200 OK |

 | |<------------------------------------|

 | (14) 200 OK | |

 |<----------------| REBOOT | |

 | | | (15) REGISTER |

 | | |<-----------------|

 | | |(16) 200 OK |

 | | |----------------->|

 This call flow assumes that the Callee has been configured with a

 proxy set of that consists of "sip:primary.example.com;lr;stun" and

 "sip:backup.example.com;lr;stun". The Callee REGISTER in message (1)

 looks like:

Jennings & Mahy Expires January 12, 2006 [Page 16]

Internet-Draft Client Initiated Connections in SIP July 2005

 REGISTER sip:example.com SIP/2.0

 Via: SIP/2.0/UDP 10.0.1.1;branch=z9hG4bKnashds7

 Max-Forwards: 70

 From: Callee <sip:callee@example.com>;tag=a73kszlfl

 To: Callee <sip:callee@example.com>

 Call-ID: 1j9FpLxk3uxtm8tn@10.0.1.1

 CSeq: 1 REGISTER

 Route: <sip:primary.example.com;lr>

 Contact: <sip:callee@10.0.1.1>

 ;+sip.instance="<urn:uuid:0C67446E-F1A1-11D9-94D3-000A95A0E128>"

 ;flow-id=1

 Content-Length: 0

 In the message, note that the Route is set and the Contact header

 field value contains the instance-id and flow-id. The response to

 the REGISTER in message (2) would look like:

 SIP/2.0 200 OK

 Via: SIP/2.0/UDP 10.0.1.1;branch=z9hG4bKnashds7

 From: Callee <sip:callee@example.com>;tag=a73kszlfl

 To: Callee <sip:callee@example.com> ;tag=b88sn

 Call-ID: 1j9FpLxk3uxtm8tn@10.0.1.1

 CSeq: 1 REGISTER

 Contact: <sip:callee@10.0.1.1>

 ;+sip.instance="<urn:uuid:0C67446E-F1A1-11D9-94D3-000A95A0E128>"

 ;flow-id=1

 ;expires=3600

 Content-Length: 0

 The second registration in message 3 and 4 are similar other than the

 Call-ID has changed, the flow-id is 2, and the route is set to the

 backup instead of the primary. They look like:

 REGISTER sip:example.com SIP/2.0

 Via: SIP/2.0/UDP 10.0.1.1;branch=z9hG4bKnashds7

 Max-Forwards: 70

 From: Callee <sip:callee@example.com>;tag=a73kszlfl

 To: Callee <sip:callee@example.com>

 Call-ID: 1j9FpLxk3uxtm8tn-2@10.0.1.1

 CSeq: 1 REGISTER

 Route: <sip:primary.example.com;lr>

 Contact: <sip:callee@10.0.1.1>

 ;+sip.instance="<urn:uuid:0C67446E-F1A1-11D9-94D3-000A95A0E128>"

 ;flow-id=2

Jennings & Mahy Expires January 12, 2006 [Page 17]

Internet-Draft Client Initiated Connections in SIP July 2005

 Content-Length: 0

 SIP/2.0 200 OK

 Via: SIP/2.0/UDP 10.0.1.1;branch=z9hG4bKnashds7

 From: Callee <sip:callee@example.com>;tag=a73kszlfl

 To: Callee <sip:callee@example.com> ;tag=b88sn

 Call-ID: 1j9FpLxk3uxtm8tn-2@10.0.1.1

 CSeq: 1 REGISTER

 Contact: <sip:callee@10.0.1.1>

 ;+sip.instance="<urn:uuid:0C67446E-F1A1-11D9-94D3-000A95A0E128>"

 ;flow-id=1

 ;expires=3600

 Contact: <sip:callee@10.0.1.1>

 ;+sip.instance="<urn:uuid:0C67446E-F1A1-11D9-94D3-000A95A0E128>"

 ;flow-id=2

 ;expires=3600

 Content-Length: 0

 The messages in the call flow are very normal. The only interesting

 thing to note is that the INVITE has a:

 Record-Route: <sip:example.com;lr>

 The registrations in message 15 and 16 are the same as message 1 and

 2 other than the Call-ID has changed.

9. Grammar

 This specification defines a new Contact header field parameter,

 flow-id. The grammar for DIGIT and EQUAL is obtained from RFC 3261

 [3].

 contact-params = c-p-q / c-p-expires / c-p-flow / contact-extension

 c-p-flow = "flow-id" EQUAL 1*DIGIT

 The value of the flow-id MUST NOT be 0 and MUST be less than 2**31.

10. IANA Considerations

 This specification defines a new Contact header field parameter

 called flow-id in the "Header Field Parameters and Parameter Values"

 sub-registry as per the registry created by [12] at

 http://www.iana.org/assignments/sip-parameters. The required

 information is:

Jennings & Mahy Expires January 12, 2006 [Page 18]

Internet-Draft Client Initiated Connections in SIP July 2005

 Header Field Parameter Name Predefined Reference

 Values

 __

 Contact flow-id Yes [RFC AAAA]

 [NOTE TO IANA: Please replace AAAA with

 the RFC number of this specification.]

 This specification defines a new value in the "SIP/SIPS URI

 Parameters" sub-registry as per the registry created by [13] at

 http://www.iana.org/assignments/sip-parameters. The required

 information is:

 Parameter Name Predefined Values Reference

 __

 stun No [RFC AAAA]

 [NOTE TO IANA: Please replace AAAA with

 the RFC number of this specification.]

11. Security Considerations

 One of the key security concerns in this work is making sure that an

 attacker cannot hijack the sessions of a valid user and cause all

 calls destined to that user to be sent to the attacker.

 The simple case is when there are no edge proxies. In this case, the

 only time an entry can be added to the routing for a given AOR is

 when the registration succeeds. SIP protects against attackers being

 able to successfully register, and this scheme relies on that

 security. Some implementers have considered the idea of just saving

 the instance-id without relating it to the AOR with which it

 registered. This idea will not work because an attacker’s UA can

 impersonate a valid user’s instance-id and hijack that user’s calls.

 The more complex case involves one or more edge proxies. The only

 time an edge proxy will route over a particular flow is when it has

 received a route header that has the instance-id information it has

 created. An incoming request would have gotten this information from

 the registrar. The registrar will only save this information for a

 given AOR if the registration for the AOR has been successful; and

 the registration will only be successful if the UA can correctly

 authenticate. Even if an attacker has spoofed some bad information

 in the path header sent to the registrar, the attacker will not be

 able to get the registrar to accept this information for an AOR that

 does not belong to the attacker. The registrar will not hand out

Jennings & Mahy Expires January 12, 2006 [Page 19]

Internet-Draft Client Initiated Connections in SIP July 2005

 this bad information to others, and others would not be misled into

 contacting the attacker.

12. Open Issues

 This specification requires Record Routing to force flows through

 proxies. If all UA were required to implement GRUU, and all

 deployments were mandated to use GRUU, and there could never be a

 proxy behind a NAT or Firewall or deployed without a TLS certificate,

 then it would not be necessary to require the Record Routing. Should

 we do this?

 The two algorithm for edge proxies are nearly identical with the

 exception that one integrity protects the identifier so it can not be

 tampered with. It is not clear if this integrity protection is

 needed. The WG should determine if this integrity is need or not

 then refine this specification.

13. Requirements

 This specification was developed to meet the following requirements:

 1. Must be able to detect that a UA supports these mechanisms.

 2. Support UAs behind NATs.

 3. Support TLS to a UA without a stable DNS name or IP.

 4. Detect failure of connection and be able to correct for this.

 5. Support many UAs simultaneously rebooting.

 6. Support a NAT rebooting or resetting.

 7. Support proxy farms with multiple hosts for scaling and

 reliability purposes.

 8. Minimize initial startup load on a proxy.

 9. Support proxies that provide geographic redundancy.

 10. Support architectures with edge proxies.

14. Changes from 01 Version

 Changed the algorithm and timing for retries of re-registrations.

 Changed to using sigcomp style URI parameter to detect it - UA should

 attempt STUN to proxy.

 Changed to use a configured set of backup proxies instead of playing

 DNS games to try and figure out what backup proxies to use.

15. Changes from 00 Version

 Changed the behavior of the proxy so that it does not automatically

 remove registrations with the same instance-id and flow-id but

Jennings & Mahy Expires January 12, 2006 [Page 20]

Internet-Draft Client Initiated Connections in SIP July 2005

 instead just uses the most recently created registration first.

 Changed the connection-id to flow-id.

 Fixed expiry of edge proxies and rewrote mechanism section to be

 clearer.

16. Acknowledgments

 Jonathan Rosenberg provided many comments and useful text. Dave Oran

 came up with the idea of using the most recent registration first in

 the proxy. Alan Hawrylyshen helped with text on drafts that led to

 this one. Additionally, many of the concepts here originated at a

 connection reuse meeting at IETF 60 that included the authors, Jon

 Peterson, Jonathan Rosenberg, Alan Hawrylyshen, and Paul Kyzivat.

 The TCP design team consisting of Chris Boulton, Scott Lawrence,

 Rajnish Jain, Vijay K. Gurbani, and Ganesh Jayadevan provided input.

 In addition, thanks to the following folks for useful comments:

 Francois Audet, Flemming Andreasen, Dan Wing, Srivatsa Srinivasan,

 and Lyndsay Campbell.

17. References

17.1 Normative References

 [1] Rosenberg, J., "Obtaining and Using Globally Routable User Agent

 (UA) URIs (GRUU) in the Session Initiation Protocol (SIP)",

 draft-ietf-sip-gruu-04 (work in progress), July 2005.

 [2] Bradner, S., "Key words for use in RFCs to Indicate Requirement

 Levels", BCP 14, RFC 2119, March 1997.

 [3] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,

 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:

 Session Initiation Protocol", RFC 3261, June 2002.

 [4] Rosenberg, J. and H. Schulzrinne, "Session Initiation Protocol

 (SIP): Locating SIP Servers", RFC 3263, June 2002.

 [5] Rosenberg, J., Weinberger, J., Huitema, C., and R. Mahy, "STUN -

 Simple Traversal of User Datagram Protocol (UDP) Through Network

 Address Translators (NATs)", RFC 3489, March 2003.

 [6] Crocker, D. and P. Overell, "Augmented BNF for Syntax

 Specifications: ABNF", RFC 2234, November 1997.

 [7] Leach, P., Mealling, M., and R. Salz, "A Universally Unique

 IDentifier (UUID) URN Namespace", RFC 4122, July 2005.

Jennings & Mahy Expires January 12, 2006 [Page 21]

Internet-Draft Client Initiated Connections in SIP July 2005

 [8] Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Indicating User

 Agent Capabilities in the Session Initiation Protocol (SIP)",

 RFC 3840, August 2004.

17.2 Informative References

 [9] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-Hashing

 for Message Authentication", RFC 2104, February 1997.

 [10] Josefsson, S., "The Base16, Base32, and Base64 Data Encodings",

 RFC 3548, July 2003.

 [11] Willis, D. and B. Hoeneisen, "Session Initiation Protocol (SIP)

 Extension Header Field for Registering Non-Adjacent Contacts",

 RFC 3327, December 2002.

 [12] Camarillo, G., "The Internet Assigned Number Authority (IANA)

 Header Field Parameter Registry for the Session Initiation

 Protocol (SIP)", BCP 98, RFC 3968, December 2004.

 [13] Camarillo, G., "The Internet Assigned Number Authority (IANA)

 Uniform Resource Identifier (URI) Parameter Registry for the

 Session Initiation Protocol (SIP)", BCP 99, RFC 3969,

 December 2004.

 [14] Mahy, R., "Connection Reuse in the Session Initiation Protocol

 (SIP)", draft-ietf-sip-connect-reuse-03 (work in progress),

 October 2004.

 [15] Mahy, R., "Requirements for Connection Reuse in the Session

 Initiation Protocol (SIP)",

 draft-ietf-sipping-connect-reuse-reqs-00 (work in progress),

 October 2002.

Authors’ Addresses

 Cullen Jennings (editor)

 Cisco Systems

 170 West Tasman Drive

 Mailstop SJC-21/2

 San Jose, CA 95134

 USA

 Phone: +1 408 902-3341

 Email: fluffy@cisco.com

Jennings & Mahy Expires January 12, 2006 [Page 22]

Internet-Draft Client Initiated Connections in SIP July 2005

 Rohan Mahy (editor)

 SIP Edge LLC

 5617 Scotts Valley Drive, Suite 200

 Scotts Valley, CA 95066

 USA

 Email: rohan@ekabal.com

Jennings & Mahy Expires January 12, 2006 [Page 23]

Internet-Draft Client Initiated Connections in SIP July 2005

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any

 Intellectual Property Rights or other rights that might be claimed to

 pertain to the implementation or use of the technology described in

 this document or the extent to which any license under such rights

 might or might not be available; nor does it represent that it has

 made any independent effort to identify any such rights. Information

 on the procedures with respect to rights in RFC documents can be

 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any

 assurances of licenses to be made available, or the result of an

 attempt made to obtain a general license or permission for the use of

 such proprietary rights by implementers or users of this

 specification can be obtained from the IETF on-line IPR repository at

 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any

 copyrights, patents or patent applications, or other proprietary

 rights that may cover technology that may be required to implement

 this standard. Please address the information to the IETF at

 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an

 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS

 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET

 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,

 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE

 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED

 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject

 to the rights, licenses and restrictions contained in BCP 78, and

 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the

 Internet Society.

Jennings & Mahy Expires January 12, 2006 [Page 24]

SIP Working Group O. Levin

Internet-Draft Microsoft Corporation

Updates: 3515 (if approved) A. Johnston

Expires: January 6, 2006 MCI

 July 5, 2005

 Conveying Feature Tags with Session Initiation Protocol REFER Method

 draft-ietf-sip-refer-feature-param-00

Status of this Memo

 By submitting this Internet-Draft, each author represents that any

 applicable patent or other IPR claims of which he or she is aware

 have been or will be disclosed, and any of which he or she becomes

 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF), its areas, and its working groups. Note that

 other groups may also distribute working documents as Internet-

 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at

 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at

 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 6, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 This document extends the SIP REFER method, defined in RFC 3515, to

 convey feature parameters defined in RFC 3840.

1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

Levin & Johnston Expires January 6, 2006 [Page 1]

Internet-Draft Feature Tags with SIP REFER July 2005

 document are to be interpreted as described in RFC 2119 [1].

 To simplify discussions of the REFER method and its extensions, three

 new terms are being used throughout the document:

 o REFER-Issuer: the UA issuing the REFER request

 o REFER-Recipient: the UA receiving the REFER request

 o REFER-Target: the UA designated in the Refer-To URI

2. Introduction

 This document extends the SIP [2] REFER method defined in RFC 3515

 [3] to be used with feature parameters defined in RFC 3840 [4].

 Feature tags are used by a SIP User Agent (UA) to convey to another

 UA information about capabilities and features. This information can

 be shared by a UA using a number of mechanisms including registration

 requests, OPTIONS responses, or shared in the context of a dialog by

 inclusion with a remote target URI (Uniform Resource Identifier),

 such as a Contact URI.

 Feature tag information can be very useful to another UA. It is

 especially useful prior to the establishment of a session. For

 example, if a UA knows (through an OPTIONS query, for example) that

 the remote UA supports both video and audio, the calling UA might

 call offering video in its session description. Another example is

 when a UA knows that a remote UA is acting as a focus and hosting a

 conference. In this case, the UA might first subscribe to the

 conference URI and find out details about the conference prior to

 sending an INVITE to join.

 This extension to the REFER method provides a mechanism by which the

 REFER-Issuer can provide this useful information about the REFER-

 Target capabilities and functionality to the REFER-Recipient by

 including feature tags in the Refer-To header field in a REFER

 request.

3. Definitions

 The Refer-To BNF from RFC 3515:

 Refer-To = ("Refer-To" / "r") HCOLON (name-addr / addr-spec)

 *(SEMI generic-param)

 is extended to:

 Refer-To = ("Refer-To" / "r") HCOLON (name-addr / addr-spec)

 *(SEMI refer-param)

 refer-param = generic-param / feature-param

Levin & Johnston Expires January 6, 2006 [Page 2]

Internet-Draft Feature Tags with SIP REFER July 2005

 where feature-param is defined in Section 9 of RFC 3840 [4].

 Note that if any URI parameters are present, the entire URI must be

 enclosed in "<" and ">". If no "<" and ">" are present, all

 parameters after the URI are header parameters, not URI parameters.

4. Examples

4.1 isfocus Feature Tag Usage

 The example below shows how the "isfocus" feature tag can be used by

 REFER-Issuer to tell the REFER-Recipient that the REFER-Target is a

 conference focus and, consequently, sending an INVITE will bring the

 REFER-Recipient into the conference:

 Refer-To: <sip:conf44@example.com>;isfocus

4.2 Voice and Video Feature Tags Usage

 The example below shows how a REFER-Issuer can tell the REFER-

 Recipient that the REFER-Target supports audio and video and,

 consequently, that a video and audio session can be established by

 sending an INVITE to the REFER-Target:

 Refer-To: "Alice’s Videophone" <sip:alice@vphone.example.com>

 ;audio;video

4.3 Example with URI parameters and multiple feature tags

 The example below shows how the REFER-Issuer can tell the REFER-

 Recipient that the REFER-Target is a voicemail server. Note that the

 transport URI parameter is enclosed within the "<" and ">" so that it

 is not interpreted as a header parameter.

 Refer-To: <sip:alice-vm@example.com;transport=tcp>

 ;actor="msg-taker";automata;audio

5. IANA Considerations

 This document requires no actions by IANA. Note that this document

 does not define any elements in the SIP Header Parameter Registry

 [5], since it incorporates media feature parameters instead of SIP

 header parameters.

Levin & Johnston Expires January 6, 2006 [Page 3]

Internet-Draft Feature Tags with SIP REFER July 2005

6. Security Considerations

 Feature tags can provide sensitive information about a user or a UA.

 As such, RFC 3840 cautions against providing sensitive information to

 another party. Once this information is given out, any use may be

 made of it, including relaying to a third party as in this

 specification.

 As a result, it is NOT RECOMMENDED that all feature tag information

 be passed using the mechanism described in this specification.

 Instead, only feature tags that directly relate to a requested

 operation should be used. For example, the "isfocus" feature tag has

 clear operation semantics and utility. However, the "mobility" or

 "class" feature tags have no obvious use in a REFER scenario and

 should not be included unless their application is defined in the

 future.

 A feature tag provided by a REFER-Issuer can not be authenticated or

 certified directly from the REFER request. As such, the REFER-

 Recipient MUST treat the information as hint. If the REFER-Recipient

 application logic or user’s action depends on the presence of the

 expressed feature, the feature tag can be verified. For example, in

 order to do so, the REFER-Recipient can directly send an OPTIONS

 query to the REFER-Target over a secure (e.g. mutually authenticated

 and integrity protected) connection. This protects the REFER-

 Recipient against incorrect or malicious feature tags being sent.

 A REFER-Issuer MUST NOT create or guess feature tags - instead a

 feature tag included in a REFER SHOULD have been discovered in an

 authenticated and secure method (such as an OPTIONS response or from

 a remote target URI in a dialog) directly from the REFER-Target.

7. Acknowledgements

 The authors would like to thank Jonathan Rosenberg for providing

 helpful guidance to this work.

8. References

8.1 Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement

 Levels", BCP 14, RFC 2119, March 1997.

 [2] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,

 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:

 Session Initiation Protocol", RFC 3261, June 2002.

Levin & Johnston Expires January 6, 2006 [Page 4]

Internet-Draft Feature Tags with SIP REFER July 2005

 [3] Sparks, R., "The Session Initiation Protocol (SIP) Refer

 Method", RFC 3515, April 2003.

 [4] Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Indicating User

 Agent Capabilities in the Session Initiation Protocol (SIP)",

 RFC 3840, August 2004.

8.2 Informative References

 [5] Camarillo, G., "The Internet Assigned Number Authority (IANA)

 Header Field Parameter Registry for the Session Initiation

 Protocol (SIP)", BCP 98, RFC 3968, December 2004.

Authors’ Addresses

 Orit Levin

 Microsoft Corporation

 One Microsoft Way

 Redmond, WA 98052

 USA

 Phone: 425-722-2225

 Email: oritl@microsoft.com

 Alan Johnston

 MCI

 100 South 4th Street

 St. Louis, MO 63102

 Email: alan.johnston@mci.com

Levin & Johnston Expires January 6, 2006 [Page 5]

Internet-Draft Feature Tags with SIP REFER July 2005

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any

 Intellectual Property Rights or other rights that might be claimed to

 pertain to the implementation or use of the technology described in

 this document or the extent to which any license under such rights

 might or might not be available; nor does it represent that it has

 made any independent effort to identify any such rights. Information

 on the procedures with respect to rights in RFC documents can be

 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any

 assurances of licenses to be made available, or the result of an

 attempt made to obtain a general license or permission for the use of

 such proprietary rights by implementers or users of this

 specification can be obtained from the IETF on-line IPR repository at

 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any

 copyrights, patents or patent applications, or other proprietary

 rights that may cover technology that may be required to implement

 this standard. Please address the information to the IETF at

 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an

 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS

 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET

 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,

 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE

 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED

 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject

 to the rights, licenses and restrictions contained in BCP 78, and

 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the

 Internet Society.

Levin & Johnston Expires January 6, 2006 [Page 6]

SIP O. Levin

Internet-Draft Microsoft Corporation

Expires: January 18, 2006 July 17, 2005

 Suppression of Session Initiation Protocol REFER Method Implicit

 Subscription

 draft-ietf-sip-refer-with-norefersub-02

Status of this Memo

 By submitting this Internet-Draft, each author represents that any

 applicable patent or other IPR claims of which he or she is aware

 have been or will be disclosed, and any of which he or she becomes

 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF), its areas, and its working groups. Note that

 other groups may also distribute working documents as Internet-

 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at

 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at

 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 18, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 This specification defines a way to suppress an implicit subscription

 with the Session Initiation Protocol (SIP) REFER method. A new SIP

 option tag "norefersub" is defined to indicate support for this

 extension. A new SIP header field "Refer-Sub" is defined to request

 the usage of this extension.

Levin Expires January 18, 2006 [Page 1]

Internet-Draft SIP REFER without Subscription July 2005

Table of Contents

 1. Terminology . 3

 2. Introduction . 3

 3. Motivation . 3

 4. Definitions . 4

 5. Preventing Forking of REFER Requests 5

 6. Example . 6

 7. IANA Considerations . 6

 8. Security Considerations 6

 9. Acknowledgements . 7

 10. References . 7

 10.1 Normative References 7

 10.2 Informational References 8

 Author’s Address . 8

 Intellectual Property and Copyright Statements 9

Levin Expires January 18, 2006 [Page 2]

Internet-Draft SIP REFER without Subscription July 2005

1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

 document are to be interpreted as described in RFC 2119 [1].

 To simplify discussions of the REFER method and its extensions, the

 three terms below are being used throughout the document:

 o REFER-Issuer: the UA issuing the REFER request

 o REFER-Recipient: the UA receiving the REFER request

 o REFER-Target: the UA designated in the Refer-To URI

2. Introduction

 The REFER specification specifies that every REFER creates an

 implicit subscription between the REFER-Issuer and the REFER-

 Recipient.

 This document defines a new SIP header field: "Refer-Sub" meaningful

 within a REFER transaction only. This header field, when set to

 "false", specifies that a REFER-Issuer requests that the REFER-

 Recipient doesn’t establish an explicit subscription and the

 resultant dialog.

 This document defines a new option tag: "norefersub". This tag, when

 included in the Supported header field, indicates that a User Agent

 (UA) is capable of accepting a REFER request without creating an

 implicit subscription when acting as a REFER-Recipient.

3. Motivation

 The REFER specification mandates that every REFER creates an implicit

 subscription between the REFER-Issuer and the REFER-Recipient. This

 subscription results in at least one NOTIFY being sent from the

 REFER-Recipient to the REFER-Issuer. The REFER-Recipient may choose

 to cancel the implicit subscription with this NOTIFY. The REFER-

 Issuer may choose to cancel this implicit subscription with an

 explicit SUBSCRIBE (Expires: 0) after receipt of the initial NOTIFY.

 One purpose of requiring the implicit subscription and initial NOTIFY

 is to allow for the situation where the REFER request gets forked and

 the REFER-Issuer needs a way to see the multiple dialogs that may be

 established as a result of the forked REFER. This is the same

 approach used to handle forking of SUBSCRIBE [4] requests. Where the

 REFER-Issuer explicitly specifies that forking not occur, the

 requirement that an implicit subscription be established is

 unnecessary.

Levin Expires January 18, 2006 [Page 3]

Internet-Draft SIP REFER without Subscription July 2005

 Another purpose of the NOTIFY is to inform the REFER-Issuer of the

 progress of the SIP transaction that results from the REFER at the

 REFER-Recipient. In the case where the REFER-Issuer is already aware

 of the progress of the requested operation, such as when the REFER-

 Issuer has an explicit subscription to the dialog event package at

 the REFER-Recipient, the implicit subscription and resultant NOTIFY

 traffic related to the REFER can create an unnecessary network

 overhead.

4. Definitions

 This document defines a new SIP header field: "Refer-Sub". This

 header field is meaningful and MAY be used with a REFER request and

 the corresponding 2XX response only. This header field set to

 "false" specifies that a REFER-Issuer requests that the REFER-

 Recipient doesn’t establish an explicit subscription and the

 resultant dialog. Note that when using this extension, the REFER

 remains a target refresh request (as in the default case - when the

 extension is not used).

 This document adds the following entry to Table 2 of [2]. The

 additions to this table are also provided for extension methods at

 the time of publication of this document. This is provided as a

 courtesy to the reader and is not normative in any way:

 Header field where proxy ACK BYE CAN INV OPT REG MSG

 Refer-Sub R, 2xx - - - - - - -

 Header field where SUB NOT REF INF UPD PRA PUB

 Refer-Sub R, 2xx - - o - - - -

 The Refer-Sub header field MAY be encrypted as part of end-to-end

 encryption.

 The syntax of the header field follows the BNF defined below:

 Refer-Sub = "Refer-Sub" HCOLON refer-sub-value extension-value

 refer-sub-value = "true" / "false"

 extension-value = *(TEXT-UTF8char / UTF8-CONT / LWS)

 The "Refer-Sub" header field set to "false" MAY be used by the REFER-

 Issuer only when the REFER-Issuer can be certain that the REFER

 request will not be forked.

 If the REFER-Recipient supports the extension and is willing to

Levin Expires January 18, 2006 [Page 4]

Internet-Draft SIP REFER without Subscription July 2005

 process the REFER transaction without establishing an implicit

 subscription, it MUST insert the "Refer-Sub" header field set to

 "false" in the 2xx response to the REFER-Issuer. In this case no

 implicit subscription is created. Consequently, no new dialog is

 created if this REFER was issued outside any existing dialog.

 If the REFER-Issuer inserts the "Refer-Sub" header field set to

 "false", but the REFER-Recipient doesn’t grant the suggestion (i.e.

 either does not include the "Refer-Sub" header field or includes the

 "Refer-Sub" header field set to "true" in the 2xx response), an

 implicit subscription is created as in default case.

 This document also defines a new option tag, "norefersub". This tag,

 when included in the Supported header field, specifies that a User

 Agent (UA) is capable of accepting a REFER request without creating

 an implicit subscription when acting as a REFER-Recipient.

 If the capabilities of the REFER-Recipient are not known, using the

 "norefersub" tag with the Require header field is NOT RECOMMENDED.

 This is due to the fact that in the event the REFER-Recipient doesn’t

 support the extension, in order to fallback to the normal REFER, the

 REFER-Issuer will need to issue a new REFER transaction thus

 resulting in additional round-trips.

 The "norefersub" tag, when included in the Require header field

 (always in conjunction with the "Refer-Sub" header field set to

 "false"), specifies that the REFER-Recipient MUST process a REFER

 transaction without establishing an explicit subscription. In this

 case, if the REFER-Recipient either doesn’t support the extension or

 is not willing to grant the request, the REFER request MUST be

 rejected by sending "420 Bad Extension" response back to the REFER-

 Issuer.

5. Preventing Forking of REFER Requests

 The REFER specification allows for the possibility of forking a REFER

 request which is sent outside of an existing dialog. In addition, a

 proxy may fork an unknown method type. Should forking occur, the

 sender of the REFER with "Refer-Sub" will not be aware as only a

 single 2xx response will be forwarded by the forking proxy. As a

 result, the responsibility is on the issuer of the REFER with "Refer-

 Sub" to ensure that no forking will result.

 The best way that the REFER-Issuer can ensure that REFER doesn’t get

 forked is by only sending a REFER with "Refer-Sub" with a Request-URI

 which has GRUU properties according to definitions of [5].

 If this is not known, the other way to ensure that forking will not

Levin Expires January 18, 2006 [Page 5]

Internet-Draft SIP REFER without Subscription July 2005

 occur is to ensure that there are no proxies between the REFER-Issuer

 and the REFER-Recipient. This could be done by sending the REFER

 with a Max-Forwards: 0 header field. Any proxy receiving this

 request will return a "483 Too Many Hops" response, indicating that

 it is not safe to use this extension.

6. Example

 An example of REFER which suppresses the implicit subscription is

 shown below:

 REFER sip:pc-b@example.com SIP/2.0

 Via: SIP/2.0/TCP issuer.example.com;branch=z9hG4bK-a-1

 From: <sip:a@example.com>;tag=1a

 To: <sip:pc-b@example.com>

 Call-ID: 1@issuer.example.com

 CSeq: 234234 REFER

 Max-Forwards: 70

 Refer-To: <sip:c@example.com;method=INVITE>

 Refer-Sub: false

 Supported: norefersub

 Contact: sip:a@issuer.example.com

 Content-Length: 0

7. IANA Considerations

 This document registers a new SIP header field "Refer-Sub". This

 header field is only meaningful for the REFER request defined in RFC

 3515 [3] and the corresponding response. The following information

 to be added to the header field sub-registry under

 http://www.iana.org/assignments/sip-parameters:

 o Header Name: Refer-Sub

 o Compact Form: None

 o Reference: [Substitute with this RFC number]

 This document also registers a new SIP option tag, "norefersub". The

 required information for this registration, as specified in RFC 3261

 [2], is:

 o Name: norefersub

 o Description: This option tag specifies a User Agent ability of

 accepting a REFER request without establishing an implicit

 subscription (compared to the default case defined in RFC 3515

 [3]).

8. Security Considerations

 The purpose of this SIP extension is to modify the expected behavior

Levin Expires January 18, 2006 [Page 6]

Internet-Draft SIP REFER without Subscription July 2005

 of the REFER-Recipient. The change in behavior is for the REFER-

 Recipient to not establish a dialog and to not send NOTIFY messages

 back to the REFER-Issuer. As such, a malicious inclusion of a

 "Refer-Sub" header field set to "false" reduces the processing and

 state requirements on the recipient. As a result, its use in a

 denial of service attack seems limited.

 Should an intermediary maliciously insert a "Refer-Sub" header field

 set to "false", two possibilities may occur. If the REFER-Recipient

 does not support the extension, the REFER will fail with a "420 Bad

 Extension" response. The REFER-Issuer will be confused as no "Refer-

 Sub" was in the request, and the resulting request will fail. Should

 the REFER-Recipient support the extension, the 2xx response will

 contain the "Refer-Sub" header field set to "false". In any case,

 the REFER-Recipient will not establish a new dialog and send NOTIFYs.

 As a result the REFER-Recipient will not learn the outcome of the

 operation on the Refer-To URI.

 Should an intermediary maliciously remove a "Refer-Sub" header field

 set to "false", the REFER-Recipient will try to sent notifications

 over the "explicitly established" dialog. It may confuse the REFER-

 Issuer, unless the Man in the Middle (MitM) has the motivation and

 the ability to intercept the notifications.

 To protect against these kinds of MitM attacks, integrity protection

 should be used. For example, the REFER-Issuer could use S/MIME as

 discussed in RFC 3261 [2] to protect against these kinds of attacks.

9. Acknowledgements

 The SIP community would like to thank Sriram Parameswar for his ideas

 being originally presented in draft-parameswar-sipping-norefersub-00

 and served as the basis for this specification.

10. References

10.1 Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement

 Levels", BCP 14, RFC 2119, March 1997.

 [2] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,

 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:

 Session Initiation Protocol", RFC 3261, June 2002.

 [3] Sparks, R., "The Session Initiation Protocol (SIP) Refer

 Method", RFC 3515, April 2003.

Levin Expires January 18, 2006 [Page 7]

Internet-Draft SIP REFER without Subscription July 2005

 [4] Roach, A., "Session Initiation Protocol (SIP)-Specific Event

 Notification", RFC 3265, June 2002.

10.2 Informational References

 [5] Rosenberg, J., "Obtaining and Using Globally Routable User Agent

 (UA) URIs (GRUU) in the Session Initiation Protocol (SIP)",

 draft-ietf-sip-gruu-04 (work in progress), July 2005.

Author’s Address

 Orit Levin

 Microsoft Corporation

 One Microsoft Way

 Redmond, WA 98052

 USA

 Phone: 425-722-2225

 Email: oritl@microsoft.com

Levin Expires January 18, 2006 [Page 8]

Internet-Draft SIP REFER without Subscription July 2005

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any

 Intellectual Property Rights or other rights that might be claimed to

 pertain to the implementation or use of the technology described in

 this document or the extent to which any license under such rights

 might or might not be available; nor does it represent that it has

 made any independent effort to identify any such rights. Information

 on the procedures with respect to rights in RFC documents can be

 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any

 assurances of licenses to be made available, or the result of an

 attempt made to obtain a general license or permission for the use of

 such proprietary rights by implementers or users of this

 specification can be obtained from the IETF on-line IPR repository at

 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any

 copyrights, patents or patent applications, or other proprietary

 rights that may cover technology that may be required to implement

 this standard. Please address the information to the IETF at

 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an

 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS

 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET

 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,

 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE

 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED

 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject

 to the rights, licenses and restrictions contained in BCP 78, and

 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the

 Internet Society.

Levin Expires January 18, 2006 [Page 9]

SIP J. Rosenberg

Internet-Draft Cisco Systems

Expires: January 19, 2006 July 18, 2005

 Request Authorization through Dialog Identification in the Session

 Initiation Protocol (SIP)

 draft-ietf-sip-target-dialog-01

Status of this Memo

 By submitting this Internet-Draft, each author represents that any

 applicable patent or other IPR claims of which he or she is aware

 have been or will be disclosed, and any of which he or she becomes

 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF), its areas, and its working groups. Note that

 other groups may also distribute working documents as Internet-

 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at

 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at

 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 19, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 This specification defines the Target-Dialog header field for the

 Session Initiation Protocol (SIP), and the corresponding option tag,

 tdialog. This header field is used in requests that create SIP

 dialogs. It indicates to the recipient that the sender is aware of

 an existing dialog with the recipient, either because the sender is

 on the other side of that dialog, or because it has access to the

 dialog identifiers. The recipient can then authorize the request

 based on this awareness.

Rosenberg Expires January 19, 2006 [Page 1]

Internet-Draft Target Dialog July 2005

Table of Contents

 1. Introduction . 3

 2. Overview of Operation 4

 3. UAC Behavior . 5

 4. User Agent Server Behavior 7

 5. Proxy Behavior . 8

 6. Extensibility Considerations 8

 7. Header Field Definition 8

 8. Security Considerations 9

 9. Example Call Flow . 9

 10. IANA Considerations . 12

 10.1 Header Field . 12

 10.2 SIP Option Tag . 12

 11. Acknowledgments . 13

 12. References . 13

 12.1 Normative References 13

 12.2 Informative References 14

 Author’s Address . 15

 Intellectual Property and Copyright Statements 16

Rosenberg Expires January 19, 2006 [Page 2]

Internet-Draft Target Dialog July 2005

1. Introduction

 The Session Initiation Protocol (SIP) [1] defines the concept of a

 dialog as a persistent relationship between a pair of user agents.

 Dialogs provide context, including sequence numbers, proxy routes,

 and dialog identifiers. Dialogs are established through the

 transmission of SIP requests with particular methods. Specifically,

 the INVITE, REFER [7], SUBSCRIBE and NOTIFY [2] requests all create

 dialogs.

 When a user agent receives a request that creates a dialog, it needs

 to decide whether to authorize that request. For some requests,

 authorization is a function of the identity of the sender, the

 request method, and so on. However, many situations have been

 identified in which a user agents’ authorization decision depends on

 whether the sender of the request is currently in a dialog with that

 user agent, or whether the sender of the request is aware of a dialog

 the user agent has with another entity.

 One such example is call transfer, accomplished through REFER. If

 user agents A and B are in an INVITE dialog, and user agent A wishes

 to transfer user agent B to user agent C, user agent A needs to send

 a REFER request to user agent B, asking user agent B to send an

 INVITE request to user agent C. User agent B needs to authorize this

 REFER. The proper authorization decision is that user agent B should

 accept the request if it came from a user with whom B currently has

 an INVITE dialog relationship. Current implementations deal with

 this by sending the REFER on the same dialog as the one in place

 between user agents A and B. However, this approach has numerous

 problems [9]. These problems include difficulty in determining the

 lifecycle of the dialog and its usages, and difficulties in

 determining which messages are associated with each application

 usage. Instead, a better approach is for user agent A to send the

 REFER request to user agent C outside of the dialog using its

 Globally Routable User Agent URI (GRUU) [10]. In that case, a means

 is needed for user agent B to authorize the REFER.

 Another example is the application interaction framework [11]. In

 that framework, proxy servers on the path of a SIP INVITE request can

 place user interface components on the user agent that generated or

 received the request. To do this, the proxy server needs to send a

 REFER request to the user agent, targeted to their GRUU, asking the

 user agent to fetch an HTTP resource containing the user interface

 component. In such a case, a means is needed for the user agent to

 authorize the REFER. The appplication interaction framework

 recommends that the request be authorized if it was sent from an

 entity on the path of the original dialog. This can be done by

 including the dialog identifiers in the REFER, which prove that the

Rosenberg Expires January 19, 2006 [Page 3]

Internet-Draft Target Dialog July 2005

 user agent that sent the REFER is aware of those dialog identifiers

 (this needs to be secured against eavesdroppers through the sips

 mechanism, of course)

 Another example is if two user agents share an INVITE dialog, and an

 element on the path of the INVITE request wishes to track the state

 of the INVITE. In such a case, it sends a SUBSCRIBE request to the

 GRUU of the user agent, asking for a subscription to the dialog event

 package. If the SUBSCRIBE request came from an element on the INVITE

 request path, it should be authorized.

2. Overview of Operation

 +--------+ +--------+

 | | INVITE | |

 | Server |----------->| Server |

 | A | | B |

 | |...........>| |

 +--------+ +--------+

 ^ REFER . \

 / . \

 / . \

 / . \

 / . \

 / V V

 +--------+ +--------+

 | | | |

 | User | | User |

 | Agent | | Agent |

 | A | | B |

 +--------+ +--------+

 Figure 1

 Figure 1 shows the basic model of operation. User agent A sends an

 INVITE to user agent B, traversing two servers, server A and server

 B. Both servers act as proxies for this transaction. User B sends a

 200 OK response to the INVITE. This 200 OK includes a Supported

 header field indicating support for both the GRUU specification

 (through the presence of the gruu option tag) and this specification

 (through the presence of the tdialog option tag). The 200 OK

Rosenberg Expires January 19, 2006 [Page 4]

Internet-Draft Target Dialog July 2005

 response establishes a dialog between the two user agents. Next,

 server A wishes to REFER user agent B to fetch an HTTP resource. So,

 it acts as a user agent and sends a REFER request to user agent B.

 This REFER is addressed to the GRUU of user agent B, which server A

 learned from inspecting the Contact header field in the 200 OK of the

 INVITE request. This GRUU is a URI that can be used by any element

 on the Internet, such as server A, to reach the specific user agent

 instance that generated that 200 OK to the INVITE.

 The REFER request generated by server A will contain a Target-Dialog

 header field. This header field contains the dialog identifiers for

 the INVITE dialog between user agents A and B, composed of the

 Call-ID, local tag, and remote tag. Server A knew to include the

 Target-Dialog header field in the REFER request because it knows that

 user agent B supports it.

 When the REFER request arrives at user agent B, it needs to make an

 authorization decision. Because the INVITE dialog was established

 using a sips URI, and because the dialog identifiers are

 cryptographically random [1], no entity except for user agent A or

 the proxies on the path of the initial INVITE request can know the

 dialog identifiers. Thus, because the REFER request contains those

 dialog identifiers, user agent B can be certain that the REFER

 request came from either user agent A, the two proxies, or an entity

 to whom the user agent or proxies gave the dialog identifiers. As

 such, it authorizes the REFER request, and fetches the HTTP resource

 identified by the URI of the Refer-To header field in the REFER

 request.

3. UAC Behavior

 A UAC SHOULD include a Target-Dialog header field in a request if the

 following conditions are all true:

 1. The request is to be sent outside of any existing dialog.

 2. The user agent client believes that the request will not be

 authorized by the user agent server unless the user agent client

 can prove that it is aware of the dialog identifiers for some

 other dialog. Call this dialog the target dialog.

 3. The request does not otherwise contain information that indicates

 that the UAC is aware of those dialog identifiers.

 4. The user agent client knows that the user agent server supports

 the Target-Dialog header field. It can know this if it has seen

 a request or response from the user agent server within the

 target dialog that contained a Supported header field which

Rosenberg Expires January 19, 2006 [Page 5]

Internet-Draft Target Dialog July 2005

 included the tdialog option tag.

 If the fourth condition is not met, the UAC SHOULD NOT use this

 specification. Instead, if it is currently within a dialog with the

 UAS, it SHOULD attempt to send the request within the existing target

 dialog.

 The following are examples of use cases in which these conditions are

 met:

 o A REFER request is sent according to the principles of [11].

 These REFER are sent outside of a dialog, and do not contain any

 other information which indicates awareness of the target dialog.

 [11] also mandates that the REFER be sent only if the UA indicates

 support for the target dialog specification.

 o User A is in separate calls with users B and user C. It decides to

 start a three way call, and so morphs into a focus [14]. User B

 would like to learn the other participants in the conference. So,

 it sends a SUBSCRIBE request to user A (who is now acting as the

 focus) for the conference event package [13]. It is sent outside

 of the existing dialog between user B and the focus, and would be

 authorized by A if user B could prove that it knows the dialog

 identifiers for its existing dialog with the focus. Thus, the

 Target-Dialog header field would be include in the SUBSCRIBE.

 The following are examples of use cases in which these conditions are

 not met:

 o A server acting as a proxy is a participant in an INVITE dialog

 that establishes a session. The server would like to use the

 Keypad Markup Language (KPML) event package [15] to find out about

 keypresses from the originating user agent. To do this, it sends

 a SUBSCRIBE request. However, the Event header field of this

 SUBSCRIBE contains event parameters which indicate the target

 dialog of the subscription. As such, the request can be

 authorized without additional information.

 o A server acting as a proxy is a participant in an INVITE dialog

 that establishes a session. The server would like to use the

 dialog event package [12] to find out about keypresses from the

 originating user agent. To do this, it sends a SUBSCRIBE request.

 However, the Event header field of this SUBSCRIBE contains event

 parameters which indicate the target dialog of the subscription.

 As such, the request can be authorized without additional

 information.

 Specifications which intend to make use of the Target-Dialog header

Rosenberg Expires January 19, 2006 [Page 6]

Internet-Draft Target Dialog July 2005

 field SHOULD discuss speific conditions in which it is to be

 included.

 Assuming it is to be included, the value of the call-id production in

 the Target-Dialog header field MUST be equal to the Call-ID of the

 target dialog. The "remote-tag" header field parameter MUST be

 present, and MUST contain the tag that would be viewed as the remote

 tag from the perspective of the recipient of the new request. The

 "local-tag" header field parameter MUST be present, and MUST contain

 the tag that would be viewed as the local tag from the perspective of

 the recipient of the new request.

 The request sent by the UAC SHOULD include a Require header field

 that includes the tdialog option tag. This request should, in

 principle, never fail with a 420 (Bad Extension) response, because

 the UAC would not have sent the request unless it believed the UAS

 supported the extension. If a Require header field was not included,

 and the UAS didn’t support the extension, it would normally reject

 the request becaust it was unauthorized, probably with a 403.

 However, without the Require header field, the UAC would not be able

 to differentiate a 403 that arrived because the UAS didn’t actually

 understand the Target-Dialog header field (in which case the client

 should send the request within the target dialog if it can), from a

 403 that arrived because the UAS understood the Target-Dialog header

 field, but elected not to authorize the request despite the fact that

 the UAC proved its awareness of the target dialog (in which case the

 client should not resend the request within the target dialog, even

 if it could).

4. User Agent Server Behavior

 If a user agent server receives a dialog-creating request, and wishes

 to authorize the request, and that authorization depends on whether

 or not the sender has knowledge of an existing dialog with the UAS,

 and information outside of the Target-Dialog header field does not

 provide proof of this knowledge, the UAS SHOULD check the request for

 the existence of the Target-Dialog header field. If this header

 field is not present, the UAS MAY still authorize the request based

 on other means.

 If the header field is present, and the value of the call-id

 production, the "remote-tag" and "local-tag" values match the

 Call-ID, remote tag and local tag of an existing dialog, and the

 dialog that they match was established using a sips URI, the UAS

 SHOULD authorize the request if it would authorize any entity on the

 path of the request that created that dialog, or any entity trusted

 by an entity on the path of the request that created that dialog.

Rosenberg Expires January 19, 2006 [Page 7]

Internet-Draft Target Dialog July 2005

 If the dialog identifiers match, but they match a dialog not created

 with a sips URI, the UAS MAY authorize the request if it would

 authorize any entity on the path of the request that created that

 dialog, or any entity trusted by an entity on the path of the request

 that created that dialog. However, in this case, any eavesdropper on

 the original dialog path would have access to the dialog identifiers,

 and thus the authorization strength is reduced to MAY.

 If the dialog identifiers don’t match, or if they don’t contain both

 a "remote-tag" and "local-tag" parameter, the header field MUST be

 ignored, and authorization MAY be determined by other means.

5. Proxy Behavior

 Proxy behavior is unaffected by this specification.

6. Extensibility Considerations

 This specification depends on a user agent client knowing, ahead of

 sending a request to a user agent server, whether or not that user

 agent server supports the Target-Dialog header field. As discussed

 in Section 3, the UAC can know this because it saw a request or

 response sent by that UAS within the target dialog that contained the

 Supported header field whose value included the tdialog option tag.

 Because of this requirement, it is especially important that user

 agents compliant to this specification include a Supported header

 field in all dialog forming requests and responses. Inclusion of the

 Supported header fields in requests is at SHOULD strength within RFC

 3261. This specification does not alter that requirement. However,

 implementors should realize that, unless the tdialog option tag is

 placed in the Supported header field of requests and responses, this

 extension is not likely to be used, and instead, the request is

 likely to be resent within the existing target dialog (assuming the

 sender is the UA on the other side of the target dialog). As such,

 the conditions in which the SHOULD would not be followed would be

 those rare cases in which the UA does not want to enable usage of

 this extension.

7. Header Field Definition

 The grammar for the Target-Dialog header field is defined as follows:

 Target-Dialog = "Target-Dialog" HCOLON call-id *(SEMI

 td-param)

 td-param = remote-param / local-param / generic-param

 remote-param = "remote-tag" EQUAL token

Rosenberg Expires January 19, 2006 [Page 8]

Internet-Draft Target Dialog July 2005

 local-param = "local-tag" EQUAL token

 Figure 3 and Figure 4 are an extension of Tables 2 and 3 in RFC 3261

 [1] for the Target-Dialog header field. The column "INF" is for the

 INFO method [3], "PRA" is for the PRACK method [4], "UPD" is for the

 UPDATE method [5], "SUB" is for the SUBSCRIBE method [2], "NOT" is

 for the NOTIFY method [2], "MSG" is for the MESSAGE method [6], "REF"

 is for the REFER method [7], and "PUB" is for the PUBLISH method [8].

 Header field where proxy ACK BYE CAN INV OPT REG PUB

 Target-Dialog R ar - - - o - - -

 Figure 3: Allowed Methods for Target-Dialog

 Header field where proxy PRA UPD SUB NOT INF MSG REF

 Target-Dialog R ar - - o - - - o

 Figure 4: Allowed Methods for Target-Dialog

8. Security Considerations

 The Target-Dialog header field is used to authorize requests based on

 the fact that the sender of the request has access to information

 that only certain entities have access to. In order for such an

 authorization decision to be secure, two conditions have to be met.

 Firstly, no eavesdroppers can have access to this information. That

 requires the original SIP dialog to be established using a sips URI,

 which provides TLS on each hop. With a sips URI, only the user

 agents and proxies on the request path will be able to know the

 dialog identifiers. The second condition is that the dialog

 identifiers be sufficiently random that they cannot be guessed. RFC

 3261 requires global uniquess for the Call-ID and 32 bits of

 randomness for each tag (there are two tags for a dialog). Given the

 short duration over which a typical dialog exists (perhaps as long as

 a day), this amount of randomness appears adequate to prevent

 guessing attacks.

9. Example Call Flow

 In this example, user agent A and user agent B establish an INVITE

 initiated dialog through Server-A and Server-B, each of which acts as

 a proxy for the INVITE. Server B would then like to use the app

 interaction framework [11] to request user agent A to fetch an HTML

Rosenberg Expires January 19, 2006 [Page 9]

Internet-Draft Target Dialog July 2005

 user interface component. To do that, it sends a REFER request to

 A’s GRUU. The flow for this is shown in Figure 5. The conventions

 of [16] are used to describe representation of long message lines.

 A Server-A Server-B B

 |(1) INVITE | | |

 |----------->| | |

 | |(2) INVITE | |

 | |----------->| |

 | | |(3) INVITE |

 | | |----------->|

 | | |(4) 200 OK |

 | | |<-----------|

 | |(5) 200 OK | |

 | |<-----------| |

 |(6) 200 OK | | |

 |<-----------| | |

 |(7) ACK | | |

 |------------------------------------->|

 | |(8) REFER | |

 | |<-----------| |

 |(9) REFER | | |

 |<-----------| | |

 |(10) 200 OK | | |

 |----------->| | |

 | |(11) 200 OK | |

 | |----------->| |

 Figure 5

 First, the caller sends an INVITE, as shown in message 1.

Rosenberg Expires January 19, 2006 [Page 10]

Internet-Draft Target Dialog July 2005

 INVITE sips:B@example.com SIP/2.0

 Via: SIP/2.0/TLS host.example.com;branch=z9hG4bK9zz8

 From: Caller <sip:A@example.com>;tag=kkaz-

 To: Callee <sip:B@example.org>

 Call-ID: fa77as7dad8-sd98ajzz@host.example.com

 CSeq: 1 INVITE

 Max-Forwards: 70

 Supported: gruu, tdialog

 Allow: INVITE, OPTIONS, BYE, CANCEL, ACK, REFER

 Accept: application/sdp, text/html

 <allOneLine>

 Contact: <sips:A@example.com;opaque=urn:uuid:f81d4f

 ae-7dec-11d0-a765-00a0c91e6bf6;grid=99a>;schemes="http,sip,sips"

 </allOneLine>

 Content-Length: ...

 Content-Type: application/sdp

 --SDP not shown--

 The INVITE indicates that the caller supports GRUU (note its presence

 in the Contact header field of the INVITE) and the Target-Dialog

 header field. This INVITE is forwarded to the callee (messages 2-3),

 which generates a 200 OK response that is forwarded back to the

 caller (message 4-5). Message 5 might look like:

 SIP/2.0 200 OK

 Via: SIP/2.0/TLS host.example.com;branch=z9hG4bK9zz8

 From: Caller <sip:A@example.com>;tag=kkaz-

 To: Callee <sip:B@example.org>;tag=6544

 Call-ID: fa77as7dad8-sd98ajzz@host.example.com

 CSeq: 1 INVITE

 Contact: <sips:B@pc.example.org>

 Content-Length: ...

 Content-Type: application/sdp

 --SDP not shown--

 In this case, the called party does not support GRUU or the Target-

 Dialog header field. The caller generates an ACK (message 7).

 Server B then decides to send a REFER to user A:

Rosenberg Expires January 19, 2006 [Page 11]

Internet-Draft Target Dialog July 2005

 <allOneLine>

 REFER sips:A@example.com;opaque=urn:uuid:f81d4f

 ae-7dec-11d0-a765-00a0c91e6bf6;grid=99a SIP/2.0

 </allOneLine>

 Via: SIP/2.0/TLS serverB.example.org;branch=z9hG4bK9zz10

 From: Server B <sip:serverB.example.org>;tag=mreysh

 <allOneLine>

 To: Caller <sips:A@example.com;opaque=urn:uuid:f81d4f

 ae-7dec-11d0-a765-00a0c91e6bf6;grid=99a>

 </allOneLine>

 Target-Dialog: fa77as7dad8-sd98ajzz@host.example.com

 ;local-tag=kkaz-

 ;remote-tag=6544

 Refer-To: http://serverB.example.org/ui-component.html

 Call-ID: 86d65asfklzll8f7asdr@host.example.com

 CSeq: 1 REFER

 Max-Forwards: 70

 Require: tdialog

 Allow: INVITE, OPTIONS, BYE, CANCEL, ACK, NOTIFY

 Event: refer

 Contact: <sips:serverB.example.org>

 Content-Length: 0

 This REFER will be delivered to server A because it was sent to the

 GRUU. From there, it is forwarded to user agent A (message 9), and

 authorized because of the presence of the Target-Dialog header field.

10. IANA Considerations

 This specification registers a new SIP header field and a new option

 tag according to the processes of RFC 3261 [1].

10.1 Header Field

 RFC Number: RFC XXXX [Note to IANA: Fill in with the RFC number of

 this specification.]

 Header Field Name: Target-Dialog

 Compact Form: none

10.2 SIP Option Tag

 This specification registers a new SIP option tag per the guidelines

 in Section 27.1 of RFC 3261.

Rosenberg Expires January 19, 2006 [Page 12]

Internet-Draft Target Dialog July 2005

 Name: tdialog

 Description: This option tag is used to identify the target dialog

 header field extension. When used in a Require header field, it

 implies that the recipient needs to support the Target-Dialog

 header field. When used in a Supported header field, it implies

 that the sender of the message supports it.

11. Acknowledgments

 This specification is based on a header field first proposed by

 Robert Sparks in the dialog usage draft. John Elwell provided

 helpful comments.

12. References

12.1 Normative References

 [1] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,

 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:

 Session Initiation Protocol", RFC 3261, June 2002.

 [2] Roach, A., "Session Initiation Protocol (SIP)-Specific Event

 Notification", RFC 3265, June 2002.

 [3] Donovan, S., "The SIP INFO Method", RFC 2976, October 2000.

 [4] Rosenberg, J. and H. Schulzrinne, "Reliability of Provisional

 Responses in Session Initiation Protocol (SIP)", RFC 3262,

 June 2002.

 [5] Rosenberg, J., "The Session Initiation Protocol (SIP) UPDATE

 Method", RFC 3311, October 2002.

 [6] Campbell, B., Rosenberg, J., Schulzrinne, H., Huitema, C., and

 D. Gurle, "Session Initiation Protocol (SIP) Extension for

 Instant Messaging", RFC 3428, December 2002.

 [7] Sparks, R., "The Session Initiation Protocol (SIP) Refer

 Method", RFC 3515, April 2003.

 [8] Niemi, A., "Session Initiation Protocol (SIP) Extension for

 Event State Publication", RFC 3903, October 2004.

Rosenberg Expires January 19, 2006 [Page 13]

Internet-Draft Target Dialog July 2005

12.2 Informative References

 [9] Sparks, R., "Multiple Dialog Usages in the Session Initiation

 Protocol", draft-sparks-sipping-dialogusage-00 (work in

 progress), July 2004.

 [10] Rosenberg, J., "Obtaining and Using Globally Routable User

 Agent (UA) URIs (GRUU) in the Session Initiation Protocol

 (SIP)", draft-ietf-sip-gruu-03 (work in progress),

 February 2005.

 [11] Rosenberg, J., "A Framework for Application Interaction in the

 Session Initiation Protocol (SIP)",

 draft-ietf-sipping-app-interaction-framework-04 (work in

 progress), February 2005.

 [12] Rosenberg, J., "An INVITE Inititiated Dialog Event Package for

 the Session Initiation Protocol (SIP)",

 draft-ietf-sipping-dialog-package-06 (work in progress),

 April 2005.

 [13] Rosenberg, J., "A Session Initiation Protocol (SIP) Event

 Package for Conference State",

 draft-ietf-sipping-conference-package-12 (work in progress),

 July 2005.

 [14] Rosenberg, J., "A Framework for Conferencing with the Session

 Initiation Protocol",

 draft-ietf-sipping-conferencing-framework-05 (work in

 progress), May 2005.

 [15] Burger, E., "A Session Initiation Protocol (SIP) Event Package

 for Key Press Stimulus (KPML)", draft-ietf-sipping-kpml-07

 (work in progress), December 2004.

 [16] Sparks, R., "Session Initiation Protocol Torture Test

 Messages", draft-ietf-sipping-torture-tests-07 (work in

 progress), May 2005.

Rosenberg Expires January 19, 2006 [Page 14]

Internet-Draft Target Dialog July 2005

Author’s Address

 Jonathan Rosenberg

 Cisco Systems

 600 Lanidex Plaza

 Parsippany, NJ 07054

 US

 Phone: +1 973 952-5000

 Email: jdrosen@cisco.com

 URI: http://www.jdrosen.net

Rosenberg Expires January 19, 2006 [Page 15]

Internet-Draft Target Dialog July 2005

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any

 Intellectual Property Rights or other rights that might be claimed to

 pertain to the implementation or use of the technology described in

 this document or the extent to which any license under such rights

 might or might not be available; nor does it represent that it has

 made any independent effort to identify any such rights. Information

 on the procedures with respect to rights in RFC documents can be

 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any

 assurances of licenses to be made available, or the result of an

 attempt made to obtain a general license or permission for the use of

 such proprietary rights by implementers or users of this

 specification can be obtained from the IETF on-line IPR repository at

 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any

 copyrights, patents or patent applications, or other proprietary

 rights that may cover technology that may be required to implement

 this standard. Please address the information to the IETF at

 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an

 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS

 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET

 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,

 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE

 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED

 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject

 to the rights, licenses and restrictions contained in BCP 78, and

 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the

 Internet Society.

Rosenberg Expires January 19, 2006 [Page 16]

SIP C. Jennings

Internet-Draft Cisco Systems

Expires: January 18, 2006 J. Peterson

 NeuStar, Inc.

 July 17, 2005

Certificate Management Service for The Session Initiation Protocol (SIP)

 draft-ietf-sipping-certs-02

Status of this Memo

 By submitting this Internet-Draft, each author represents that any

 applicable patent or other IPR claims of which he or she is aware

 have been or will be disclosed, and any of which he or she becomes

 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF), its areas, and its working groups. Note that

 other groups may also distribute working documents as Internet-

 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at

 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at

 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 18, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 This draft defines a Credential Service that allows SIP User Agents

 to use a SIP package to discover the certificates of other users.

 This mechanism allows user agents that want to contact a given

 Address-of-Record (AOR) to retrieve that AOR’s certificate by

 subscribing to the Credential Service. The Credential Service also

 allows users to store and retrieve their own certificates and private

 keys.

Jennings & Peterson Expires January 18, 2006 [Page 1]

Internet-Draft SIP Certificates July 2005

Table of Contents

 1. Introduction . 4

 2. Definitions . 4

 3. Overview . 4

 4. UA Behavior with Certificates 7

 5. UA Behavior with Credentials 8

 6. Credential Service Behavior 9

 7. Event Package Formal Definition for "certificate" 9

 7.1 Event Package Name . 9

 7.2 Event Package Parameters 9

 7.3 SUBSCRIBE Bodies . 9

 7.4 Subscription Duration 10

 7.5 NOTIFY Bodies . 10

 7.6 Subscriber Generation of SUBSCRIBE Requests 10

 7.7 Notifier Processing of SUBSCRIBE Requests 10

 7.8 Notifier Generation of NOTIFY Requests 11

 7.9 Subscriber Processing of NOTIFY Requests 11

 7.10 Handling of Forked Requests 11

 7.11 Rate of Notifications 11

 7.12 State Agents and Lists 12

 7.13 Behavior of a Proxy Server 12

 8. Event Package Formal Definition for "credential" 12

 8.1 Event Package Name . 12

 8.2 Event Package Parameters 12

 8.3 SUBSCRIBE Bodies . 12

 8.4 Subscription Duration 12

 8.5 NOTIFY Bodies . 13

 8.6 Subscriber Generation of SUBSCRIBE Requests 13

 8.7 Notifier Processing of SUBSCRIBE Requests 14

 8.8 Notifier Generation of NOTIFY Requests 14

 8.9 Generation of PUBLISH Requests 14

 8.10 Notifier Processing of PUBLISH Requests 15

 8.11 Subscriber Processing of NOTIFY Requests 15

 8.12 Handling of Forked Requests 16

 8.13 Rate of Notifications 16

 8.14 State Agents and Lists 16

 8.15 Behavior of a Proxy Server 16

 9. Examples . 16

 9.1 Encrypted Page Mode IM Message 16

 9.2 Setting and Retrieving UA Credentials 17

 10. Security Considerations 18

 10.1 Certificate Revocation 20

 10.2 Certificate Replacement 21

 10.3 Trusting the Identity of a Certificate 21

 10.4 Conformity to the SACRED Framework 22

 10.5 Crypto Profiles . 22

 10.6 User Certificate Generation 23

Jennings & Peterson Expires January 18, 2006 [Page 2]

Internet-Draft SIP Certificates July 2005

 10.7 Compromised Authentication Service 23

 11. IANA Considerations . 23

 11.1 Certificate Event Package 24

 11.2 Credential Event Package 24

 11.3 PKCS#8 . 24

 12. Acknowledgments . 26

 13. References . 26

 13.1 Normative References 26

 13.2 Informational References 27

 Authors’ Addresses . 28

 Intellectual Property and Copyright Statements 29

Jennings & Peterson Expires January 18, 2006 [Page 3]

Internet-Draft SIP Certificates July 2005

1. Introduction

 SIP [6] provides a mechanism [18] for end-to-end encryption and

 integrity using S/MIME [17]. Several security properties of SIP

 depend on S/MIME, and yet it has not been widely deployed.

 Certainly, one reason is the complexity of providing a reasonable

 certificate distribution infrastructure. This specification proposes

 a way to address discovery, retrieval, and management of certificates

 for SIP deployments. It follows the Sacred Framework RFC 3760 [7]

 for management of the credentials. Combined with the SIP Identity

 [2] specification, this specification allows users to have

 certificates that are not signed by any well known certificate

 authority while still strongly binding the user’s identity to the

 certificate. This mechanism allows SIP User Agents such as IP phones

 to enroll and get their credentials without any more configuration

 information than they commonly have today. The end user expends no

 extra effort.

2. Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

 document are to be interpreted as described in RFC 2119 [5].

 Certificate: An X.509v3 [15] style certificate containing a public

 key and a list of identities in the SubjectAltName that are bound

 to this key. The certificates discussed in this draft are

 generally self signed and use the mechanisms in the SIP Identity

 [2] specification to vouch for their validity, but certificates

 that are signed by a certificate authority can also be used with

 all the mechanisms in this draft.

 Credential: For this document, credential means the combination of a

 certificate and the associated private key.

 password phrase: A password used to encrypt a PKCS#8 private key.

3. Overview

 The general approach is to provide a new SIP service referred to as a

 "credential service" that allows SIP User Agents (UAs) to subscribe

 to other users’ certificates using a new SIP event package [4]. The

 certificate is delivered to the subscribing UA in a corresponding SIP

 NOTIFY request. The identity of the certificate can be vouched for

 using the Authentication Service from the SIP Identity [2]

 specification, which uses the domain’s certificate to sign the NOTIFY

 request. The credential service can manage public certificates as

 well as the user’s private keys. Users can update their credentials,

 as stored on the credential service, using a SIP PUBLISH [3] request.

 The UA authenticates to the credential service using a shared secret

Jennings & Peterson Expires January 18, 2006 [Page 4]

Internet-Draft SIP Certificates July 2005

 when a UA is updating a credential. Typically the shared secret will

 be the same one that is used by the UA to authenticate a REGISTER

 request with the Registrar for the domain (usually with SIP Digest

 Authentication).

 The following figure shows Bob publishing his credentials from one of

 his User Agents (e.g. his laptop software client), retrieving his

 credentials from another of his User Agents (e.g. his mobile phone),

 and then Alice retrieving Bob’s certificate and sending a message to

 Bob. SIP 200-class responses are omitted from the diagram to make the

 figure easier to understand.

 example.com domain

 Alice Proxy Auth Cred Bob1 Bob2

 | | | | TLS Handshake | |

 | [Bob generates] |<--------------------->|

 | [credentials and] | PUBLISH (credential) |

 | [publishes them] |<----------------------|

 | | | | Digest Challenge |

 | | | |---------------------->|

 | | | | PUBLISH + Digest |

 | | | |<----------------------|

 | | | | |

 | | | | time passes... |

 | | | | |

 | | | | TLS Handshake |

 | [Bob later gets] |<---------------->|

 | [back his own] | SUBSCRIBE |

 | [credentials] | (credential) |

 | [at another] |<-----------------|

 | [User Agent] | SUBSCRIBE+Digest |

 | | | |<-----------------|

 | | | | NOTIFY |

 | | | |----------------->|

 | | | | Bob Decrypts key |

 | | | | |

 | | | | |

 | SUBSCRIBE (certificate) | Alice fetches |

 |---------->|----->|----->| Bob’s cert |

 | | |NOTIFY| |

 | NOTIFY+Identity |<-----| |

 |<----------+------| | Alice uses cert |

 | | | | to encrypt |

 | MESSAGE | | | message to Bob |

 |---------->|------+------+----------------->|

 Bob’s UA (Bob2) does a TLS [11] handshake with the credential server

Jennings & Peterson Expires January 18, 2006 [Page 5]

Internet-Draft SIP Certificates July 2005

 to authenticate that the UA is connected to the correct credential

 server. Then Bob’s UA publishes his newly created or updated

 credentials. The credential server digest challenges the UA to

 authenticate that the UA knows Bob’s shared secret. Once the UA is

 authenticated, the credential server stores Bob’s credentials.

 Another of Bob’s User Agents (Bob1) wants to fetch its current

 credentials. It does a TLS [11] handshake with the credential server

 to authenticate that the UA is connected to the correct credential

 server. Then Bob’s UA subscribes for the credentials. The

 credential server digest challenges the UA to authenticate that the

 UA knows Bob’s shared secret. Once the UA is authenticated, the

 credential server sends a NOTIFY that contains Bob’s credentials.

 The private key portion of the credential may have been encrypted

 with a secret that only Bob’s UA (and not the credential server)

 knows. In this case, once Bob’s UA decrypts the private key it will

 be ready to go. Typically Bob’s UA would do this when it first

 registered on the network.

 Some time later Alice decides that she wishes to discover Bob’s

 certificate so that she can send him an encrypted message or so that

 she can verify the signature on a message from Bob. Alice’s UA sends

 a SUBSCRIBE message to Bob’s AOR. The proxy in Bob’s domain routes

 this to the credential server via an authorization service. The

 credential server returns a NOTIFY that contains Bob’s public

 certificate in the body. This is routed through an authentication

 service that signs that this message really can validly claim to be

 from the AOR "sip:bob@example.com". Alice’s UA receives the

 certificate and can use it to encrypt a message to Bob.

 It is critical to understand that the only way that Alice can trust

 that the certificate really is the one for Bob and that the NOTIFY

 has not been spoofed is for Alice to check that the Identity [2]

 header field value is correct.

 The mechanism described in this document works for both self signed

 certificates and certificates signed by well known certificate

 authorities; however, it is imagined that most UAs using this would

 only use self signed certificates and would use an Authentication

 Service as described in [2] to provide a strong binding of an AOR to

 the certificates.

 The mechanisms described in this draft allow for three different

 styles of deployment:

 1. Deployments where the the credential server only stores

 certificates and does not store any private key information. If

 the deployment had users with multiple devices, some other scheme

Jennings & Peterson Expires January 18, 2006 [Page 6]

Internet-Draft SIP Certificates July 2005

 (perhaps even manual provisioning) would be used to get the right

 private keys onto all the devices that a user uses.

 2. Deployments where the credential server stores certificates and

 also stores encrypted version of the private keys. The

 credential server would not know or need the password phrase for

 decrypting the private key. The credential server would help

 move the the private keys between devices but the user would need

 to enter a password phrase on each device to allow that device to

 decrypt (and encrypt) the private key information.

 3. Deployments where the credential server stores the certificates

 and private keys and also knows the password phrase for

 decrypting the private keys. Deployments such as these may not

 even use password phrases, in which case the private keys are not

 encrypted inside the PKCS#8 objects. This style of deployments

 would often have the credential server, instead of the devices,

 create the credentials.

4. UA Behavior with Certificates

 When a User Agent wishes to discover some other user’s certificate it

 subscribes to the "certificate" SIP event package as described in

 Section 7 to get the certificate. While the subscription is active,

 if the certificate is updated, the Subscriber will receive the

 updated certificate in a notification.

 The Subscriber needs to decide how long it is willing to trust that

 the certificate it receives is still valid. If the certificate is

 revoked before it expires, the Notifier will send a notification with

 an empty body to indicate that the certificate is no longer valid.

 However, the Subscriber might not receive the notification if an

 attacker blocks this traffic. The amount of time that the Subscriber

 caches a certificate SHOULD be configurable. A default of one day is

 RECOMMENDED.

 Note that the actual duration of the subscription is orthogonal to

 the caching time or validity time of the corresponding certificate.

 Allowing subscriptions to persist after a certificate is not longer

 valid ensures that Subscribers receive the replacement certificate in

 a timely fashion. In some cases, the Notifier will not allow

 unauthenticated subscriptions to persist. The Notifier could return

 an immediate notification with the certificate in response to

 subscribe and then immediately terminate subscription, setting the

 reason parameter to "probation". The Subscriber will have to

 periodically poll the Notifier to verify validity of the certificate.

 If the UA uses a cached certificate in a request and receives a 437

 (Unsupported Certificate) response, it SHOULD remove the certificate

 it used from the cache, attempt to fetch the certificate again. If

Jennings & Peterson Expires January 18, 2006 [Page 7]

Internet-Draft SIP Certificates July 2005

 the certificate is the not the same, then the UA SHOULD retry the

 original request again. This situation usually indicates that the

 certificate was recently updated, and that the Subscriber has not

 received a corresponding notification. If the certificate fetched is

 the same as the one that was previously in the the cache, then the UA

 SHOULD NOT try the request again. This situation can happened when

 the request was retargeted to a different user than the original

 request. The 437 response is defined in [2].

 Note: A UA that has a presence list MAY want to subscribe to the

 certificates of all the presentities in the list when the UA

 subscribes to their presence, so that when the user wishes to

 contact a presentity, the UA will already have the appropriate

 certificate. Future specifications might consider the possibility

 of retrieving the certificates along with the presence documents.

 The details of how a UA deals with receiving encrypted messages is

 outside the scope of this specification but it is worth noting that

 if Charlie’s UAS receives a request that is encrypted to Bob, it

 would be valid and legal for that UA to send a 302 redirecting the

 call to Charlie.

5. UA Behavior with Credentials

 UAs discover their own credentials by subscribing to their AOR with

 an event type of credential as described in Section 8. After a UA

 registers, it SHOULD retrieve its credentials by subscribing to them

 as described in Section 7.6.

 When a UA discovers its credential, the private key information might

 be encrypted with a password phrase. The UA SHOULD request that the

 user enter the password phrase on the device, and the UA MAY cache

 this password phrase for future use.

 There are several different cases in which a UA should generate a new

 credential:

 o If the UA receives a NOTIFY with no body for the credential

 package.

 o If the certificate has expired.

 o If the certificate is within 600 seconds of expiring, the UA

 SHOULD attempt to create replacement credentials. The UA does

 this by waiting a random amount of time between 0 and 300 seconds.

 If no new credentials have been received in that time, the UA

 creates new credentials to replace the expiring ones and sends

 them in a PUBLISH request (with a SIP-If-Match header set to the

 current etag). This makes credential collisions both unlikely and

 harmless.

Jennings & Peterson Expires January 18, 2006 [Page 8]

Internet-Draft SIP Certificates July 2005

 o If the user of the device has indicated via the user interface

 that they wish to revoke the current certificate and issue a new

 one.

 Credentials are created by creating a new key pair which will require

 appropriate randomness, and then creating a certificate as described

 in Section 10.6. The UA MAY encrypt the private key with a password

 phrase supplied by the user. Then the UA updates the user’s

 credential by sending a PUBLISH [3] request with the credentials or

 just the certificate as described in Section 8.9.

 If a UA wishes to revoke the existing certificate without publishing

 a new one, it MUST send a PUBLISH with an empty body to the

 credential server.

6. Credential Service Behavior

 The credential service stores credentials for users and can provide

 the credentials to other user agents belonging to the same user, and

 certificates to any user agent. The credentials are indexed by a URI

 that corresponds to the AOR of the user. When a UA requests a public

 certificate with a SUBSCRIBE, the server sends the UA the certificate

 in a NOTIFY and sends a subsequent NOTIFY any time the certificate

 changes. When a credential is requested, the credential service

 digest challenges the requesting UA to authenticate it so that the

 credential service can verify that the UA is authorized to receive

 the requested credentials. When a credential is published, the

 credential service digest challenges the requesting UA to

 authenticate it so that the credential service can verify that the UA

 is authorized to change the credentials. This behavior is defined in

 Section 7 and Section 8.

7. Event Package Formal Definition for "certificate"

7.1 Event Package Name

 This document defines a SIP Event Package as defined in RFC 3265 [4].

 The event-package token name for this package is:

 certificate

7.2 Event Package Parameters

 This package does not define any event package parameters.

7.3 SUBSCRIBE Bodies

 This package does not define any SUBSCRIBE bodies.

Jennings & Peterson Expires January 18, 2006 [Page 9]

Internet-Draft SIP Certificates July 2005

7.4 Subscription Duration

 Subscriptions to this event package can range from no time to weeks.

 Subscriptions in days are more typical and are RECOMMENDED. The

 default subscription duration for this event package is one day.

 The credential service is encouraged to keep the subscriptions active

 for AORs that are communicating frequently, but the credential

 service MAY terminate the subscription at any point in time.

7.5 NOTIFY Bodies

 The body of a NOTIFY request for this package MUST either be empty or

 contain an application/pkix-cert body (as defined in [10]) that

 contains the certificate, unless an Accept header has negotiated some

 other type. The Content-Disposition MUST be set to "signal".

 A future extension MAY define other NOTIFY bodies. If no "Accept"

 header is present in the SUBSCRIBE, the body type defined in this

 document MUST be assumed.

 Implementations which generate large notifications are reminded to

 follow the message size restrictions for unreliable transports

 articulated in Section 18.1.1 of SIP.

7.6 Subscriber Generation of SUBSCRIBE Requests

 A UA discovers a certificate by sending a SUBSCRIBE request with an

 event type of "certificate" to the AOR for which a certificate is

 desired. In general, the UA stays subscribed to the certificate for

 as long as it plans to use and cache the certificate, so that the UA

 can be notified about changes or revocations to the certificate.

 Subscriber User Agents will typically subscribe to certificate

 information for a period of hours or days, and automatically attempt

 to re-subscribe just before the subscription is completely expired.

 When a user de-registers from a device (logoff, power down of a

 mobile device, etc.), subscribers SHOULD unsubscribe by sending a

 SUBSCRIBE request with an Expires header of zero.

7.7 Notifier Processing of SUBSCRIBE Requests

 When a SIP credential server receives a SUBSCRIBE request with the

 certificate event-type, it is not necessary to authenticate the

 subscription request. The Notifier MAY limit the duration of the

 subscription to an administrator-defined period of time. The

 duration of the subscription does not correspond in any way to the

Jennings & Peterson Expires January 18, 2006 [Page 10]

Internet-Draft SIP Certificates July 2005

 period for which the certificate will be valid.

 When the credential server receives a SUBSCRIBE request for a

 certificate, it first checks to see if it has credentials for the

 requested URI. If it does not have a certificate, it returns a

 NOTIFY request with an empty message body.

7.8 Notifier Generation of NOTIFY Requests

 Immediately after a subscription is accepted, the Notifier MUST send

 a NOTIFY with the current certificate, or an empty body if no

 certificate is available for the target user. In either case it

 forms a NOTIFY with the From header field value set to the value of

 the To header field in the SUBSCRIBE request. This server sending

 the NOTIFY needs either to implement an Authentication Service (as

 described in SIP Identity [2]) or else the server needs to be set up

 such that the NOFIFY request will be sent through an Authentication

 Service. Sending the NOTIFY request through the the Authentication

 Service requires the SUBSCRIBE request to have been routed through

 the Authentication Service, since the NOTIFY is sent within the

 dialog formed by the subscription.

7.9 Subscriber Processing of NOTIFY Requests

 The resulting NOTIFY will contain an application/pkix-cert body that

 contains the requested certificate. The UA MUST follow the

 procedures in Section 10.3 to decide if the received certificate can

 be used. The UA needs to cache this certificate for future use. The

 maximum length of time it should be cached for is discussed in

 Section 10.1. The certificate MUST be removed from the cache if the

 certificate has been revoked (if a NOTIFY with an empty body is

 received), or if it is updated by a subsequent NOTIFY. The UA MUST

 check that the NOTIFY is correctly signed by an Authentication

 Service as described in [2]. If the identity asserted by the

 Authentication Service does not match the AOR that the UA subscribed

 to, the certificate in the NOTIFY is discarded and MUST NOT be used.

7.10 Handling of Forked Requests

 This event package does not permit forked requests. At most one

 subscription to this event type is permitted per resource.

7.11 Rate of Notifications

 Notifiers SHOULD NOT generate NOTIFY requests more frequently than

 once per minute.

Jennings & Peterson Expires January 18, 2006 [Page 11]

Internet-Draft SIP Certificates July 2005

7.12 State Agents and Lists

 Implementers MUST NOT implement state agents for this event type.

 Likewise, implementations MUST NOT use the event list extension [19]

 with this event type. It is not possible to make such an approach

 work, because the Authentication service would have to simultaneously

 assert several different identities.

7.13 Behavior of a Proxy Server

 There are no additional requirements on a SIP Proxy, other than to

 transparently forward the SUBSCRIBE and NOTIFY requests as required

 in SIP. This specification describes the Proxy, Authentication

 service, and credential service as three separate services, but it is

 certainly possible to build a single SIP network element that

 performs all of these services at the same time.

8. Event Package Formal Definition for "credential"

8.1 Event Package Name

 This document defines a SIP Event Package as defined in RFC 3265 [4].

 The event-package token name for this package is:

 credential

8.2 Event Package Parameters

 This package defines the "etag" Event header parameter which is valid

 only in NOTIFY requests. It contains a token which represents the

 SIP etag value at the time the notification was sent. Considering

 how infrequently credentials are updated, this hint is very likely to

 be the correct etag to use in the SIP-If-Match header in a SIP

 PUBLISH request to update the current credentials.

 etag-param = "etag" EQUAL token

8.3 SUBSCRIBE Bodies

 This package does not define any SUBSCRIBE bodies.

8.4 Subscription Duration

 Subscriptions to this event package can range from hours to one week.

 Subscriptions in days are more typical and are RECOMMENDED. The

 default subscription duration for this event package is one day.

Jennings & Peterson Expires January 18, 2006 [Page 12]

Internet-Draft SIP Certificates July 2005

 The credential service SHOULD keep subscriptions active for UAs that

 are currently registered.

8.5 NOTIFY Bodies

 The NOTIFY MUST contain a multipart/mixed (see [14]) body that

 contains both an application/pkix-cert body with the certificate and

 an application/pkcs8 body that has the associated private key

 information for the certificate. The Content-Disposition MUST be set

 to "signal" as defined in [16].

 A future extension MAY define other NOTIFY bodies. If no "Accept"

 header is present in the SUBSCRIBE, the body type defined in this

 document MUST be assumed.

 The application/pkix-cert body is a DER encoded X.509v3 certificate

 [10]. The application/pkcs8 body contains a DER-encoded PKCS#8 [1]

 object that contains the private key. The PKCS#8 objects MUST be of

 type PrivateKeyInfo. The integrity and confidentiality of the PKCS#8

 objects is provided by the TLS transport. The transport encoding of

 all the MIME bodies is binary.

8.6 Subscriber Generation of SUBSCRIBE Requests

 A Subscriber User Agent will subscribe to its credential information

 for a period of hours or days and will automatically attempt to re-

 subscribe before the subscription has completely expired.

 The Subscriber SHOULD subscribe to its credentials whenever a new

 user becomes associated with the device (a new login). The

 subscriber SHOULD also renew its subscription immediately after a

 reboot, or when the subscriber’s network connectivity has just been

 re-established.

 The UA needs to authenticate with the credential service for these

 operations. The UA MUST use TLS to connect to the server. The UA

 may be configured with a specific name for the credential service;

 otherwise normal SIP routing is used. As described in RFC 3261, the

 TLS connection needs to present a certificate that matches the

 expected name of the server to which the connection was formed, so

 that the UA knows it is talking to the correct server. Failing to do

 this may result in the UA publishing its private key information to

 an attacker. The credential service will authenticate the UA using

 the usual SIP Digest mechanism, so the UA can expect to receive a SIP

 challenge to the SUBSCRIBE or PUBLISH requests.

Jennings & Peterson Expires January 18, 2006 [Page 13]

Internet-Draft SIP Certificates July 2005

8.7 Notifier Processing of SUBSCRIBE Requests

 When a credential service receives a SUBSCRIBE for a credential, the

 credential service has to authenticate and authorize the UA and

 validate that adequate transport security is being used. Only a UA

 that can authenticate as being able to register as the AOR is

 authorized to receive the credentials for that AOR. The credential

 Service MUST digest challenge the UA to authenticate the UA and then

 decide if it is authorized to receive the credentials. If

 authentication is successful, the Notifier MAY limit the duration of

 the subscription to an administrator-defined period of time. The

 duration of the subscription MUST not be larger than the length of

 time for which the certificate is still valid. The Expires header

 should be set appropriately.

8.8 Notifier Generation of NOTIFY Requests

 Once the UA has authenticated with the credential service and the

 subscription is accepted, the credential service MUST immediately

 send a Notify request. The Notifier SHOULD include the current etag

 value in the "etag" Event package parameter in the NOTIFY request.

 The Authentication Service is applied to this NOTIFY request in the

 same way as the certificate subscriptions. If the credential is

 revoked, the credential service MUST terminate any current

 subscriptions and force the UA to re-authenticate by sending a NOTIFY

 with its Subscription-State header set to "terminated" and a reason

 parameter of "deactivated". (This causes a Subscriber to retry the

 subscription immediately.) This is so that if a secret for

 retrieving the credentials gets compromised, the rogue UA will not

 continue to receive credentials after the compromised secret has been

 changed.

 Any time the credentials for this URI change, the credential service

 MUST send a new NOTIFY to any active subscriptions with the new

 credentials.

8.9 Generation of PUBLISH Requests

 A user agent SHOULD be configurable to control whether it publishes

 the credential for a user or just the user’s certificate.

 When publishing just a certificate, the body contains an application/

 pkix-cert. When publishing a credential, the body contains a

 multipart/mixed containing both an application/pkix-cert and an

 application/pkcs8 body.

 When the UA sends the PUBLISH [3] request, it needs to do the

Jennings & Peterson Expires January 18, 2006 [Page 14]

Internet-Draft SIP Certificates July 2005

 following:

 o The Expires header field value in the PUBLISH request SHOULD be

 set to match the time for which the certificate is valid.

 o If the certificate includes Basic Constraints, it SHOULD set the

 CA flag to false.

 o The PUBLISH request SHOULD include a SIP-If-Match header field

 with the previous etag from the subscription. This prevents

 multiple User Agents for the same AOR from publishing conflicting

 credentials. Note that UAs replace credentials that are about to

 expire at a random time (described in Section 5), reducing the

 chance of publishing conflicting credentials even without using

 the etag.

8.10 Notifier Processing of PUBLISH Requests

 When the credential service receives a PUBLISH to update credentials,

 it MUST authenticate and authorize this request the same way as for

 subscriptions for credentials. If the authorization succeeds, then

 the credential service MUST perform the following check on the the

 certificate:

 o One of the names in the SubjectAltName of the certificate matches

 the authorized user making the request.

 o The notBefore validity time MUST NOT be in the future.

 o The notAfter validity time MUST be in the future.

 o If an CA Basic Constraint is set in the certificate, it is set to

 false.

 If all of these succeed, the credential service updates the

 credential for this URI, processes all the active certificates and

 credential subscriptions to this URI, and generates a NOTIFY request

 with the new credential or certificate.

 If the Subscriber submits a PUBLISH request with no body, this

 revokes the current credentials and causes all subscriptions to the

 credential package to be deactivated as described in the previous

 section. (Note that subscriptions to the certificate package are NOT

 terminated; each subscriber to the certificate package receives a

 notification with an empty body.)

8.11 Subscriber Processing of NOTIFY Requests

 When the UA receives a valid NOTIFY request, it should replace its

 existing credentials with the new received ones. If the UA cannot

 decrypt the PKCS#8 object, it MUST send a 437 (Unsupported

 Certificate) response. Later if the user provides a new password

 phrase for the private key, the UA can subscribe to the credentials

 again and attempt to decrypt with the new password phrase.

Jennings & Peterson Expires January 18, 2006 [Page 15]

Internet-Draft SIP Certificates July 2005

8.12 Handling of Forked Requests

 This event package does not permit forked requests.

8.13 Rate of Notifications

 Notifiers SHOULD NOT generate NOTIFY requests more frequently than

 once per minute.

8.14 State Agents and Lists

 Implementers MUST NOT implement state agents for this event type.

 Likewise, implementations MUST NOT use the event list extension [19]

 with this event type.

8.15 Behavior of a Proxy Server

 The behavior is identical to behavior described for certificate

 subscriptions described in Section 7.13.

9. Examples

 In all these examples, large parts of the messages are omitted to

 highlight what is relevant to this draft. The lines in the examples

 that are prefixed by $ represent encrypted blocks of data.

9.1 Encrypted Page Mode IM Message

 In this example, Alice sends Bob an encrypted page mode instant

 message. Alice does not already have Bob’s public key from previous

 communications, so she fetches Bob’s public key from Bob’s credential

 service:

 SUBSCRIBE sip:bob@biloxi.example.com SIP/2.0

 ...

 Event: certificate

 The credential service responds with the certificate in a NOTIFY.

Jennings & Peterson Expires January 18, 2006 [Page 16]

Internet-Draft SIP Certificates July 2005

 NOTIFY alice@atlanta.example.com SIP/2.0

 Subscription-State: active; expires=7200

 From: <sip:bob@biloxi.example.com>;tag=1234

 Identity: "NJguAbpmYXjnlxFmlOkumMI+MZXjB2iV/NW5xsFQqzD/p4yiovrJBqhd3T

 ZkegnsmoHryzk9gTBH7Gj/erixEFIf82o3Anmb+CIbrgdl03gGaD6ICvkp

 VqoMXZZjdvSpycyHOhh1cmUx3b9Vr3pZuEh+cB01pbMQ8B1ch++iMjw="

 Identity-Info: <https://atlanta.example.com/cert>;alg=rsa-sha1

 Event: certificate

 Content-Type: application/pkix-cert

 Content-Disposition: signal

 < certificate data >

 Next, Alice sends a SIP MESSAGE message to Bob and can encrypt the

 body using Bob’s public key as shown below. Although outside the

 scope of this document, it is worth noting that instant messages

 often have common plain text like "Hi", so that setting up symmetric

 keys for extended session mode IM conversations will likely increase

 efficiency, as well as reducing the likelihood of compromising the

 asymmetric key in the certificate.

 MESSAGE sip:bob@biloxi.example.com SIP/2.0

 ...

 Content-Type: application/pkcs7-mime

 Content-Disposition: render

 $ Content-Type: text/plain

 $

 $ < encrypted version of "Hello" >

9.2 Setting and Retrieving UA Credentials

 When Alice’s UA wishes to publish Alice’s public and private keys to

 the credential service, it sends a PUBLISH request like the one

 below. This must be sent over a TLS connection in which the other

 end of the connection presents a certificate that matches the

 credential service for Alice and digest challenges the request to

 authenticate her.

Jennings & Peterson Expires January 18, 2006 [Page 17]

Internet-Draft SIP Certificates July 2005

 PUBLISH sips:alice@atlanta.example.com SIP/2.0

 ...

 Content-Type: multipart/mixed;boundary=boundary

 Content-Disposition: signal

 --boundary

 Content-ID: 123

 Content-Type: application/pkix-cert

 < Public certificate for Alice >

 --boundary

 Content-ID: 456

 Content-Type: application/pkcs8

 < Private Key for Alice >

 --boundary

 If one of Alice’s UAs subscribes to the credential event, the UA will

 be digest challenged, and the NOTIFY will include a body similar to

 the one in the PUBLISH section above.

10. Security Considerations

 The high level message flow from a security point of view is

 summarized in the following figure. The 200 responses are removed

 from the figure as they do not have much to do with the overall

 security.

Jennings & Peterson Expires January 18, 2006 [Page 18]

Internet-Draft SIP Certificates July 2005

 Alice Server Bob UA

 | | TLS Handshake | 1) Client authC/Z server

 | |<---------------->|

 | | PUBLISH | 2) Client sends request

 | |<-----------------| (write credential)

 | | Digest Challenge | 3) Server challenges client

 | |----------------->|

 | | PUBLISH + Digest | 4) Server authC/Z client

 | |<-----------------|

 | | time... |

 | | |

 | | TLS Handshake | 5) Client authC/Z server

 | |<---------------->|

 | | SUBSCRIBE | 6) Client sends request

 | |<-----------------| (read credential)

 | | Digest Challenge | 7) Server challenges client

 | |----------------->|

 | | SUBSCRIBE+Digest | 8) Server authC/Z client

 | |<-----------------|

 | | NOTIFY | 9) Server returns credential

 | |----------------->|

 | |

 | SUBSCRIBE | 10) Client requests certificate

 |---------->|

 | |

 |NOTIFY+AUTH| 11) Server returns user’s certificate and signs that

 |<----------| it is valid using certificate for the domain

 | |

 When the UA, labeled Bob, first created a credential for Bob, it

 would store this on the the credential server. The UA authenticated

 the Server using the certificates from the TLS handshake. The Server

 authenticated the UA using a digest style challenge with a shared

 secret.

 The UA, labeled Bob, wishes to request its credentials from the

 server. First it forms a TLS connection to the Server, which

 provides integrity and privacy protection and also authenticates the

 server to Bob’s UA. Next the UA requests its credentials using a

 SUBSCRIBE request. The Server digest challenges this to authenticate

 Bob’s UA. The server and Bob’s UA have a shared secret that is used

 for this. If the authentication is successful, the server sends the

 credentials to Bob’s UA. The private key in the credentials may have

 been encrypted using a shared secret that the server does not know.

 A similar process would be used for Bob’s UA to publish new

 credentials to the server. The SUBSCRIBE request would change to a

 PUBLISH request and there would not be an NOTIFY. When this

Jennings & Peterson Expires January 18, 2006 [Page 19]

Internet-Draft SIP Certificates July 2005

 happened, all the other UAs that were subscribed to Bob’s credentials

 would receive a new NOTIFY with the new credentials.

 Alice wishes to find Bob’s certificate and sends a SUBSCRIBE to the

 server. The server sends the response in NOTIFY. This does not need

 to be sent over a privacy or integrity protected channel, as the

 Authentication service described in [2] provides integrity protection

 of this information and signs it with the certificate for the domain.

 This whole scheme is highly dependent on trusting the operators of

 the credential service and trusting that the credential service will

 not be compromised. The security of all the users will be

 compromised if the credential service is compromised.

 Note: There has been significant discussion of the topic of

 avoiding deployments in which the credential servers store the

 private keys, even in some encrypted form that the credential

 server does not know how to decrypt. Various schemes were

 considered to avoid this but they all result in either moving the

 problem to some other server, which does not seem to make the

 problem any better, or having a different credential for each

 device. For some deployments where each user has only one device

 this is fine but for deployments with multiple devices, it would

 require that when Alice went to contact Bob, Alice would have to

 provide messages encrypted for all of Bob’s devices. The sipping

 working group did consider this architecture and decided it was

 not appropriate due both to the information it revealed about the

 devices and users and the amount of signaling required to make it

 work.

 This specification requires the TLS session to be used for SIP

 communications to the credential service. As specified in RFC 3261,

 TLS clients MUST check that the SubjectAltName of the certificate for

 the server they connected to exactly matches the server they were

 trying to connect to. Failing to use TLS or selecting a poor cipher

 suite (such as NULL encryption) will result in credentials, including

 private keys, being sent unencrypted over the network and will render

 the whole system useless. Implementations really must use TLS or

 there is no point in implementing any of this.

 The correct checking of chained certificates as specified in TLS [11]

 is critical for the client to authenticate the server. If the client

 does not authenticate that it is talking to the correct credential

 service, a man in the middle attack is possible.

10.1 Certificate Revocation

 If a particular credential needs to be revoked, the new credential is

Jennings & Peterson Expires January 18, 2006 [Page 20]

Internet-Draft SIP Certificates July 2005

 simply published to the credential service. Every device with a copy

 of the old credential or certificate in its cache will have a

 subscription and will rapidly (order of seconds) be notified and

 replace its cache. Clients that are not subscribed will subscribe

 when they next need to use the certificate and will get the new

 certificate.

 It is possible that an attacker could mount a DOS attack such that

 the UA that had cached a certificate did not receive the NOTIFY with

 its revocation. To protect against this attack, the UA needs to

 limit how long it caches certificates. After this time, the UA would

 invalidate the cached information even though no NOTIFY had ever been

 received due to the attacker blocking it.

 The duration of this cached information is in some ways similar to a

 device deciding how often to check a CRL list. For many

 applications, a default time of 1 day is suggested, but for some

 applications it may be desirable to set the time to zero so that no

 certificates are cached at all and the credential is checked for

 validity every time the certificate is used.

10.2 Certificate Replacement

 The UAs in the system replace the certificates close to the time that

 the certificates would expire. If a UA has used the same key pair to

 encrypt a very large volume of traffic, the UA MAY choose to replace

 the credential with a new one before the normal expiration.

10.3 Trusting the Identity of a Certificate

 When a UA wishes to discover the certificate for

 sip:alice@example.com, the UA subscribes to the certificate for

 alice@example.com and receives a certificate in the body of a SIP

 NOTIFY request. The term original URI is used to describe the URI

 that was in the To header field value of the SUBSCRIBE request. So

 in this case the original URI would be sip:alice@example.com.

 If the certificate is signed by a trusted CA, and one of the names in

 the SubjectAltName matches the original URI, then this certificate

 MAY be used but only for exactly the original URI and not for other

 identities found in the SubjectAltName. Otherwise, there are several

 steps the UA MUST perform before using this certificate.

 o The From header in the NOTIFY request MUST match the original URI

 that was subscribed to.

 o The UA MUST check the Identity header as described in the Identity

 [2] specification to validate that bodies have not been tampered

 with and that an Authentication Service has validated this From

 header.

Jennings & Peterson Expires January 18, 2006 [Page 21]

Internet-Draft SIP Certificates July 2005

 o The UA MUST check the validity time of the certificate and stop

 using the certificate if it is invalid. (Implementations are

 reminded to verify both the notBefore and notAfter validity

 times.)

 o The certificate MAY have several names in the SubjectAltName but

 the UA MUST only use this certificate when it needs the

 certificate for the identity asserted by the Authentication

 Service in the NOTIFY. This means that the certificate should

 only be indexed in the certificate cache by the AOR that the

 Authentication Service asserted and not by the value of all the

 identities found in the SubjectAltName list.

 These steps result in a chain of bindings that result in a trusted

 binding between the original AOR that was subscribed to and a public

 key. The original AOR is forced to match the From. The

 Authentication Service validates that this request did come from the

 identity claimed in the From header field value and that the bodies

 in the request that cary the certificate have not been tampered with.

 The certificate in the body contains the public key for the identity.

 Only the UA that can authenticate as this AOR, or devices with access

 to the private key of the domain, can tamper with this body. This

 stops other users from being able to provide a false public key.

 This chain of assertion from original URI, to From, to body, to

 public key is critical to the security of the mechanism described in

 this specification. If any of the steps above are not followed, this

 chain of security will be broken and the system will not work.

10.4 Conformity to the SACRED Framework

 This specification uses the security design outlined in the SACRED

 Framework [7]. Specifically, it follows the cTLS architecture

 described in section 4.2.2 of RFC 3760. The client authenticates the

 server using the server’s TLS certificate. The server authenticates

 the client using a SIP digest transaction inside the TLS session.

 The TLS sessions form a strong session key that is used to protect

 the credentials being exchanged.

10.5 Crypto Profiles

 Credential services SHOULD implement the server name indication

 extensions in RFC 3546 [8] and they MUST support a TLS profile of

 TLS_RSA_WITH_AES_128_CBC_SHA as described in RFC 3268 [9] and a

 profile of TLS_RSA_WITH_3DES_EDE_CBC_SHA.

 The PKCS#8 in the clients MUST implement PBES2 with a key derivation

 algorithm of PBKDF2 using HMAC with SHA1 and an encryption algorithm

 of DES-EDE2-CBC-Pad as defined in RFC 2898 [12]. It is RECOMMENDED

 that this profile be used when using PKCS#8.

Jennings & Peterson Expires January 18, 2006 [Page 22]

Internet-Draft SIP Certificates July 2005

10.6 User Certificate Generation

 The certificates should be consistent with RFC 3280 [13]. A

 signatureAlgorithm of sha1WithRSAEncryption MUST be implemented. The

 Issuers SHOULD be the same as the subject. Given the ease of issuing

 new certificates with this system, the Validity can be relatively

 short. A Validity of one year or less is RECOMMENDED. The

 subjectAltName must have a URI type that is set to the SIP URL

 corresponding to the user AOR. It MAY be desirable to put some

 randomness into the length of time for which the certificates are

 valid so that it does not become necessary to renew all the

 certificates in the system at the same time.

 It is worth noting that a UA can discover the current time by looking

 at the Date header field value in the 200 response to a REGISTER

 request.

10.7 Compromised Authentication Service

 One of this worst attacks against this system would be if the

 Authentication Service were compromised. This attack is somewhat

 analogous to a CA being compromised in traditional PKI systems. The

 attacker could make a fake certificate for which it knows the private

 key, use it to receive any traffic for a given use, and then re-

 encrypt that traffic with the correct key and forward the

 communication to the intended receiver. The attacker would thus

 become a man in the middle in the communications.

 There is not too much that can be done to protect against this. A UA

 MAY subscribe to its own certificate under some other identity to try

 to detect whether the credential server is handing out the correct

 certificates. It will be difficult to do this in a way that does not

 allow the credential server to recognize the user’s UA.

 The UA MAY also save the fingerprints of the cached certificates and

 warn users when the certificates change significantly before their

 expiry date.

 The UA MAY also allow the user to see the fingerprints for the cached

 certificates so that they can be verified by some other out of band

 means.

11. IANA Considerations

 This specification defines two new event packages that IANA is

 requested to add the registry at:

Jennings & Peterson Expires January 18, 2006 [Page 23]

Internet-Draft SIP Certificates July 2005

 http://www.iana.org/assignments/sip-events

 It also defines a new mime type that IANA is requested to add to the

 registry at:

 http://www.iana.org/assignments/media-types/application

11.1 Certificate Event Package

 To: ietf-sip-events@iana.org

 Subject: Registration of new SIP event package

 Package Name: certificate

 Is this registration for a Template Package: No

 Published Specification(s): This document

 New Event header parameters: This package defines no

 new parameters

 Person & email address to contact for further information:

 Cullen Jennings <fluffy@cisco.com>

11.2 Credential Event Package

 To: ietf-sip-events@iana.org

 Subject: Registration of new SIP event package

 Package Name: credential

 Is this registration for a Template Package: No

 Published Specification(s): This document

 New Event header parameters: "etag"

 Person & email address to contact for further information:

 Cullen Jennings <fluffy@cisco.com>

11.3 PKCS#8

Jennings & Peterson Expires January 18, 2006 [Page 24]

Internet-Draft SIP Certificates July 2005

 To: ietf-types@iana.org

 Subject: Registration of MIME media type application/pkcs8

 MIME media type name: application

 MIME subtype name: pkcs8

 Required parameters: None

 Optional parameters: None

 Encoding considerations: The PKCS#8 object inside this MIME type

 MUST be DER-encoded.

 This MIME type was designed for use with

 protocols which can carry binary-encoded

 data. Protocols which do not carry binary

 data (which have line length or

 character-set restrictions for example)

 MUST use a reversible transfer encoding

 (such as base64) to carry this MIME type.

 Protocols that carry binary data SHOULD

 use a transfer encoding of "binary".

 Security considerations: Carries a cryptographic private key

 Interoperability considerations: None

 Published specification:

 RSA Laboratories, "Private-Key Information Syntax Standard,

 Version 1.2", PKCS 8, November 1993.

 Applications which use this media type: Any MIME-compliant transport

 Additional information:

 Magic number(s): None

 File extension(s): .p8

 Macintosh File Type Code(s): none

 Person & email address to contact for further information:

 Cullen Jennings <fluffy@cisco.com>

 Intended usage: COMMON

 Author/Change controller:

 the IESG

Jennings & Peterson Expires January 18, 2006 [Page 25]

Internet-Draft SIP Certificates July 2005

12. Acknowledgments

 Many thanks to Eric Rescorla, Jim Schaad, Rohan Mahy for significant

 help and discussion. Many others provided useful comments, including

 Kumiko Ono, Peter Gutmann, Russ Housley, Yaron Pdut, Aki Niemi,

 Magnus Nystrom, Paul Hoffman, Adina Simu, Dan Wing, Mike Hammer,

 Lyndsay Campbell, and Jason Fischl. Rohan Mahy, John Elwell, and

 Jonathan Rosenberg provided detailed review and text.

13. References

13.1 Normative References

 [1] RSA Laboratories, "Private-Key Information Syntax Standard,

 Version 1.2", PKCS 8, November 1993.

 [2] Peterson, J. and C. Jennings, "Enhancements for Authenticated

 Identity Management in the Session Initiation Protocol (SIP)",

 draft-ietf-sip-identity-05 (work in progress), May 2005.

 [3] Niemi, A., "Session Initiation Protocol (SIP) Extension for

 Event State Publication", RFC 3903, October 2004.

 [4] Roach, A., "Session Initiation Protocol (SIP)-Specific Event

 Notification", RFC 3265, June 2002.

 [5] Bradner, S., "Key words for use in RFCs to Indicate Requirement

 Levels", BCP 14, RFC 2119, March 1997.

 [6] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,

 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:

 Session Initiation Protocol", RFC 3261, June 2002.

 [7] Gustafson, D., Just, M., and M. Nystrom, "Securely Available

 Credentials (SACRED) - Credential Server Framework", RFC 3760,

 April 2004.

 [8] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J., and

 T. Wright, "Transport Layer Security (TLS) Extensions",

 RFC 3546, June 2003.

 [9] Chown, P., "Advanced Encryption Standard (AES) Ciphersuites for

 Transport Layer Security (TLS)", RFC 3268, June 2002.

 [10] Housley, R. and P. Hoffman, "Internet X.509 Public Key

 Infrastructure Operational Protocols: FTP and HTTP", RFC 2585,

 May 1999.

Jennings & Peterson Expires January 18, 2006 [Page 26]

Internet-Draft SIP Certificates July 2005

 [11] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",

 RFC 2246, January 1999.

 [12] Kaliski, B., "PKCS #5: Password-Based Cryptography

 Specification Version 2.0", RFC 2898, September 2000.

 [13] Housley, R., Polk, W., Ford, W., and D. Solo, "Internet X.509

 Public Key Infrastructure Certificate and Certificate

 Revocation List (CRL) Profile", RFC 3280, April 2002.

 [14] Freed, N. and N. Borenstein, "Multipurpose Internet Mail

 Extensions (MIME) Part Two: Media Types", RFC 2046,

 November 1996.

 [15] International Telecommunications Union, "Information technology

 - Open Systems Interconnection - The Directory: Public-key and

 attribute certificate frameworks", ITU-T Recommendation X.509,

 ISO Standard 9594-8, March 2000.

 [16] Zimmerer, E., Peterson, J., Vemuri, A., Ong, L., Audet, F.,

 Watson, M., and M. Zonoun, "MIME media types for ISUP and QSIG

 Objects", RFC 3204, December 2001.

13.2 Informational References

 [17] Ramsdell, B., "Secure/Multipurpose Internet Mail Extensions

 (S/MIME) Version 3.1 Message Specification", RFC 3851,

 July 2004.

 [18] Peterson, J., "S/MIME Advanced Encryption Standard (AES)

 Requirement for the Session Initiation Protocol (SIP)",

 RFC 3853, July 2004.

 [19] Roach, A., Rosenberg, J., and B. Campbell, "A Session

 Initiation Protocol (SIP) Event Notification Extension for

 Resource Lists", draft-ietf-simple-event-list-07 (work in

 progress), January 2005.

Jennings & Peterson Expires January 18, 2006 [Page 27]

Internet-Draft SIP Certificates July 2005

Authors’ Addresses

 Cullen Jennings

 Cisco Systems

 170 West Tasman Drive

 MS: SJC-21/2

 San Jose, CA 95134

 USA

 Phone: +1 408 421-9990

 Email: fluffy@cisco.com

 Jon Peterson

 NeuStar, Inc.

 1800 Sutter St

 Suite 570

 Concord, CA 94520

 US

 Phone: +1 925/363-8720

 Email: jon.peterson@neustar.biz

 URI: http://www.neustar.biz/

Jennings & Peterson Expires January 18, 2006 [Page 28]

Internet-Draft SIP Certificates July 2005

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any

 Intellectual Property Rights or other rights that might be claimed to

 pertain to the implementation or use of the technology described in

 this document or the extent to which any license under such rights

 might or might not be available; nor does it represent that it has

 made any independent effort to identify any such rights. Information

 on the procedures with respect to rights in RFC documents can be

 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any

 assurances of licenses to be made available, or the result of an

 attempt made to obtain a general license or permission for the use of

 such proprietary rights by implementers or users of this

 specification can be obtained from the IETF on-line IPR repository at

 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any

 copyrights, patents or patent applications, or other proprietary

 rights that may cover technology that may be required to implement

 this standard. Please address the information to the IETF at

 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an

 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS

 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET

 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,

 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE

 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED

 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject

 to the rights, licenses and restrictions contained in BCP 78, and

 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the

 Internet Society.

Jennings & Peterson Expires January 18, 2006 [Page 29]

SIP WG C. Jennings

Internet-Draft Cisco Systems

Expires: January 17, 2006 K. Ono

 NTT Corporation

 July 16, 2005

 Example call flows using SIP security mechanisms

 draft-jennings-sip-sec-flows-03

Status of this Memo

 By submitting this Internet-Draft, each author represents that any

 applicable patent or other IPR claims of which he or she is aware

 have been or will be disclosed, and any of which he or she becomes

 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF), its areas, and its working groups. Note that

 other groups may also distribute working documents as Internet-

 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at

 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at

 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 17, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 This document shows call flows demonstrating the use of SIPS, TLS,

 and S/MIME in SIP. This draft provides information that helps

 implementers build interoperable SIP software. It is purely

 informational. To help facilitate interoperability testing, it

 includes certificates used in the example call flows and a CA

 certificate to create certificates for testing.

Jennings & Ono Expires January 17, 2006 [Page 1]

Internet-Draft SIP Secure Flows July 2005

 This work is being discussed on the sip@ietf.org mailing list.

Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

 document are to be interpreted as described in RFC-2119 [1].

Table of Contents

 1. Introduction . 3

 2. Security Considerations 3

 3. Certificates . 4

 3.1 CA Certificates . 4

 3.2 Host Certificate . 8

 3.3 User Certificates . 9

 4. Callflow with Message Over TLS 12

 4.1 TLS with Server Authentication 12

 4.2 MESSAGE Message Over TLS 13

 5. Callflow with S/MIME-secured Message 14

 5.1 MESSAGE Message with Signed Body 14

 5.2 MESSAGE Message with Encrypted Body 21

 5.3 MESSAGE Message with Encrypted and Signed Body 24

 6. Test Notes . 33

 7. Open Issues . 34

 8. IANA Considerations . 34

 9. Acknowledgments . 34

 10. References . 34

 10.1 Normative References 34

 10.2 Informative References 35

 Authors’ Addresses . 35

 A. Making Test Certificates 36

 A.1 makeCA script . 37

 A.2 makeCert script . 39

 B. Certificates for Testing 41

 Intellectual Property and Copyright Statements 46

Jennings & Ono Expires January 17, 2006 [Page 2]

Internet-Draft SIP Secure Flows July 2005

1. Introduction

 Several different groups are starting to implement the S/MIME[7]

 portion of SIP[2]. Over the last several interoperability events, it

 has become clear that it is difficult to write these systems without

 any test vectors or examples of "known good" messages to test

 against. Furthermore, testing at the events is often hampered by

 trying to get certificates signed by some common test root into the

 appropriate format for various clients. This document addresses both

 of these issues by providing detailed messages that give detailed

 examples that implementers can use for comparison and that can also

 be used for testing. In addition, this document provides a common

 certificate that can be used for a CA to reduce the time it takes to

 set up a test at an interoperability event. The document also

 provides some hints and clarifications for implementers.

 A simple SIP call flow using SIPS and TLS is shown in Section 4. The

 certificates for the hosts used are shown in Section 3.2 and the CA

 certificates used to sign these are shown in Section 3.1.

 The text from Section 5.1 through Section 5.3 shows some simple SIP

 call flows using S/MIME to sign and encrypt the body of the message.

 The user certificates used in these examples are shown in

 Section 3.3. These host certificates are signed with the same CA

 certificate.

 Section 6 presents a partial list of things implementers should check

 that they do in order to implement a secure system.

 A way to make certificates that can be used for interoperability

 testing is presented in Appendix A, along with methods for converting

 these to various formats.

 The S/MIME messages shown in this document were made using client

 implementations from the authors’ respective companies. These

 implementations are different code bases and though there may still

 be errors in these flows, the authors feel that the interoperability

 of these two clients bodes well for the correctness of the flows in

 this document.

2. Security Considerations

 Implementers must never use any of the certificates provided in this

 document in anything but a test environment. Installing the CA root

 certificates used in this document as a trusted root in operational

 software would completely destroy the security of the system while

 giving the user the impression that the system was operating

 securely.

Jennings & Ono Expires January 17, 2006 [Page 3]

Internet-Draft SIP Secure Flows July 2005

 This document recommends some things that implementers might test or

 verify to improve the security of their implementations. It is

 impossible to make a comprehensive list of these, and this document

 only suggests some of the most common mistakes that have been seen at

 the SIPit interoperability events. Just because an implementation

 does everything this document recommends does not make it secure.

 The S/MIME examples use 3DES, but AES is preferred.

3. Certificates

3.1 CA Certificates

 The certificate used by the CA to sign the other certificates is

 shown below. This is a X509v3 certificate. Note that the basic

 constraints allow it to be used as a CA.

Jennings & Ono Expires January 17, 2006 [Page 4]

Internet-Draft SIP Secure Flows July 2005

 Version: 3 (0x2)

 Serial Number: 0 (0x0)

 Signature Algorithm: sha1WithRSAEncryption

 Issuer: C=US, ST=California, L=San Jose, O=sipit,

 OU=Sipit Test Certificate Authority

 Validity

 Not Before: Jul 18 12:21:52 2003 GMT

 Not After : Jul 15 12:21:52 2013 GMT

 Subject: C=US, ST=California, L=San Jose, O=sipit,

 OU=Sipit Test Certificate Authority

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 RSA Public Key: (1024 bit)

 Modulus (1024 bit):

 00:c3:22:1e:83:91:c5:03:2c:3c:8a:f4:11:14:c6:

 4b:9d:fa:72:78:c6:b0:95:18:a7:e0:8c:79:ba:5d:

 a4:ae:1e:21:2d:9d:f1:0b:1c:cf:bd:5b:29:b3:90:

 13:73:66:92:6e:df:4c:b3:b3:1c:1f:2a:82:0a:ba:

 07:4d:52:b0:f8:37:7b:e2:0a:27:30:70:dd:f9:2e:

 03:ff:2a:76:cd:df:87:1a:bd:71:eb:e1:99:6a:c4:

 7f:8e:74:a0:77:85:04:e9:41:ad:fc:03:b6:17:75:

 aa:33:ea:0a:16:d9:fb:79:32:2e:f8:cf:4d:c6:34:

 a3:ff:1b:d0:68:28:e1:9d:e5

 Exponent: 65537 (0x10001)

 X509v3 extensions:

 X509v3 Subject Key Identifier:

 6B:46:17:14:EA:94:76:25:80:54:6E:13:54:DA:A1:E3:54:14:A1:B6

 X509v3 Authority Key Identifier:

 6B:46:17:14:EA:94:76:25:80:54:6E:13:54:DA:A1:E3:54:14:A1:B6

 DirName:/C=US/ST=California/L=San Jose/O=sipit/

 OU=Sipit Test Certificate Authority

 serial:00

 X509v3 Basic Constraints:

 CA:TRUE

 Signature Algorithm: sha1WithRSAEncryption

 96:6d:1b:ef:d5:91:93:45:7c:5b:1f:cf:c4:aa:47:52:0b:34:

 a8:50:fa:ec:fa:b4:2a:47:4c:5d:41:a7:3d:c0:d6:3f:9e:56:

 5b:91:1d:ce:a8:07:b3:1b:a4:9f:9a:49:6f:7f:e0:ce:83:94:

 71:42:af:fe:63:a2:34:dc:b4:5e:a5:ce:ca:79:50:e9:6a:99:

 4c:14:69:e9:7c:ab:22:6c:44:cc:8a:9c:33:6b:23:50:42:05:

 1f:e1:c2:81:88:5f:ba:e5:47:bb:85:9b:83:25:ad:84:32:ff:

 2a:5b:8b:70:12:11:83:61:c9:69:15:4f:58:a3:3c:92:d4:e8:

 6f:52

 The ASN.1 parse of the CA certificate is shown below.

Jennings & Ono Expires January 17, 2006 [Page 5]

Internet-Draft SIP Secure Flows July 2005

 0:l= 804 cons: SEQUENCE

 4:l= 653 cons: SEQUENCE

 8:l= 3 cons: cont [0]

 10:l= 1 prim: INTEGER :02

 13:l= 1 prim: INTEGER :00

 16:l= 13 cons: SEQUENCE

 18:l= 9 prim: OBJECT :sha1WithRSAEncryption

 29:l= 0 prim: NULL

 31:l= 112 cons: SEQUENCE

 33:l= 11 cons: SET

 35:l= 9 cons: SEQUENCE

 37:l= 3 prim: OBJECT :countryName

 42:l= 2 prim: PRINTABLESTRING :US

 46:l= 19 cons: SET

 48:l= 17 cons: SEQUENCE

 50:l= 3 prim: OBJECT :stateOrProvinceName

 55:l= 10 prim: PRINTABLESTRING :California

 67:l= 17 cons: SET

 69:l= 15 cons: SEQUENCE

 71:l= 3 prim: OBJECT :localityName

 76:l= 8 prim: PRINTABLESTRING :San Jose

 86:l= 14 cons: SET

 88:l= 12 cons: SEQUENCE

 90:l= 3 prim: OBJECT :organizationName

 95:l= 5 prim: PRINTABLESTRING :sipit

 102:l= 41 cons: SET

 104:l= 39 cons: SEQUENCE

 106:l= 3 prim: OBJECT :organizationalUnitName

 111:l= 32 prim: PRINTABLESTRING :

 Sipit Test Certificate Authority

 145:l= 30 cons: SEQUENCE

 147:l= 13 prim: UTCTIME :030718122152Z

 162:l= 13 prim: UTCTIME :130715122152Z

 177:l= 112 cons: SEQUENCE

 179:l= 11 cons: SET

 181:l= 9 cons: SEQUENCE

 183:l= 3 prim: OBJECT :countryName

 188:l= 2 prim: PRINTABLESTRING :US

 192:l= 19 cons: SET

 194:l= 17 cons: SEQUENCE

 196:l= 3 prim: OBJECT :stateOrProvinceName

 201:l= 10 prim: PRINTABLESTRING :California

 213:l= 17 cons: SET

 215:l= 15 cons: SEQUENCE

 217:l= 3 prim: OBJECT :localityName

 222:l= 8 prim: PRINTABLESTRING :San Jose

 232:l= 14 cons: SET

 234:l= 12 cons: SEQUENCE

Jennings & Ono Expires January 17, 2006 [Page 6]

Internet-Draft SIP Secure Flows July 2005

 236:l= 3 prim: OBJECT :organizationName

 241:l= 5 prim: PRINTABLESTRING :sipit

 248:l= 41 cons: SET

 250:l= 39 cons: SEQUENCE

 252:l= 3 prim: OBJECT :organizationalUnitName

 257:l= 32 prim: PRINTABLESTRING :

 Sipit Test Certificate Authority

 291:l= 159 cons: SEQUENCE

 294:l= 13 cons: SEQUENCE

 296:l= 9 prim: OBJECT :rsaEncryption

 307:l= 0 prim: NULL

 309:l= 141 prim: BIT STRING

 00 30 81 89 02 81 81 00-c3 22 1e 83 91 c5 03 2c .0.......".....,

 3c 8a f4 11 14 c6 4b 9d-fa 72 78 c6 b0 95 18 a7 <.....K..rx.....

 e0 8c 79 ba 5d a4 ae 1e-21 2d 9d f1 0b 1c cf bd ..y.]...!-......

 5b 29 b3 90 13 73 66 92-6e df 4c b3 b3 1c 1f 2a [)...sf.n.L....*

 82 0a ba 07 4d 52 b0 f8-37 7b e2 0a 27 30 70 dd MR..7{..’0p.

 f9 2e 03 ff 2a 76 cd df-87 1a bd 71 eb e1 99 6a *v.....q...j

 c4 7f 8e 74 a0 77 85 04-e9 41 ad fc 03 b6 17 75 ...t.w...A.....u

 aa 33 ea 0a 16 d9 fb 79-32 2e f8 cf 4d c6 34 a3 .3.....y2...M.4.

 ff 1b d0 68 28 e1 9d e5-02 03 01 00 01 ...h(........

 453:l= 205 cons: cont [3]

 456:l= 202 cons: SEQUENCE

 459:l= 29 cons: SEQUENCE

 461:l= 3 prim: OBJECT :X509v3 Subject Key Identifier

 466:l= 22 prim: OCTET STRING

 04 14 6b 46 17 14 ea 94-76 25 80 54 6e 13 54 da ..kF....v%.Tn.T.

 a1 e3 54 14 a1 b6 ..T...

 490:l= 154 cons: SEQUENCE

 493:l= 3 prim: OBJECT :X509v3 Authority Key Identifier

 498:l= 146 prim: OCTET STRING

 30 81 8f 80 14 6b 46 17-14 ea 94 76 25 80 54 6e 0....kF....v%.Tn

 13 54 da a1 e3 54 14 a1-b6 a1 74 a4 72 30 70 31 .T...T....t.r0p1

 0b 30 09 06 03 55 04 06-13 02 55 53 31 13 30 11 .0...U....US1.0.

 06 03 55 04 08 13 0a 43-61 6c 69 66 6f 72 6e 69 ..U....Californi

 61 31 11 30 0f 06 03 55-04 07 13 08 53 61 6e 20 a1.0...U....San

 4a 6f 73 65 31 0e 30 0c-06 03 55 04 0a 13 05 73 Jose1.0...U....s

 69 70 69 74 31 29 30 27-06 03 55 04 0b 13 20 53 ipit1)0’..U... S

 69 70 69 74 20 54 65 73-74 20 43 65 72 74 69 66 ipit Test Certif

 69 63 61 74 65 20 41 75-74 68 6f 72 69 74 79 82 icate Authority.

 01 .

 0092 - <SPACES/NULS>

 647:l= 12 cons: SEQUENCE

 649:l= 3 prim: OBJECT :X509v3 Basic Constraints

 654:l= 5 prim: OCTET STRING

 30 03 01 01 ff 0....

 661:l= 13 cons: SEQUENCE

 663:l= 9 prim: OBJECT :sha1WithRSAEncryption

Jennings & Ono Expires January 17, 2006 [Page 7]

Internet-Draft SIP Secure Flows July 2005

 674:l= 0 prim: NULL

 676:l= 129 prim: BIT STRING

 00 96 6d 1b ef d5 91 93-45 7c 5b 1f cf c4 aa 47 ..m.....E|[....G

 52 0b 34 a8 50 fa ec fa-b4 2a 47 4c 5d 41 a7 3d R.4.P....*GL]A.=

 c0 d6 3f 9e 56 5b 91 1d-ce a8 07 b3 1b a4 9f 9a ..?.V[..........

 49 6f 7f e0 ce 83 94 71-42 af fe 63 a2 34 dc b4 Io.....qB..c.4..

 5e a5 ce ca 79 50 e9 6a-99 4c 14 69 e9 7c ab 22 ^...yP.j.L.i.|."

 6c 44 cc 8a 9c 33 6b 23-50 42 05 1f e1 c2 81 88 lD...3k#PB......

 5f ba e5 47 bb 85 9b 83-25 ad 84 32 ff 2a 5b 8b _..G....%..2.*[.

 70 12 11 83 61 c9 69 15-4f 58 a3 3c 92 d4 e8 6f p...a.i.OX.<...o

 52 R

3.2 Host Certificate

 The certificate for the host example.com is shown below. Note that

 the Subject Alternative Name is set to example.com and is a DNS type.

 The certificates for the other hosts are shown in Appendix B.

Jennings & Ono Expires January 17, 2006 [Page 8]

Internet-Draft SIP Secure Flows July 2005

 Data:

 Version: 3 (0x2)

 Serial Number:

 01:95:00:71:02:33:00:55

 Signature Algorithm: sha1WithRSAEncryption

 Issuer: C=US, ST=California, L=San Jose, O=sipit,

 OU=Sipit Test Certificate Authority

 Validity

 Not Before: Feb 3 18:49:08 2005 GMT

 Not After : Feb 3 18:49:08 2008 GMT

 Subject: C=US, ST=California, L=San Jose, O=sipit,

 CN=example.com

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 RSA Public Key: (1024 bit)

 Modulus (1024 bit):

 00:e6:31:76:b5:27:cc:8d:32:85:56:70:f7:c2:33:

 33:32:26:42:5e:3c:68:71:7b:1f:79:50:d0:72:27:

 3b:4a:af:f2:ce:d1:0c:bc:c0:5f:31:6a:43:e7:7c:

 ad:64:bd:c7:e6:25:9f:aa:cd:2d:90:aa:68:84:62:

 7b:05:be:43:a5:af:bb:ea:9d:a9:5b:a4:53:9d:22:

 8b:da:96:2e:1f:3f:92:46:b8:cc:c8:24:3c:46:cd:

 5d:2d:64:85:b1:a4:ca:01:f1:8e:c5:7e:0f:ff:00:

 91:a3:ea:cb:3e:12:02:75:a4:bb:08:c8:d0:2a:ef:

 b3:bb:72:7a:98:e5:ff:9f:81

 Exponent: 65537 (0x10001)

 X509v3 extensions:

 X509v3 Subject Alternative Name:

 DNS:example.com

 X509v3 Basic Constraints:

 CA:FALSE

 X509v3 Subject Key Identifier:

 22:EA:CB:38:66:1D:F1:96:0C:9A:47:B6:BB:1C:52:

 44:B0:77:65:8D

 Signature Algorithm: sha1WithRSAEncryption

 ae:eb:49:ed:1e:f1:8d:26:a9:6d:03:82:92:d5:df:44:c4:1e:

 1f:07:75:88:37:e4:76:97:35:12:59:98:79:78:16:6e:3b:b1:

 c0:2b:db:85:02:6b:74:c9:5b:19:92:da:7e:f5:41:0b:bc:d2:

 dd:45:aa:6f:be:24:dc:48:57:66:d9:2e:82:df:9e:8d:70:03:

 73:75:ef:8f:7a:56:4c:cc:42:bd:31:45:b0:5e:ff:d1:3b:c4:

 82:ee:fd:a7:c1:10:34:eb:81:49:1a:6b:86:7e:c7:61:1d:b3:

 b9:0a:02:bd:84:f8:47:af:cf:f1:a8:73:a8:31:1d:20:7a:06:

 7f:ac

3.3 User Certificates

 The user certificate for fluffy@example.com is shown below. Note

Jennings & Ono Expires January 17, 2006 [Page 9]

Internet-Draft SIP Secure Flows July 2005

 that the Subject Alternative Name has a list of names with different

 URL types such as a sip, im, or pres URL. This is necessary for

 interoperating with CPIM gateway. In this example, example.com is

 the domain for fluffy, the message could be coming from a host called

 example.com, and the AOR in the user certificate would still be the

 same. The others are shown in Appendix B.

Jennings & Ono Expires January 17, 2006 [Page 10]

Internet-Draft SIP Secure Flows July 2005

 Data:

 Version: 3 (0x2)

 Serial Number:

 01:95:00:71:02:33:00:58

 Signature Algorithm: sha1WithRSAEncryption

 Issuer: C=US, ST=California, L=San Jose, O=sipit,

 OU=Sipit Test Certificate Authority

 Validity

 Not Before: Feb 3 18:49:34 2005 GMT

 Not After : Feb 3 18:49:34 2008 GMT

 Subject: C=US, ST=California, L=San Jose, O=sipit,

 CN=fluffy@example.com

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 RSA Public Key: (1024 bit)

 Modulus (1024 bit):

 00:ca:ab:9b:9b:4e:3c:d5:45:3c:ce:00:a6:36:a8:

 b9:ec:d2:76:e2:b9:9b:e8:28:aa:ba:86:22:c5:cf:

 33:3e:4f:6d:56:21:ae:bd:54:84:7c:14:14:f9:7d:

 99:85:00:4e:93:d6:fd:6b:d4:d1:d4:55:8e:c9:89:

 b1:af:2b:5f:23:99:4a:95:e5:68:65:64:1d:12:a7:

 db:d3:d5:97:18:47:35:9c:e6:88:27:9d:a8:6c:ca:

 2a:84:e6:62:d8:f1:e9:a2:1a:39:7e:0e:0f:90:a5:

 a6:79:21:bc:2a:67:b4:dd:69:90:82:9a:ae:1f:02:

 52:8a:58:d3:f5:d0:d4:66:67

 Exponent: 65537 (0x10001)

 X509v3 extensions:

 X509v3 Subject Alternative Name:

 URI:sip:fluffy@example.com, URI:im:fluffy@example.com,

 URI:pres:fluffy@example.com

 X509v3 Basic Constraints:

 CA:FALSE

 X509v3 Subject Key Identifier:

 EC:DA:98:5E:E9:F7:F7:D7:EC:2B:29:4B:DA:25:EE:C7:C7:

 7E:95:70

 Signature Algorithm: sha1WithRSAEncryption

 4c:46:49:6e:01:48:e2:d4:6e:d7:48:a1:f3:7b:c8:a5:98:37:

 a5:44:46:58:9f:4a:37:7d:90:fb:5f:ff:36:bd:67:31:f0:29:

 de:0a:e2:ea:b9:f0:5c:9f:ad:a0:de:e5:4e:42:8f:11:d8:41:

 ea:68:be:db:c2:1e:fa:e5:8a:2d:7f:66:13:29:e9:da:8f:fb:

 80:bf:7e:5e:b6:04:ad:08:5e:58:95:b7:c5:38:85:d5:65:31:

 ad:80:cb:28:a7:4c:ad:11:fd:41:3b:37:77:5a:de:85:96:3d:

 66:eb:5f:9a:f8:60:5f:8e:b1:fc:4a:43:53:b6:11:4d:2e:f4:

 3d:ff

Jennings & Ono Expires January 17, 2006 [Page 11]

Internet-Draft SIP Secure Flows July 2005

4. Callflow with Message Over TLS

4.1 TLS with Server Authentication

 The flow below shows the edited SSLDump output of the host

 example.com forming a TLS connection to example.net. In this example

 mutual authentication is not used. Note that the client proposed

 three protocol suites including the required

 TLS_RSA_WITH_AES_128_CBC_SHA. The certificate returned by the server

 contains a Subject Alternative Name that is set to example.net. A

 detailed discussion of TLS can be found in [11].

 New TCP connection #1: 127.0.0.1(55768) <-> 127.0.0.1(5061)

 1 1 0.0060 (0.0060) C>SV3.1(49) Handshake

 ClientHello

 Version 3.1

 random[32]=

 42 16 8c c7 82 cd c5 87 42 ba f5 1c 91 04 fb 7d

 4d 6c 56 f1 db 1d ce 8a b1 25 71 5a 68 01 a2 14

 cipher suites

 TLS_RSA_WITH_AES_256_CBC_SHA

 TLS_RSA_WITH_AES_128_CBC_SHA

 TLS_RSA_WITH_3DES_EDE_CBC_SHA

 compression methods

 NULL

 1 2 0.0138 (0.0077) S>CV3.1(74) Handshake

 ServerHello

 Version 3.1

 random[32]=

 42 16 8c c7 c9 2c 43 42 bb 69 a5 ba f1 2d 69 75

 c3 8d 3a 85 78 19 f2 e4 d9 2b 72 b4 cc dd e4 72

 session_id[32]=

 06 37 e9 22 56 29 e6 b4 3a 6e 53 fe 56 27 ed 1f

 2a 75 34 65 f0 91 fc 79 cf 90 da ac f4 6f 64 b5

 cipherSuite TLS_RSA_WITH_AES_256_CBC_SHA

 compressionMethod NULL

 1 3 0.0138 (0.0000) S>CV3.1(1477) Handshake

 Certificate

 1 4 0.0138 (0.0000) S>CV3.1(4) Handshake

 ServerHelloDone

 1 5 0.0183 (0.0045) C>SV3.1(134) Handshake

 ClientKeyExchange

 EncryptedPreMasterSecret[128]=

 a6 bd d9 4b 76 4b 9d 6f 7b 12 8a e4 52 75 9d 74

 4f 06 e4 b0 bc 69 96 d7 42 ba 77 01 b6 9e 64 b0

 ea c5 aa de 59 41 e4 f3 9e 1c 1c a9 48 f5 0a 3f

 5e c3 50 23 15 d7 46 1d 69 79 76 ba 5e c8 ac 39

Jennings & Ono Expires January 17, 2006 [Page 12]

Internet-Draft SIP Secure Flows July 2005

 23 71 d0 0c 18 a6 a9 77 0f 7d 49 61 ef 6f 8d 32

 54 f5 a4 1d 19 33 0a 64 ee 56 91 9b f4 f7 50 b1

 11 4b 81 46 4c 36 df 70 98 04 dc 5c 8a 16 a9 2e

 58 67 ae 5e 7a a9 44 2b 0b 7c 9c 2f 16 25 1a e9

 1 6 0.0183 (0.0000) C>SV3.1(1) ChangeCipherSpec

 1 7 0.0183 (0.0000) C>SV3.1(48) Handshake

 1 8 0.0630 (0.0447) S>CV3.1(1) ChangeCipherSpec

 1 9 0.0630 (0.0000) S>CV3.1(48) Handshake

 1 10 0.3274 (0.2643) C>SV3.1(32) application_data

 1 11 0.3274 (0.0000) C>SV3.1(720) application_data

 1 12 0.3324 (0.0050) S>CV3.1(32) application_data

 1 13 0.3324 (0.0000) S>CV3.1(384) application_data

 1 9.2491 (8.9166) C>S TCP FIN

 1 9.4023 (0.1531) S>C TCP FIN

4.2 MESSAGE Message Over TLS

 Once the TLS session is set up, the following MESSAGE message is sent

 from fluffy@example.com to kumiko@example.net. Note that the URI has

 a SIPS URL and that the VIA indicates that TLS was used. In order to

 format this document, it was necessary to break up some of the lines

 across continuation lines but the original messages have no

 continuations lines and no breaks in the Identity header field value.

 MESSAGE sips:kumiko@example.net SIP/2.0

 To: <sips:kumiko@example.net>

 From: <sips:fluffy@example.com>;tag=03de46e1

 Via: SIP/2.0/TLS 127.0.0.1:5071;

 branch=z9hG4bK-d87543-58c826887160f95f-1--d87543-;rport

 Call-ID: 0dc68373623af98a@Y2ouY2lzY28uc2lwaXQubmV0

 CSeq: 1 MESSAGE

 Contact: <sips:fluffy@127.0.0.1:5071;transport=TLS>

 Max-Forwards: 70

 Content-Transfer-Encoding: binary

 Content-Type: text/plain

 Date: Sat, 19 Feb 2005 00:48:07 GMT

 User-Agent: SIPimp.org/0.2.5 (curses)

 Identity: qKUEWvgss+F0pQHJCyarb8IMbDh1d1gi1Aq51ty61bO+ug5ZQzo31xn

 MAFHUe0tzNVoyOfmGUY2dIEWJ2iZlGI5EW3RF5hGN9f0y39iCRqGEAE

 B4UG5ocU4RzgXfK3Durle/66rkyCaLPJQ/pzgA+qW/nQytSuzewhDrD

 FRrCBQ=

 Content-Length: 6

 Hello!

 The response is sent from example.net to example.com over the same

Jennings & Ono Expires January 17, 2006 [Page 13]

Internet-Draft SIP Secure Flows July 2005

 TLS connection. It is shown below.

 SIP/2.0 200 OK

 To: <sips:kumiko@example.net>;tag=4c53f1b8

 From: <sips:fluffy@example.com>;tag=03de46e1

 Via: SIP/2.0/TLS 127.0.0.1:5071;

 branch=z9hG4bK-d87543-58c826887160f95f-1--d87543-;

 rport=55768;received=127.0.0.1

 Call-ID: 0dc68373623af98a@Y2ouY2lzY28uc2lwaXQubmV0

 CSeq: 1 MESSAGE

 Contact: <sips:kumiko@127.0.0.1:5061;transport=TLS>

 Content-Length: 0

5. Callflow with S/MIME-secured Message

5.1 MESSAGE Message with Signed Body

 Example Signed Message. The value on the Content-Type line has been

 broken across lines to fit on the page but it should not broken

 across lines in actual implementations.

Jennings & Ono Expires January 17, 2006 [Page 14]

Internet-Draft SIP Secure Flows July 2005

 MESSAGE sip:kumiko@example.net SIP/2.0

 To: <sip:kumiko@example.net>

 From: <sip:fluffy@example.com>;tag=0c523b42

 Via: SIP/2.0/UDP 68.122.119.3:5060;

 branch=z9hG4bK-d87543-16a1192b7960f635-1--d87543-;rport

 Call-ID: 27bb7608596d8914@Y2ouY2lzY28uc2lwaXQubmV0

 CSeq: 1 MESSAGE

 Contact: <sip:fluffy@68.122.119.3:5060>

 Max-Forwards: 70

 Content-Transfer-Encoding: binary

 Content-Type: multipart/signed;boundary=151aa2144df0f6bd;\

 micalg=sha1;protocol=application/pkcs7-signature

 Date: Fri, 04 Feb 2005 20:17:12 GMT

 User-Agent: SIPimp.org/0.2.5 (curses)

 Content-Length: 1544

 --151aa2144df0f6bd

 Content-Type: text/plain

 Content-Transfer-Encoding: binary

 Hello

 --151aa2144df0f6bd

 Content-Type: application/pkcs7-mime;name=smime.p7s

 Content-Disposition: attachment;handling=required;filename=smime.p7s

 Content-Transfer-Encoding: binary

 * BINARY BLOB 1 *

 --151aa2144df0f6bd--

 It is important to note that the signature is computed across

 includes the header and excludes the boundary. The value on the

 Message-body line ends with CRLF. The CRLF is included in the

 boundary and should not be shown.

 Content-Type: text/plain

 Content-Transfer-Encoding: binary

 Hello

 ASN.1 parse of binary Blob 1. Note that at address 30, the hash for

 the signature is specified as SHA1. Also note that from address 52

 to 777, the sender’s certificate is attached, although it is optional

 [8].

 0: SEQUENCE {

Jennings & Ono Expires January 17, 2006 [Page 15]

Internet-Draft SIP Secure Flows July 2005

 4: OBJECT IDENTIFIER signedData (1 2 840 113549 1 7 2)

 15: [0] {

 19: SEQUENCE {

 23: INTEGER 1

 26: SET {

 28: SEQUENCE {

 30: OBJECT IDENTIFIER sha1 (1 3 14 3 2 26)

 37: NULL

 : }

 : }

 39: SEQUENCE {

 41: OBJECT IDENTIFIER data (1 2 840 113549 1 7 1)

 : }

 52: [0] {

 56: SEQUENCE {

 60: SEQUENCE {

 64: [0] {

 66: INTEGER 2

 : }

 69: INTEGER 01 95 00 71 02 33 00 58

 79: SEQUENCE {

 81: OBJECT IDENTIFIER

 : sha1withRSAEncryption (1 2 840 113549 1 1 5)

 92: NULL

 : }

 94: SEQUENCE {

 96: SET {

 98: SEQUENCE {

 100: OBJECT IDENTIFIER countryName (2 5 4 6)

 105: PrintableString ’US’

 : }

 : }

 109: SET {

 111: SEQUENCE {

 113: OBJECT IDENTIFIER stateOrProvinceName (2 5 4 8)

 118: PrintableString ’California’

 : }

 : }

 130: SET {

 132: SEQUENCE {

 134: OBJECT IDENTIFIER localityName (2 5 4 7)

 139: PrintableString ’San Jose’

 : }

 : }

 149: SET {

 151: SEQUENCE {

 153: OBJECT IDENTIFIER organizationName (2 5 4 10)

 158: PrintableString ’sipit’

Jennings & Ono Expires January 17, 2006 [Page 16]

Internet-Draft SIP Secure Flows July 2005

 : }

 : }

 165: SET {

 167: SEQUENCE {

 169: OBJECT IDENTIFIER

 : organizationalUnitName (2 5 4 11)

 174: PrintableString ’Sipit Test Certificate Authority’

 : }

 : }

 : }

 208: SEQUENCE {

 210: UTCTime 03/02/2005 18:49:34 GMT

 225: UTCTime 03/02/2008 18:49:34 GMT

 : }

 240: SEQUENCE {

 242: SET {

 244: SEQUENCE {

 246: OBJECT IDENTIFIER countryName (2 5 4 6)

 251: PrintableString ’US’

 : }

 : }

 255: SET {

 257: SEQUENCE {

 259: OBJECT IDENTIFIER stateOrProvinceName (2 5 4 8)

 264: PrintableString ’California’

 : }

 : }

 276: SET {

 278: SEQUENCE {

 280: OBJECT IDENTIFIER localityName (2 5 4 7)

 285: PrintableString ’San Jose’

 : }

 : }

 295: SET {

 297: SEQUENCE {

 299: OBJECT IDENTIFIER organizationName (2 5 4 10)

 304: PrintableString ’sipit’

 : }

 : }

 311: SET {

 313: SEQUENCE {

 315: OBJECT IDENTIFIER commonName (2 5 4 3)

 320: TeletexString ’fluffy@example.com’

 : }

 : }

 : }

 340: SEQUENCE {

 343: SEQUENCE {

Jennings & Ono Expires January 17, 2006 [Page 17]

Internet-Draft SIP Secure Flows July 2005

 345: OBJECT IDENTIFIER

 : rsaEncryption (1 2 840 113549 1 1 1)

 356: NULL

 : }

 358: BIT STRING, encapsulates {

 362: SEQUENCE {

 365: INTEGER

 : 00 CA AB 9B 9B 4E 3C D5 45 3C CE 00 A6 36 A8 B9

 : EC D2 76 E2 B9 9B E8 28 AA BA 86 22 C5 CF 33 3E

 : 4F 6D 56 21 AE BD 54 84 7C 14 14 F9 7D 99 85 00

 : 4E 93 D6 FD 6B D4 D1 D4 55 8E C9 89 B1 AF 2B 5F

 : 23 99 4A 95 E5 68 65 64 1D 12 A7 DB D3 D5 97 18

 : 47 35 9C E6 88 27 9D A8 6C CA 2A 84 E6 62 D8 F1

 : E9 A2 1A 39 7E 0E 0F 90 A5 A6 79 21 BC 2A 67 B4

 : DD 69 90 82 9A AE 1F 02 52 8A 58 D3 F5 D0 D4 66

 : [Another 1 bytes skipped]

 497: INTEGER 65537

 : }

 : }

 : }

 502: [3] {

 504: SEQUENCE {

 506: SEQUENCE {

 508: OBJECT IDENTIFIER subjectAltName (2 5 29 17)

 513: OCTET STRING, encapsulates {

 515: SEQUENCE {

 517: [6] ’sip:fluffy@example.com’

 541: [6] ’im:fluffy@example.com’

 564: [6] ’pres:fluffy@example.com’

 : }

 : }

 : }

 589: SEQUENCE {

 591: OBJECT IDENTIFIER basicConstraints (2 5 29 19)

 596: OCTET STRING, encapsulates {

 598: SEQUENCE {}

 : }

 : }

 600: SEQUENCE {

 602: OBJECT IDENTIFIER

 subjectKeyIdentifier (2 5 29 14)

 607: OCTET STRING, encapsulates {

 609: OCTET STRING

 : EC DA 98 5E E9 F7 F7 D7 EC 2B 29 4B DA 25 EE C7

 : C7 7E 95 70

 : }

 : }

 : }

Jennings & Ono Expires January 17, 2006 [Page 18]

Internet-Draft SIP Secure Flows July 2005

 : }

 : }

 631: SEQUENCE {

 633: OBJECT IDENTIFIER

 : sha1withRSAEncryption (1 2 840 113549 1 1 5)

 644: NULL

 : }

 646: BIT STRING

 : 4C 46 49 6E 01 48 E2 D4 6E D7 48 A1 F3 7B C8 A5

 : 98 37 A5 44 46 58 9F 4A 37 7D 90 FB 5F FF 36 BD

 : 67 31 F0 29 DE 0A E2 EA B9 F0 5C 9F AD A0 DE E5

 : 4E 42 8F 11 D8 41 EA 68 BE DB C2 1E FA E5 8A 2D

 : 7F 66 13 29 E9 DA 8F FB 80 BF 7E 5E B6 04 AD 08

 : 5E 58 95 B7 C5 38 85 D5 65 31 AD 80 CB 28 A7 4C

 : AD 11 FD 41 3B 37 77 5A DE 85 96 3D 66 EB 5F 9A

 : F8 60 5F 8E B1 FC 4A 43 53 B6 11 4D 2E F4 3D FF

 : }

 : }

 778: SET {

 782: SEQUENCE {

 786: INTEGER 1

 789: SEQUENCE {

 791: SEQUENCE {

 793: SET {

 795: SEQUENCE {

 797: OBJECT IDENTIFIER countryName (2 5 4 6)

 802: PrintableString ’US’

 : }

 : }

 806: SET {

 808: SEQUENCE {

 810: OBJECT IDENTIFIER

 stateOrProvinceName (2 5 4 8)

 815: PrintableString ’California’

 : }

 : }

 827: SET {

 829: SEQUENCE {

 831: OBJECT IDENTIFIER localityName (2 5 4 7)

 836: PrintableString ’San Jose’

 : }

 : }

 846: SET {

 848: SEQUENCE {

 850: OBJECT IDENTIFIER organizationName (2 5 4 10)

 855: PrintableString ’sipit’

 : }

 : }

Jennings & Ono Expires January 17, 2006 [Page 19]

Internet-Draft SIP Secure Flows July 2005

 862: SET {

 864: SEQUENCE {

 866: OBJECT IDENTIFIER

 : organizationalUnitName (2 5 4 11)

 871: PrintableString

 ’Sipit Test Certificate Authority’

 : }

 : }

 : }

 905: INTEGER 01 95 00 71 02 33 00 58

 : }

 915: SEQUENCE {

 917: OBJECT IDENTIFIER sha1 (1 3 14 3 2 26)

 924: NULL

 : }

 926: [0] {

 929: SEQUENCE {

 931: OBJECT IDENTIFIER

 contentType (1 2 840 113549 1 9 3)

 942: SET {

 944: OBJECT IDENTIFIER data (1 2 840 113549 1 7 1)

 : }

 : }

 955: SEQUENCE {

 957: OBJECT IDENTIFIER

 signingTime (1 2 840 113549 1 9 5)

 968: SET {

 970: UTCTime 04/02/2005 20:17:12 GMT

 : }

 : }

 985: SEQUENCE {

 987: OBJECT IDENTIFIER

 messageDigest (1 2 840 113549 1 9 4)

 998: SET {

 1000: OCTET STRING

 : DA 23 80 0F 1E B9 E1 95 CC 7E 55 3D 49 AE C1 7A

 : D5 99 DA 2B

 : }

 : }

 1022: SEQUENCE {

 1024: OBJECT IDENTIFIER

 : sMIMECapabilities (1 2 840 113549 1 9 15)

 1035: SET {

 1037: SEQUENCE {

 1039: SEQUENCE {

 1041: OBJECT IDENTIFIER

 : des-EDE3-CBC (1 2 840 113549 3 7)

 : }

Jennings & Ono Expires January 17, 2006 [Page 20]

Internet-Draft SIP Secure Flows July 2005

 1051: SEQUENCE {

 1053: OBJECT IDENTIFIER

 rc2CBC (1 2 840 113549 3 2)

 1063: INTEGER 128

 : }

 1067: SEQUENCE {

 1069: OBJECT IDENTIFIER

 rc2CBC (1 2 840 113549 3 2)

 1079: INTEGER 64

 : }

 1082: SEQUENCE {

 1084: OBJECT IDENTIFIER

 desCBC (1 3 14 3 2 7)

 : }

 1091: SEQUENCE {

 1093: OBJECT IDENTIFIER

 rc2CBC (1 2 840 113549 3 2)

 1103: INTEGER 40

 : }

 : }

 : }

 : }

 : }

 1106: SEQUENCE {

 1108: OBJECT IDENTIFIER

 rsaEncryption (1 2 840 113549 1 1 1)

 1119: NULL

 : }

 1121: OCTET STRING

 : 66 F0 C9 C0 78 69 27 F9 81 05 05 F1 E1 54 B9 5C

 : 3A 2B 34 68 0E 31 19 06 DD 00 34 40 66 DF D8 2F

 : 0C BC 6C 80 A2 0B 45 5B 68 36 81 C1 F2 8C AF CA

 : 0E 9B 9E A0 BD BC 4E 47 2D 99 B6 76 3E F5 9E B7

 : 77 78 BB A4 40 35 DE 2E 26 CE AB DA 70 A7 65 BA

 : 89 51 E9 AB F1 26 CA 54 1C 05 4D 01 B0 AE 75 6A

 : 3F A3 2C 5D 4F A0 46 77 45 6D 11 DE 7C F1 0D C4

 : 61 10 67 D2 3D 56 B2 3E A5 C1 2F 6E 0D 5C 4D FC

 : }

 : }

 : }

 : }

 : }

5.2 MESSAGE Message with Encrypted Body

 Example encrypted message:

Jennings & Ono Expires January 17, 2006 [Page 21]

Internet-Draft SIP Secure Flows July 2005

 MESSAGE sip:kumiko@example.net SIP/2.0

 To: <sip:kumiko@example.net>

 From: <sip:fluffy@example.com>;tag=6d2a39e4

 Via: SIP/2.0/UDP 68.122.119.3:5060;

 branch=z9hG4bK-d87543-44ddc0a217a51788-1--d87543-;rport

 Call-ID: 031be67669ea9799@Y2ouY2lzY28uc2lwaXQubmV0

 CSeq: 1 MESSAGE

 Contact: <sip:fluffy@68.122.119.3:5060>

 Max-Forwards: 70

 Content-Disposition: attachment;handling=required;filename=smime.p7

 Content-Transfer-Encoding: binary

 Content-Type: application/pkcs7-mime;\

 smime-type=enveloped-data;name=smime.p7m

 Date: Fri, 04 Feb 2005 20:04:10 GMT

 User-Agent: SIPimp.org/0.2.5 (curses)

 Content-Length: 418

 * BINARY BLOB 2 *

 ASN.1 parse of binary Blob 2. Note that at address 324, the

 encryption is set to des-ebe3-cbc.

 0: SEQUENCE {

 4: OBJECT IDENTIFIER envelopedData (1 2 840 113549 1 7 3)

 15: [0] {

 19: SEQUENCE {

 23: INTEGER 0

 26: SET {

 30: SEQUENCE {

 34: INTEGER 0

 37: SEQUENCE {

 39: SEQUENCE {

 41: SET {

 43: SEQUENCE {

 45: OBJECT IDENTIFIER countryName (2 5 4 6)

 50: PrintableString ’US’

 : }

 : }

 54: SET {

 56: SEQUENCE {

 58: OBJECT IDENTIFIER

 stateOrProvinceName (2 5 4 8)

 63: PrintableString ’California’

 : }

 : }

Jennings & Ono Expires January 17, 2006 [Page 22]

Internet-Draft SIP Secure Flows July 2005

 75: SET {

 77: SEQUENCE {

 79: OBJECT IDENTIFIER localityName (2 5 4 7)

 84: PrintableString ’San Jose’

 : }

 : }

 94: SET {

 96: SEQUENCE {

 98: OBJECT IDENTIFIER organizationName (2 5 4 10)

 103: PrintableString ’sipit’

 : }

 : }

 110: SET {

 112: SEQUENCE {

 114: OBJECT IDENTIFIER

 : organizationalUnitName (2 5 4 11)

 119: PrintableString

 ’Sipit Test Certificate Authority’

 : }

 : }

 : }

 153: INTEGER 01 95 00 71 02 33 00 57

 : }

 163: SEQUENCE {

 165: OBJECT IDENTIFIER

 rsaEncryption (1 2 840 113549 1 1 1)

 176: NULL

 : }

 178: OCTET STRING

 : BC 8A DF 69 69 F9 72 2A 13 32 62 DF FA 83 FE EF

 : 28 6A 3A 63 75 FC 2F 83 93 13 21 A0 62 FC 29 01

 : 35 F7 81 B2 3B 2E FD F8 E4 D3 DD E0 C3 52 32 13

 : B0 37 31 9D 5C A0 41 3A C5 A5 95 C9 95 08 DA 47

 : E9 1D 72 F8 75 71 B0 05 E0 0A B3 33 60 F2 9C 0B

 : CF FB DE 2E BC 1B C5 8F AE 5F BB 9E 73 21 E2 E2

 : 2F 34 B7 2F F0 BB B8 94 76 8F 6D 4B 9A 7F CD 4E

 : 4A 01 0D 12 ED 70 81 00 8C B8 37 9E 6B 80 66 03

 : }

 : }

 309: SEQUENCE {

 311: OBJECT IDENTIFIER data (1 2 840 113549 1 7 1)

 322: SEQUENCE {

 324: OBJECT IDENTIFIER des-EDE3-CBC (1 2 840 113549 3 7)

 334: OCTET STRING 05 8B C4 DC 50 5E D7 09

 : }

 344: [0]

 : 60 23 E0 B9 79 CC 39 5B 86 E9 87 8C C2 C6 A0 EE

 : 7A 15 3F 0A BB D8 F5 6C EF 4D 18 52 C1 25 65 F5

Jennings & Ono Expires January 17, 2006 [Page 23]

Internet-Draft SIP Secure Flows July 2005

 : 84 5F C7 1C 78 52 1D 33 37 2B 41 69 52 D0 7C FD

 : 67 A2 2E 96 2E AA 8F 6F 66 F2 9E 2F 74 12 A7 C7

 : CC 9E 83 D1 D9 C4 57 A3

 : }

 : }

 : }

 : }

5.3 MESSAGE Message with Encrypted and Signed Body

 In the example below, one of the headers is contained in a box and is

 split across two lines. This was only done to make it fit in the RFC

 format. This header should not have the box around it and should be

 on one line with no whitespace between the "mime;" and the "smime-

 type". Note that Content-Type is split across lines for formatting

 but is not split in the real message.

Jennings & Ono Expires January 17, 2006 [Page 24]

Internet-Draft SIP Secure Flows July 2005

 MESSAGE sip:kumiko@example.net SIP/2.0

 To: <sip:kumiko@example.net>

 From: <sip:fluffy@example.com>;tag=361300da

 Via: SIP/2.0/UDP 68.122.119.3:5060;

 branch=z9hG4bK-d87543-0710dbfb18ebb8e6-1--d87543-;rport

 Call-ID: 5eda27a67de6283d@Y2ouY2lzY28uc2lwaXQubmV0

 CSeq: 1 MESSAGE

 Contact: <sip:fluffy@68.122.119.3:5060>

 Max-Forwards: 70

 Content-Transfer-Encoding: binary

 Content-Type: multipart/signed;boundary=1af019eb7754ddf7;\

 micalg=sha1;protocol=application/pkcs7-signature

 Date: Fri, 04 Feb 2005 20:07:14 GMT

 User-Agent: SIPimp.org/0.2.5 (curses)

 Content-Length: 2079

 --1af019eb7754ddf7

 |--See note about stuff in this box --------------------|

 |Content-Type: application/pkcs7-mime; |

 | smime-type=enveloped-data;name=smime.p7m |

 |---|

 Content-Disposition: attachment;handling=required;filename=smime.p7

 Content-Transfer-Encoding: binary

 * BINARY BLOB 3 *

 --1af019eb7754ddf7

 Content-Type: application/pkcs7-mime;name=smime.p7s

 Content-Disposition: attachment;handling=required;filename=smime.p7s

 Content-Transfer-Encoding: binary

 * BINARY BLOB 4 *

 --1af019eb7754ddf7--

 Binary blob 3

 0: SEQUENCE {

 4: OBJECT IDENTIFIER envelopedData (1 2 840 113549 1 7 3)

 15: [0] {

 19: SEQUENCE {

 23: INTEGER 0

 26: SET {

 30: SEQUENCE {

 34: INTEGER 0

Jennings & Ono Expires January 17, 2006 [Page 25]

Internet-Draft SIP Secure Flows July 2005

 37: SEQUENCE {

 39: SEQUENCE {

 41: SET {

 43: SEQUENCE {

 45: OBJECT IDENTIFIER countryName (2 5 4 6)

 50: PrintableString ’US’

 : }

 : }

 54: SET {

 56: SEQUENCE {

 58: OBJECT IDENTIFIER

 stateOrProvinceName (2 5 4 8)

 63: PrintableString ’California’

 : }

 : }

 75: SET {

 77: SEQUENCE {

 79: OBJECT IDENTIFIER localityName (2 5 4 7)

 84: PrintableString ’San Jose’

 : }

 : }

 94: SET {

 96: SEQUENCE {

 98: OBJECT IDENTIFIER organizationName (2 5 4 10)

 103: PrintableString ’sipit’

 : }

 : }

 110: SET {

 112: SEQUENCE {

 114: OBJECT IDENTIFIER

 : organizationalUnitName (2 5 4 11)

 119: PrintableString

 ’Sipit Test Certificate Authority’

 : }

 : }

 : }

 153: INTEGER 01 95 00 71 02 33 00 57

 : }

 163: SEQUENCE {

 165: OBJECT IDENTIFIER

 rsaEncryption (1 2 840 113549 1 1 1)

 176: NULL

 : }

 178: OCTET STRING

 : 0D 65 F7 54 9B A6 A5 42 2B 12 0E AC 70 16 20 52

 : 64 22 B8 61 24 DD 88 38 AA 59 B6 55 D9 73 79 B8

 : 7B 10 A9 13 1C A3 A4 00 CE F7 0A 81 80 5B 37 E3

 : 2E A4 16 58 43 DF A1 FF 8A FD 43 1C 52 D5 79 43

Jennings & Ono Expires January 17, 2006 [Page 26]

Internet-Draft SIP Secure Flows July 2005

 : 79 7F 7A FF CB 09 49 0F 2A 49 12 6C EC C5 58 0F

 : 4F 02 75 47 12 8C 8C 8F 84 49 FC 19 F0 24 9F F4

 : 7A 22 53 64 92 40 CA 03 41 3B 22 B7 E2 8A B5 79

 : 22 22 9F BC 10 65 0D 69 02 1C 51 35 6D A2 9D 77

 : }

 : }

 309: SEQUENCE {

 311: OBJECT IDENTIFIER data (1 2 840 113549 1 7 1)

 322: SEQUENCE {

 324: OBJECT IDENTIFIER des-EDE3-CBC (1 2 840 113549 3 7)

 334: OCTET STRING E2 6A CB 3E F3 BC A2 00

 : }

 344: [0]

 : 62 45 2E 76 6F 99 83 F2 C5 0B 9C 87 9E 66 C5 38

 : F1 57 68 5F CF F1 AF 44 5E 02 84 FF C3 76 94 D4

 : 9C 34 6B AD 2E 4A 1A 57 4B 88 4C A7 55 7C BF AB

 : BB FD 15 E6 20 ED 22 36 73 2E 61 B5 69 37 A8 0C

 : 43 D1 A1 02 0E B9 B5 69

 : }

 : }

 : }

 : }

 Binary Blob 4

 0: SEQUENCE {

 4: OBJECT IDENTIFIER signedData (1 2 840 113549 1 7 2)

 15: [0] {

 19: SEQUENCE {

 23: INTEGER 1

 26: SET {

 28: SEQUENCE {

 30: OBJECT IDENTIFIER sha1 (1 3 14 3 2 26)

 37: NULL

 : }

 : }

 39: SEQUENCE {

 41: OBJECT IDENTIFIER data (1 2 840 113549 1 7 1)

 : }

 52: [0] {

 56: SEQUENCE {

 60: SEQUENCE {

 64: [0] {

 66: INTEGER 2

 : }

 69: INTEGER 01 95 00 71 02 33 00 58

 79: SEQUENCE {

Jennings & Ono Expires January 17, 2006 [Page 27]

Internet-Draft SIP Secure Flows July 2005

 81: OBJECT IDENTIFIER

 : sha1withRSAEncryption (1 2 840 113549 1 1 5)

 92: NULL

 : }

 94: SEQUENCE {

 96: SET {

 98: SEQUENCE {

 100: OBJECT IDENTIFIER countryName (2 5 4 6)

 105: PrintableString ’US’

 : }

 : }

 109: SET {

 111: SEQUENCE {

 113: OBJECT IDENTIFIER stateOrProvinceName (2 5 4 8)

 118: PrintableString ’California’

 : }

 : }

 130: SET {

 132: SEQUENCE {

 134: OBJECT IDENTIFIER localityName (2 5 4 7)

 139: PrintableString ’San Jose’

 : }

 : }

 149: SET {

 151: SEQUENCE {

 153: OBJECT IDENTIFIER organizationName (2 5 4 10)

 158: PrintableString ’sipit’

 : }

 : }

 165: SET {

 167: SEQUENCE {

 169: OBJECT IDENTIFIER

 : organizationalUnitName (2 5 4 11)

 174: PrintableString

 ’Sipit Test Certificate Authority’

 : }

 : }

 : }

 208: SEQUENCE {

 210: UTCTime 03/02/2005 18:49:34 GMT

 225: UTCTime 03/02/2008 18:49:34 GMT

 : }

 240: SEQUENCE {

 242: SET {

 244: SEQUENCE {

 246: OBJECT IDENTIFIER countryName (2 5 4 6)

 251: PrintableString ’US’

 : }

Jennings & Ono Expires January 17, 2006 [Page 28]

Internet-Draft SIP Secure Flows July 2005

 : }

 255: SET {

 257: SEQUENCE {

 259: OBJECT IDENTIFIER

 stateOrProvinceName (2 5 4 8)

 264: PrintableString ’California’

 : }

 : }

 276: SET {

 278: SEQUENCE {

 280: OBJECT IDENTIFIER localityName (2 5 4 7)

 285: PrintableString ’San Jose’

 : }

 : }

 295: SET {

 297: SEQUENCE {

 299: OBJECT IDENTIFIER organizationName (2 5 4 10)

 304: PrintableString ’sipit’

 : }

 : }

 311: SET {

 313: SEQUENCE {

 315: OBJECT IDENTIFIER commonName (2 5 4 3)

 320: TeletexString ’fluffy@example.com’

 : }

 : }

 : }

 340: SEQUENCE {

 343: SEQUENCE {

 345: OBJECT IDENTIFIER

 : rsaEncryption (1 2 840 113549 1 1 1)

 356: NULL

 : }

 358: BIT STRING, encapsulates {

 362: SEQUENCE {

 365: INTEGER

 : 00 CA AB 9B 9B 4E 3C D5 45 3C CE 00 A6 36 A8 B9

 : EC D2 76 E2 B9 9B E8 28 AA BA 86 22 C5 CF 33 3E

 : 4F 6D 56 21 AE BD 54 84 7C 14 14 F9 7D 99 85 00

 : 4E 93 D6 FD 6B D4 D1 D4 55 8E C9 89 B1 AF 2B 5F

 : 23 99 4A 95 E5 68 65 64 1D 12 A7 DB D3 D5 97 18

 : 47 35 9C E6 88 27 9D A8 6C CA 2A 84 E6 62 D8 F1

 : E9 A2 1A 39 7E 0E 0F 90 A5 A6 79 21 BC 2A 67 B4

 : DD 69 90 82 9A AE 1F 02 52 8A 58 D3 F5 D0 D4 66

 : [Another 1 bytes skipped]

 497: INTEGER 65537

 : }

 : }

Jennings & Ono Expires January 17, 2006 [Page 29]

Internet-Draft SIP Secure Flows July 2005

 : }

 502: [3] {

 504: SEQUENCE {

 506: SEQUENCE {

 508: OBJECT IDENTIFIER subjectAltName (2 5 29 17)

 513: OCTET STRING, encapsulates {

 515: SEQUENCE {

 517: [6] ’sip:fluffy@example.com’

 541: [6] ’im:fluffy@example.com’

 564: [6] ’pres:fluffy@example.com’

 : }

 : }

 : }

 589: SEQUENCE {

 591: OBJECT IDENTIFIER

 basicConstraints (2 5 29 19)

 596: OCTET STRING, encapsulates {

 598: SEQUENCE {}

 : }

 : }

 600: SEQUENCE {

 602: OBJECT IDENTIFIER

 subjectKeyIdentifier (2 5 29 14)

 607: OCTET STRING, encapsulates {

 609: OCTET STRING

 : EC DA 98 5E E9 F7 F7 D7 EC 2B 29 4B DA 25 EE C7

 : C7 7E 95 70

 : }

 : }

 : }

 : }

 : }

 631: SEQUENCE {

 633: OBJECT IDENTIFIER

 : sha1withRSAEncryption (1 2 840 113549 1 1 5)

 644: NULL

 : }

 646: BIT STRING

 : 4C 46 49 6E 01 48 E2 D4 6E D7 48 A1 F3 7B C8 A5

 : 98 37 A5 44 46 58 9F 4A 37 7D 90 FB 5F FF 36 BD

 : 67 31 F0 29 DE 0A E2 EA B9 F0 5C 9F AD A0 DE E5

 : 4E 42 8F 11 D8 41 EA 68 BE DB C2 1E FA E5 8A 2D

 : 7F 66 13 29 E9 DA 8F FB 80 BF 7E 5E B6 04 AD 08

 : 5E 58 95 B7 C5 38 85 D5 65 31 AD 80 CB 28 A7 4C

 : AD 11 FD 41 3B 37 77 5A DE 85 96 3D 66 EB 5F 9A

 : F8 60 5F 8E B1 FC 4A 43 53 B6 11 4D 2E F4 3D FF

 : }

 : }

Jennings & Ono Expires January 17, 2006 [Page 30]

Internet-Draft SIP Secure Flows July 2005

 778: SET {

 782: SEQUENCE {

 786: INTEGER 1

 789: SEQUENCE {

 791: SEQUENCE {

 793: SET {

 795: SEQUENCE {

 797: OBJECT IDENTIFIER countryName (2 5 4 6)

 802: PrintableString ’US’

 : }

 : }

 806: SET {

 808: SEQUENCE {

 810: OBJECT IDENTIFIER

 stateOrProvinceName (2 5 4 8)

 815: PrintableString ’California’

 : }

 : }

 827: SET {

 829: SEQUENCE {

 831: OBJECT IDENTIFIER localityName (2 5 4 7)

 836: PrintableString ’San Jose’

 : }

 : }

 846: SET {

 848: SEQUENCE {

 850: OBJECT IDENTIFIER organizationName (2 5 4 10)

 855: PrintableString ’sipit’

 : }

 : }

 862: SET {

 864: SEQUENCE {

 866: OBJECT IDENTIFIER

 : organizationalUnitName (2 5 4 11)

 871: PrintableString

 ’Sipit Test Certificate Authority’

 : }

 : }

 : }

 905: INTEGER 01 95 00 71 02 33 00 58

 : }

 915: SEQUENCE {

 917: OBJECT IDENTIFIER sha1 (1 3 14 3 2 26)

 924: NULL

 : }

 926: [0] {

 929: SEQUENCE {

 931: OBJECT IDENTIFIER

Jennings & Ono Expires January 17, 2006 [Page 31]

Internet-Draft SIP Secure Flows July 2005

 contentType (1 2 840 113549 1 9 3)

 942: SET {

 944: OBJECT IDENTIFIER data (1 2 840 113549 1 7 1)

 : }

 : }

 955: SEQUENCE {

 957: OBJECT IDENTIFIER

 signingTime (1 2 840 113549 1 9 5)

 968: SET {

 970: UTCTime 04/02/2005 20:07:14 GMT

 : }

 : }

 985: SEQUENCE {

 987: OBJECT IDENTIFIER

 messageDigest (1 2 840 113549 1 9 4)

 998: SET {

 1000: OCTET STRING

 : 58 ED 12 DD 68 18 99 96 F9 4C 81 4C A6 51 BD 84

 : A8 BA F3 6A

 : }

 : }

 1022: SEQUENCE {

 1024: OBJECT IDENTIFIER

 : sMIMECapabilities (1 2 840 113549 1 9 15)

 1035: SET {

 1037: SEQUENCE {

 1039: SEQUENCE {

 1041: OBJECT IDENTIFIER

 : des-EDE3-CBC (1 2 840 113549 3 7)

 : }

 1051: SEQUENCE {

 1053: OBJECT IDENTIFIER

 rc2CBC (1 2 840 113549 3 2)

 1063: INTEGER 128

 : }

 1067: SEQUENCE {

 1069: OBJECT IDENTIFIER

 rc2CBC (1 2 840 113549 3 2)

 1079: INTEGER 64

 : }

 1082: SEQUENCE {

 1084: OBJECT IDENTIFIER desCBC (1 3 14 3 2 7)

 : }

 1091: SEQUENCE {

 1093: OBJECT IDENTIFIER

 rc2CBC (1 2 840 113549 3 2)

 1103: INTEGER 40

 : }

Jennings & Ono Expires January 17, 2006 [Page 32]

Internet-Draft SIP Secure Flows July 2005

 : }

 : }

 : }

 : }

 1106: SEQUENCE {

 1108: OBJECT IDENTIFIER

 rsaEncryption (1 2 840 113549 1 1 1)

 1119: NULL

 : }

 1121: OCTET STRING

 : 41 3C 43 53 6B EC 3A C2 E4 E2 1B 69 80 1B 68 54

 : 80 81 7F 33 05 DD 67 E8 ED D0 03 A0 90 4B AA 43

 : D4 54 CA 04 C9 78 97 8A E7 93 C0 05 F6 FA 30 BC

 : 59 1B 5D 30 5D E3 92 94 BA 4D D6 23 C0 59 17 F2

 : 0A F5 2C 73 0B 54 26 11 C3 3E FE 4C C2 ED 0B 89

 : 30 15 55 38 4A 80 D1 D5 AA 11 89 3A 9D 4B 47 C4

 : 29 F9 CF B7 44 53 21 E0 36 7E 81 02 CC DB 4C 09

 : 2D CA A1 AA 1B 76 F9 83 5C 86 53 24 30 BD 94 69

 : }

 : }

 : }

 : }

 : }

6. Test Notes

 This section describes some common interoperability problems.

 Implementers should verify that their clients do the correct things

 and perhaps make their clients forgiving in what they receive, or at

 least have them produce reasonable error messages when interacting

 with software that has these problems.

 A common problem in interoperability is that some SIP clients do not

 support TLS and only do SSLv3. Check that the client does use TLS.

 Many SIP clients were found to accept expired certificates with no

 warning or error.

 TLS and S/MIME can provide the identity of the peer that a client is

 communicating with in the Subject Alternative Name in the

 certificate. The software must check that this name corresponds to

 the identity the server is trying to contact. If a client is trying

 to set up a TLS connection to good.example.com and it gets a TLS

 connection set up with a server that presents a valid certificate but

 with the name evil.example.com, it must generate an error or warning

 of some type. Similarly with S/MIME, if a user is trying to

 communicate with fluffy@example.com, the Subject Alternate Name field

Jennings & Ono Expires January 17, 2006 [Page 33]

Internet-Draft SIP Secure Flows July 2005

 in the certificate must match the AOR for fluffy.

 Some implementations used binary MIME encodings while others used

 base64. There is no reason not to use binary - check that your

 implementation sends binary and preferably receives both.

7. Open Issues

 The examples here attach the sender’s certificates - is this how we

 want to go?

 Need to add Accept header field value with multipart to all of the

 examples. Might also want to request congestion safety on all of

 them.

8. IANA Considerations

 No IANA actions are required.

9. Acknowledgments

 Many thanks to the developers of all the open source software used to

 create these call flows. This includes the underling crypto and TLS

 software used from openssl.org, the SIP stack from

 www.resiprocate.org, and the SIMPLE IMPP agent from www.sipimp.org.

 The TLS flow dumps were done with SSLDump from

 http://www.rtfm.com/ssldump. The book SSL and TLS [11] was a huge

 help in developing the code for these flows and is a great resource

 for anyone trying to implement TLS with SIP.

 Thanks to Dan Wing and Robert Sparks for catching many silly mistakes

 and to Tat Chan who caught a key problem in what the signature was

 being computed over. Also thanks to Lyndsay Campbell.

10. References

10.1 Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement

 Levels", BCP 14, RFC 2119, March 1997.

 [2] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,

 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:

 Session Initiation Protocol", RFC 3261, June 2002.

 [3] Housley, R., Polk, W., Ford, W., and D. Solo, "Internet X.509

 Public Key Infrastructure Certificate and Certificate Revocation

 List (CRL) Profile", RFC 3280, April 2002.

Jennings & Ono Expires January 17, 2006 [Page 34]

Internet-Draft SIP Secure Flows July 2005

 [4] Dierks, T., Allen, C., Treese, W., Karlton, P., Freier, A., and

 P. Kocher, "The TLS Protocol Version 1.0", RFC 2246,

 January 1999.

 [5] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J., and

 T. Wright, "Transport Layer Security (TLS) Extensions",

 RFC 3546, June 2003.

 [6] Chown, P., "Advanced Encryption Standard (AES) Ciphersuites for

 Transport Layer Security (TLS)", RFC 3268, June 2002.

 [7] Ramsdell, B., "Secure/Multipurpose Internet Mail Extensions

 (S/MIME) Version 3.1 Message Specification", RFC 3851,

 July 2004.

 [8] Housley, R., "Cryptographic Message Syntax (CMS)", RFC 3369,

 August 2002.

 [9] Housley, R., "Cryptographic Message Syntax (CMS) Algorithms",

 RFC 3370, August 2002.

10.2 Informative References

 [10] Campbell, B., Rosenberg, J., Schulzrinne, H., Huitema, C., and

 D. Gurle, "Session Initiation Protocol (SIP) Extension for

 Instant Messaging", RFC 3428, December 2002.

 [11] Rescorla, E., "SSL and TLS - Designing and Building Secure

 Systems", 2001.

Authors’ Addresses

 Cullen Jennings

 Cisco Systems

 170 West Tasman Drive

 Mailstop SJC-21/2

 San Jose, CA 95134

 USA

 Phone: +1 408 902-3341

 Email: fluffy@cisco.com

Jennings & Ono Expires January 17, 2006 [Page 35]

Internet-Draft SIP Secure Flows July 2005

 Kumiko Ono

 NTT Corporation

 Musashino-shi, Tokyo 180-8585

 Japan

 Phone: +81 422 59 4508

 Email: ono.kumiko@lab.ntt.co.jp

Appendix A. Making Test Certificates

 These scripts allow you to make certificates for test purposes. The

 certificates will all share a common CA root so that everyone running

 these scripts can have interoperable certificates. WARNING - these

 certificates are totally insecure and are for test purposes only.

 All the CA created by this script share the same private key to

 facilitate interoperability testing, but this totally breaks the

 security since the private key of the CA is well known.

 The instructions assume a Unix-like environment with openssl

 installed, but openssl does work in Windows too. Make sure you have

 openssl installed by trying to run "openssl". Run the makeCA script

 found in Appendix A.1; this creates a subdirectory called demoCA. If

 the makeCA script cannot find where your openssl is installed you

 will have to set an environment variable called OPENSSLDIR to

 whatever directory contains the file openssl.cnf. You can find this

 with a "locate openssl.cnf". You are now ready to make certificates.

 To create certs for use with TLS, run the makeCert script found in

 Appendix A.2 with the fully qualified domain name of the proxy you

 are making the certificate for. For example, "makeCert

 host.example.net". This will generate a private key and a

 certificate. The private key will be left in a file named

 domain_key_example.net.pem in pem format. The certificate will be in

 domain_cert_example.net.pem. Some programs expect both the

 certificate and private key combined together in a PKCS12 format

 file. This is created by the script and left in a file named

 example.net.p12. Some programs expect this file to have a .pfx

 extension instead of .p12 - just rename the file if needed. A filed

 with a certificate signing request, called example.net.csr, is also

 created an can be used to get the certificate signed by another CA.

 A second argument indicating the number of days for which the

 certificate should be valid can be passed to the makeCert script. It

 is possible to make an expired certificate using the command

 "makeCert host.example.net 0".

 Anywhere that a password is used to protect a certificate, the

 password is set to the string "password".

Jennings & Ono Expires January 17, 2006 [Page 36]

Internet-Draft SIP Secure Flows July 2005

 The root certificate for the CA is in the file

 root_cert_fluffyCA.pem.

 For things that need DER format certificates, a certificate can be

 converted from PEM to DER with "openssl x509 -in cert.pem -inform PEM

 -out cert.der -outform DER".

 Some programs expect certificates in PKCS#7 format (with a file

 extension of .p7c). You can convert these from PEM format with to

 PKCS#7 with "openssl crl2pkcs7 -nocrl -certfile cert.pem -certfile

 demoCA/cacert.pem -outform DER -out cert.p7c"

 IE, Outlook, and Netscape can import and export .p12 files and .p7c

 files. You can convert a pkcs7 certificate to PEM format with

 "openssl pkcs7 -in cert.p7c -inform DER -outform PEM -out cert.pem".

 The private key can be converted to pkcs8 format with "openssl pkcs8

 -in a_key.pem -topk8 -outform DER -out a_key.p8c"

 In general, a TLS client will just need the root certificate of the

 CA. A TLS server will need its private key and its certificate.

 These could be in two PEM files or one .p12 file. An S/MIME program

 will need its private key and certificate, the root certificate of

 the CA, and the certificate for every other user it communicates

 with.

A.1 makeCA script

 #!/bin/sh

 #set -x

 rm -rf demoCA

 mkdir demoCA

 mkdir demoCA/certs

 mkdir demoCA/crl

 mkdir demoCA/newcerts

 mkdir demoCA/private

 #echo "01" > demoCA/serial

 hexdump -n 4 -e ’4/1 "%04d"’ /dev/random > demoCA/serial

 touch demoCA/index.txt

 # You may need to modify this for where your default file is

 # you can find where yours in by typing "openssl ca"

 for D in /etc/ssl /usr/local/ssl /sw/etc/ssl /sw/share/ssl; do

 CONF=${OPENSSLDIR:=$D}/openssl.cnf

 [-f ${CONF}] && break

Jennings & Ono Expires January 17, 2006 [Page 37]

Internet-Draft SIP Secure Flows July 2005

 done

 if [! -f $CONF]; then

 echo "Can not find file $CONF - set your OPENSSLDIR variable"

 exit

 fi

 cp $CONF openssl.cnf

 cat >> openssl.cnf <<EOF

 [cj_cert]

 subjectAltName=\${ENV::ALTNAME}

 basicConstraints=CA:FALSE

 subjectKeyIdentifier=hash

 #authorityKeyIdentifier=keyid,issuer:always

 [cj_req]

 basicConstraints = CA:FALSE

 subjectAltName=\${ENV::ALTNAME}

 subjectKeyIdentifier=hash

 #authorityKeyIdentifier=keyid,issuer:always

 #keyUsage = nonRepudiation, digitalSignature, keyEncipherment

 EOF

 cat > demoCA/private/cakey.pem <<EOF

 -----BEGIN RSA PRIVATE KEY-----

 Proc-Type: 4,ENCRYPTED

 DEK-Info: DES-EDE3-CBC,4B47A0A73ADE342E

 aHmlPa+ZrOV6v+Jk0SClxzpxoG3j0ZuyoVkF9rzq2bZkzVBKLU6xhWwjMDqwA8dH

 3fCRLhMGIUVnmymXYhTW9svI1gpFxMBQHJcKpV/SmgFn/fbYk98Smo2izHOniIiu

 NOu2zr+bMiaBphOAZ/OCtVUxUOoBDKN9lR39UCDOgkEQzp9Vbw7l736yu5H9GMHP

 JtGLJyx3RhS3TvLfLAJZhjm/wZ/9QM8GjyJEiDhMQRJVeIZGvv4Yr1u6yYHiHfjX

 tX2eds8Luc83HbSvjAyjnkLtJsAZ/8cFzrd7pjFzbogLdWuil+kpkkf5h1uzh7oa

 um0M1EXBE4tcDHsfg1iqEsDMIei/U+/rWfk1PrzYlklwZp8S03vulkDm1fT76W7d

 mRBg4+CrHA6qYn6EPWB37OBtfEqAfINnIcI1dWzso9A0bTPD4EJO0JA0PcZ/2JgT

 PaKySgooHQ8AHNQebelch6M5LFExpaOADJKrqauKcc2HeUxXaYIpac5/7drIl3io

 UloqUnMlGa3eLP7BZIMsZKCfHZ8oqwU4g6mmmJath2gODRDx3mfhH6yaimDL7v4i

 SAIIkrEHXfSyovrTJymfSfQtYxUraVZDqax6oj/eGllRxliGfMLYG9ceU+yU/8FN

 LE7P+Cs19H5tHHzx1LlieaK43u/XvbXHlB5mqL/fZdkUIBJsjbBVx0HR8eQl2CH9

 YJDMOPLADecwHoyKA0AY59oN9d41oF7yZtN9KwNdslROYH7mNJlqMMenhXCLN+Nz

 vVU5/7/ugZFhZqfS46c1WdmSvuqpDp7TBtMeaH/PXjysBr0iZffOxQ==

 -----END RSA PRIVATE KEY-----

 EOF

 cat > demoCA/cacert.pem <<EOF

 -----BEGIN CERTIFICATE-----

 MIIDJDCCAo2gAwIBAgIBADANBgkqhkiG9w0BAQUFADBwMQswCQYDVQQGEwJVUzET

Jennings & Ono Expires January 17, 2006 [Page 38]

Internet-Draft SIP Secure Flows July 2005

 MBEGA1UECBMKQ2FsaWZvcm5pYTERMA8GA1UEBxMIU2FuIEpvc2UxDjAMBgNVBAoT

 BXNpcGl0MSkwJwYDVQQLEyBTaXBpdCBUZXN0IENlcnRpZmljYXRlIEF1dGhvcml0

 eTAeFw0wMzA3MTgxMjIxNTJaFw0xMzA3MTUxMjIxNTJaMHAxCzAJBgNVBAYTAlVT

 MRMwEQYDVQQIEwpDYWxpZm9ybmlhMREwDwYDVQQHEwhTYW4gSm9zZTEOMAwGA1UE

 ChMFc2lwaXQxKTAnBgNVBAsTIFNpcGl0IFRlc3QgQ2VydGlmaWNhdGUgQXV0aG9y

 aXR5MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDDIh6DkcUDLDyK9BEUxkud

 +nJ4xrCVGKfgjHm6XaSuHiEtnfELHM+9WymzkBNzZpJu30yzsxwfKoIKugdNUrD4

 N3viCicwcN35LgP/KnbN34cavXHr4ZlqxH+OdKB3hQTpQa38A7YXdaoz6goW2ft5

 Mi74z03GNKP/G9BoKOGd5QIDAQABo4HNMIHKMB0GA1UdDgQWBBRrRhcU6pR2JYBU

 bhNU2qHjVBShtjCBmgYDVR0jBIGSMIGPgBRrRhcU6pR2JYBUbhNU2qHjVBShtqF0

 pHIwcDELMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExETAPBgNVBAcT

 CFNhbiBKb3NlMQ4wDAYDVQQKEwVzaXBpdDEpMCcGA1UECxMgU2lwaXQgVGVzdCBD

 ZXJ0aWZpY2F0ZSBBdXRob3JpdHmCAQAwDAYDVR0TBAUwAwEB/zANBgkqhkiG9w0B

 AQUFAAOBgQCWbRvv1ZGTRXxbH8/EqkdSCzSoUPrs+rQqR0xdQac9wNY/nlZbkR3O

 qAezG6Sfmklvf+DOg5RxQq/+Y6I03LRepc7KeVDpaplMFGnpfKsibETMipwzayNQ

 QgUf4cKBiF+65Ue7hZuDJa2EMv8qW4twEhGDYclpFU9YozyS1OhvUg==

 -----END CERTIFICATE-----

 EOF

 # uncomment the following lines to generate your own key pair

 #openssl req -newkey rsa:1024 -passin pass:password \

 # -passout pass:password \

 # -sha1 -x509 -keyout demoCA/private/cakey.pem \

 # -out demoCA/cacert.pem -days 3650 <<EOF

 #US

 #California

 #San Jose

 #sipit

 #Sipit Test Certificate Authority

 #

 #

 #EOF

 openssl crl2pkcs7 -nocrl -certfile demoCA/cacert.pem \

 -outform DER -out demoCA/cacert.p7c

 cp demoCA/cacert.pem root_cert_fluffyCA.pem

A.2 makeCert script

 #!/bin/sh

 #set -x

 if [$# == 1]; then

Jennings & Ono Expires January 17, 2006 [Page 39]

Internet-Draft SIP Secure Flows July 2005

 DAYS=1095

 elif [$# == 2]; then

 DAYS=$2

 else

 echo "Usage: makeCert test.example.org [days]"

 echo " makeCert alice@example.org [days]"

 echo "days is how long the certificate is valid"

 echo "days set to 0 generates an invalid certificate"

 exit 0

 fi

 ADDR=$1

 echo "making cert for ${ADDR}"

 rm -f ${ADDR}_*.pem

 rm -f ${ADDR}.p12

 case ${ADDR} in

 :) ALTNAME="URI:${ADDR}" ;;

 @) ALTNAME="URI:sip:${ADDR},URI:im:${ADDR},URI:pres:${ADDR}" ;;

 *) ALTNAME="DNS:${ADDR}" ;;

 esac

 rm -f demoCA/index.txt

 touch demoCA/index.txt

 rm -f demoCA/newcerts/*

 export ALTNAME

 openssl genrsa -out ${ADDR}_key.pem 1024

 openssl req -new -config openssl.cnf -reqexts cj_req \

 -sha1 -key ${ADDR}_key.pem \

 -out ${ADDR}.csr -days ${DAYS} <<EOF

 US

 California

 San Jose

 sipit

 ${ADDR}

 EOF

 if [$DAYS == 0]; then

 openssl ca -extensions cj_cert -config openssl.cnf \

 -passin pass:password -policy policy_anything \

Jennings & Ono Expires January 17, 2006 [Page 40]

Internet-Draft SIP Secure Flows July 2005

 -md sha1 -batch -notext -out ${ADDR}_cert.pem \

 -startdate 990101000000Z \

 -enddate 000101000000Z \

 -infiles ${ADDR}.csr

 else

 openssl ca -extensions cj_cert -config openssl.cnf \

 -passin pass:password -policy policy_anything \

 -md sha1 -days ${DAYS} -batch -notext -out ${ADDR}_cert.pem \

 -infiles ${ADDR}.csr

 fi

 openssl pkcs12 -passin pass:password \

 -passout pass:password -export \

 -out ${ADDR}.p12 -in ${ADDR}_cert.pem \

 -inkey ${ADDR}_key.pem -name ${ADDR} -certfile demoCA/cacert.pem

 openssl x509 -in ${ADDR}_cert.pem -noout -text

 case ${ADDR} in

 @) mv ${ADDR}_key.pem user_key_${ADDR}.pem; \

 mv ${ADDR}_cert.pem user_cert_${ADDR}.pem ;;

 *) mv ${ADDR}_key.pem domain_key_${ADDR}.pem; \

 mv ${ADDR}_cert.pem domain_cert_${ADDR}.pem ;;

 esac

Appendix B. Certificates for Testing

 This section contains various certificates used for testing in PEM

 format.

 Fluffy’s certificate.

Jennings & Ono Expires January 17, 2006 [Page 41]

Internet-Draft SIP Secure Flows July 2005

 -----BEGIN CERTIFICATE-----

 MIICzjCCAjegAwIBAgIIAZUAcQIzAFgwDQYJKoZIhvcNAQEFBQAwcDELMAkGA1UE

 BhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExETAPBgNVBAcTCFNhbiBKb3NlMQ4w

 DAYDVQQKEwVzaXBpdDEpMCcGA1UECxMgU2lwaXQgVGVzdCBDZXJ0aWZpY2F0ZSBB

 dXRob3JpdHkwHhcNMDUwMjAzMTg0OTM0WhcNMDgwMjAzMTg0OTM0WjBiMQswCQYD

 VQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTERMA8GA1UEBxMIU2FuIEpvc2Ux

 DjAMBgNVBAoTBXNpcGl0MRswGQYDVQQDFBJmbHVmZnlAZXhhbXBsZS5jb20wgZ8w

 DQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAMqrm5tOPNVFPM4ApjaouezSduK5m+go

 qrqGIsXPMz5PbVYhrr1UhHwUFPl9mYUATpPW/WvU0dRVjsmJsa8rXyOZSpXlaGVk

 HRKn29PVlxhHNZzmiCedqGzKKoTmYtjx6aIaOX4OD5ClpnkhvCpntN1pkIKarh8C

 UopY0/XQ1GZnAgMBAAGjfzB9MFEGA1UdEQRKMEiGFnNpcDpmbHVmZnlAZXhhbXBs

 ZS5jb22GFWltOmZsdWZmeUBleGFtcGxlLmNvbYYXcHJlczpmbHVmZnlAZXhhbXBs

 ZS5jb20wCQYDVR0TBAIwADAdBgNVHQ4EFgQU7NqYXun399fsKylL2iXux8d+lXAw

 DQYJKoZIhvcNAQEFBQADgYEATEZJbgFI4tRu10ih83vIpZg3pURGWJ9KN32Q+1//

 Nr1nMfAp3gri6rnwXJ+toN7lTkKPEdhB6mi+28Ie+uWKLX9mEynp2o/7gL9+XrYE

 rQheWJW3xTiF1WUxrYDLKKdMrRH9QTs3d1rehZY9ZutfmvhgX46x/EpDU7YRTS70

 Pf8=

 -----END CERTIFICATE-----

 Fluffy’s private key

 -----BEGIN RSA PRIVATE KEY-----

 MIICXAIBAAKBgQDKq5ubTjzVRTzOAKY2qLns0nbiuZvoKKq6hiLFzzM+T21WIa69

 VIR8FBT5fZmFAE6T1v1r1NHUVY7JibGvK18jmUqV5WhlZB0Sp9vT1ZcYRzWc5ogn

 nahsyiqE5mLY8emiGjl+Dg+QpaZ5IbwqZ7TdaZCCmq4fAlKKWNP10NRmZwIDAQAB

 AoGAXgtxwoh0jBZ716/PcS+sTut+xUiRwxIT30fdHONACRr8RmqM1khAzf7XmMoi

 kegJjmrF3+K6l4g4IOcnL3y1wVCtzJ1f2QDTuVzAsvazZqI4+pNB4LaAb+JPNQ+4

 BtrQSXADXv7HfkUakzeZpgnJYw+zHWaVogKjcLDKHWdrbOECQQDpH/G+GsJ4mnrp

 wZF9OxKqKhqBO73ZONHDxu55AukLghGnFh1udqdCQ7EPsaCqLN82RS4gn/WDfnBh

 WB8DRavxAkEA3o6nMOMyKdsuqBbGyEPvaPDVmw973wtEohIj6MgwdYSUOhdKAurR

 hs09yVGy0QpjoNHIE0vi5lUhPxJ1+Xvv1wJBAL0Ry14DFfX6U/WBqB2I63pW62gk

 q7ShAH9nt8EtOxS6SNbaeMQ+Nyjm/ZNc3JEoE2BQezi6gsRCp6JLdduRhgECQD1p

 V7EhwCHUnVc8kbWJKXLnocmbyC6PyWx/XPFK7DRBVTWCX6XWbeKol7gJlzIfj8Y8

 nNzWP9IXA4mH6o3hKRkCQA+1er++Tx24uypEijIi7OK0bfjJUlrhCM9NVWxDKrzO

 3zpuUB7yzuxrbcMZI8JKQIHL0sWz7egscepxS+N61y8=

 -----END RSA PRIVATE KEY-----

 Kumiko’s certificate

Jennings & Ono Expires January 17, 2006 [Page 42]

Internet-Draft SIP Secure Flows July 2005

 -----BEGIN CERTIFICATE-----

 MIICzjCCAjegAwIBAgIIAZUAcQIzAFcwDQYJKoZIhvcNAQEFBQAwcDELMAkGA1UE

 BhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExETAPBgNVBAcTCFNhbiBKb3NlMQ4w

 DAYDVQQKEwVzaXBpdDEpMCcGA1UECxMgU2lwaXQgVGVzdCBDZXJ0aWZpY2F0ZSBB

 dXRob3JpdHkwHhcNMDUwMjAzMTg0OTIzWhcNMDgwMjAzMTg0OTIzWjBiMQswCQYD

 VQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTERMA8GA1UEBxMIU2FuIEpvc2Ux

 DjAMBgNVBAoTBXNpcGl0MRswGQYDVQQDFBJrdW1pa29AZXhhbXBsZS5uZXQwgZ8w

 DQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBANX6dhOhUuf+2I3lymzeuSDwHLZqMqnu

 3ISiIji/VlEoVUBFIHYjtxbmhIi40mEl4cqT+tVI6gY6Pe7VrL835Yr3AoLLeUB7

 4mXa7T152+jAxA4+nCVnIAkMrPxTDeBFEfn+qyCRPWyQ7WEgH3Vd9AufnC7aeafD

 pp+dcAOFZ2pBAgMBAAGjfzB9MFEGA1UdEQRKMEiGFnNpcDprdW1pa29AZXhhbXBs

 ZS5uZXSGFWltOmt1bWlrb0BleGFtcGxlLm5ldIYXcHJlczprdW1pa29AZXhhbXBs

 ZS5uZXQwCQYDVR0TBAIwADAdBgNVHQ4EFgQUNi5qQQ2G6AsiZK79cPEXYmPsqFIw

 DQYJKoZIhvcNAQEFBQADgYEABIFd9N/3/05AD7Kt9kKSdy6vFvncU1IaccuFfdXc

 QPfewY8NWwYKWsu588D4Nu77VQ++6a8AtjlJPSY/742Z4oKq1jfxdA+Uz/Z9cv2v

 6aM4oX7R5FTgJTbHRC0ueH32OhNlcLhSNGHzNWSrS8AbtNOlfLRJipZI3N0W5b6q

 09Q=

 -----END CERTIFICATE-----

 Kumiko’s private key

 -----BEGIN RSA PRIVATE KEY-----

 MIICXQIBAAKBgQDV+nYToVLn/tiN5cps3rkg8By2ajKp7tyEoiI4v1ZRKFVARSB2

 I7cW5oSIuNJhJeHKk/rVSOoGOj3u1ay/N+WK9wKCy3lAe+Jl2u09edvowMQOPpwl

 ZyAJDKz8Uw3gRRH5/qsgkT1skO1hIB91XfQLn5wu2nmnw6afnXADhWdqQQIDAQAB

 AoGBANJktWrxyanxC47iLdpEWHVJgoHeA7jQ8yS6orl3cPDVnpVWIufmkCTFPfWM

 /Namv89HF3BVhD3hUHogwP03gcsIdxpccnu1wnmTW7IhSQXjBts0mEDbOw8S+WtS

 9NjRI4m1+86OflE+TVa3DtwCE/pEOKhFvcZHvXiosYMnucABAkEA6xqKEwR1zI/V

 u2B28Lcv0iafkJQDfPB3ooahQ+9qy5qUWgGZzXj6tM8YUusVqR/NCg8auqRC5uWD

 yonN98phQQJBAOj/Pp9yyO2NCVs4Mp5QSXDOlRAOuruMz6vlmURQO/8uBmHvETfC

 nkvqxxHjHW7mmusEY+ZIvRxmFV4RZcYByQECQHiT5/TQ+Mmti2TKmLXkffY+MOAp

 yZAulG0at2LsS82YvjVbVNJ5Fbvd6w+72iQfVz2teXv3+wgI9orOGoDXnwECQGrE

 I58PCzGHkkUBkHhpE+4kS7wK89hjYvpDAKOEHKoHHhecZAhoHv9suwHgT6l09IJD

 BcANjtLHmHz9feRpBwECQQCuIn02CMxFy5yhjj4nlmCRQ6w6KBWjY68xnN4Qj/g3

 SV+1HtmCclS0bK7e/IV6gOKn+MV3C+14JGdSRM+9HqcZ

 -----END RSA PRIVATE KEY-----

 Certificate for example.com

Jennings & Ono Expires January 17, 2006 [Page 43]

Internet-Draft SIP Secure Flows July 2005

 -----BEGIN CERTIFICATE-----

 MIICjDCCAfWgAwIBAgIIAZUAcQIzAFUwDQYJKoZIhvcNAQEFBQAwcDELMAkGA1UE

 BhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExETAPBgNVBAcTCFNhbiBKb3NlMQ4w

 DAYDVQQKEwVzaXBpdDEpMCcGA1UECxMgU2lwaXQgVGVzdCBDZXJ0aWZpY2F0ZSBB

 dXRob3JpdHkwHhcNMDUwMjAzMTg0OTA4WhcNMDgwMjAzMTg0OTA4WjBbMQswCQYD

 VQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTERMA8GA1UEBxMIU2FuIEpvc2Ux

 DjAMBgNVBAoTBXNpcGl0MRQwEgYDVQQDEwtleGFtcGxlLmNvbTCBnzANBgkqhkiG

 9w0BAQEFAAOBjQAwgYkCgYEA5jF2tSfMjTKFVnD3wjMzMiZCXjxocXsfeVDQcic7

 Sq/yztEMvMBfMWpD53ytZL3H5iWfqs0tkKpohGJ7Bb5Dpa+76p2pW6RTnSKL2pYu

 Hz+SRrjMyCQ8Rs1dLWSFsaTKAfGOxX4P/wCRo+rLPhICdaS7CMjQKu+zu3J6mOX/

 n4ECAwEAAaNEMEIwFgYDVR0RBA8wDYILZXhhbXBsZS5jb20wCQYDVR0TBAIwADAd

 BgNVHQ4EFgQUIurLOGYd8ZYMmke2uxxSRLB3ZY0wDQYJKoZIhvcNAQEFBQADgYEA

 rutJ7R7xjSapbQOCktXfRMQeHwd1iDfkdpc1ElmYeXgWbjuxwCvbhQJrdMlbGZLa

 fvVBC7zS3UWqb74k3EhXZtkugt+ejXADc3Xvj3pWTMxCvTFFsF7/0TvEgu79p8EQ

 NOuBSRprhn7HYR2zuQoCvYT4R6/P8ahzqDEdIHoGf6w=

 -----END CERTIFICATE-----

 Private key for example.com

 -----BEGIN RSA PRIVATE KEY-----

 MIICXgIBAAKBgQDmMXa1J8yNMoVWcPfCMzMyJkJePGhxex95UNByJztKr/LO0Qy8

 wF8xakPnfK1kvcfmJZ+qzS2QqmiEYnsFvkOlr7vqnalbpFOdIovali4fP5JGuMzI

 JDxGzV0tZIWxpMoB8Y7Ffg//AJGj6ss+EgJ1pLsIyNAq77O7cnqY5f+fgQIDAQAB

 AoGBANtRm2FkRv7seJ/wSA6OS6PnUeqJMZWVklo6xi9M86/oTbYA9VrNCqWBMqtW

 XboTG2dKx4KrtFMWGTiwv7esHLPsUB1jYF7/KEsRh4WoRxfeWoQlAY6VYXycg6b5

 X0uORdFMWL+WRxPmo8IhDKEwNyRyCyGQjfKpMj0724WjEqWxAkEA9MFDUQD+fL3N

 ImRQl9ns3nHIIbcrtfxGCFaj+EJEwsyc5gq7QxRc3niNVt5pogPP7+CxskLaPPKU

 TJmhtwixLQJBAPDE7hcDCPtsn9DIOXf/ZxXjfZAlAfwVsT+ggWQi5r63lGwjIbCT

 qO6TijtbSqqD0QqULTabVwpIdYyknQqQlCUCQGnkG322UmQhsdiJUh0Amex7ibyc

 hPrNVHdTFMnZ0en9oHwedHpHGw7dVTkaLNV9lL8RlY+sQMNRqDuj1EVeK1kCQQCH

 945FLI+b/OHbs9bQb0k10TyNdHjEdTOdrPSlKhiIx39n+gcCgsC5ylQb5RgrZzlb

 8gX+eocS5YyMmkGdP7yJAkEAsmGKAgt4nTfZY5L8PytPK8lCJjBLcyIllI3QEiMY

 K/81YWYQcqsg5/cLBZC26KgNvxkyLwxS220Djlm19HJKGQ==

 -----END RSA PRIVATE KEY-----

 Certificate for example.net

Jennings & Ono Expires January 17, 2006 [Page 44]

Internet-Draft SIP Secure Flows July 2005

 -----BEGIN CERTIFICATE-----

 MIICjDCCAfWgAwIBAgIIAZUAcQIzAFYwDQYJKoZIhvcNAQEFBQAwcDELMAkGA1UE

 BhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExETAPBgNVBAcTCFNhbiBKb3NlMQ4w

 DAYDVQQKEwVzaXBpdDEpMCcGA1UECxMgU2lwaXQgVGVzdCBDZXJ0aWZpY2F0ZSBB

 dXRob3JpdHkwHhcNMDUwMjAzMTg0OTExWhcNMDgwMjAzMTg0OTExWjBbMQswCQYD

 VQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTERMA8GA1UEBxMIU2FuIEpvc2Ux

 DjAMBgNVBAoTBXNpcGl0MRQwEgYDVQQDEwtleGFtcGxlLm5ldDCBnzANBgkqhkiG

 9w0BAQEFAAOBjQAwgYkCgYEA2w4I/bz/vxzVskUEF56EYjf4yUftpG8jhmIiwsA8

 AKLwc7CTnceW+tLmdDfUQLWw+HP4ky0tgQQA6pmviPORUNjuSj91dE7EJk3ZKePE

 3MZ2M5JL6CEFn3HEFnHOQKv3TMKIGSpUZJjHmm15yRPiAlx0Q2vJ29h4W52X1DPM

 62MCAwEAAaNEMEIwFgYDVR0RBA8wDYILZXhhbXBsZS5uZXQwCQYDVR0TBAIwADAd

 BgNVHQ4EFgQUHNoIc7Or6o1iTsM1PmWPdgbxUAwwDQYJKoZIhvcNAQEFBQADgYEA

 VlSod7+XfvSKNsybqtWPaM8VnoRLFVXvukgQbsdv4wuv5bnDfwxdU25rdizBbql+

 m8Us+ky8ORw190v73mSeOro7KMv0mN1u2BaGUB/wjaRsH2HC+UZb0ok3vzZ+W8Re

 ECjcVyHNRGVw5Iu2W5iWcO/a/74vPaVBiFQQJBRSLxg=

 -----END CERTIFICATE-----<

 Private key for example.net

 -----BEGIN RSA PRIVATE KEY-----

 MIICXgIBAAKBgQDbDgj9vP+/HNWyRQQXnoRiN/jJR+2kbyOGYiLCwDwAovBzsJOd

 x5b60uZ0N9RAtbD4c/iTLS2BBADqma+I85FQ2O5KP3V0TsQmTdkp48TcxnYzkkvo

 IQWfccQWcc5Aq/dMwogZKlRkmMeabXnJE+ICXHRDa8nb2HhbnZfUM8zrYwIDAQAB

 AoGBAIrUP1CIutEldi3wXaKWfTI+ZPc0FeFz6mDdy0gAS0bf/WJk03lYqFA434Ni

 aqvEOu+LmEu2gzNUFTyZwE0ciMg3NQ0H57z7OvbnHa0LajiJROo7zkROrmE5GTIV

 v2WstOKJYsMdcTVa4VZd9cHH6zWXHtWDT+Y2MxrIerFnOYxBAkEA72cBQSE4SStZ

 KvodDuMjFXG97Z1F927Xe/47iWnYRKhVB/jwN9uYpJog2cQFgsIsRMltozi3huTP

 L8IKkI5N4QJBAOo95ShiRPcbXIXY1IcUGx1Rulr+paIAJwjuuutwrtCA1CbIKB0j

 vfGVr3mKBGV2XLmz15nNV+5WFiLRBiUgucMCQQCxf+63KnlADurS6ZTH5/KoQKfw

 WE568WzFWy8raBXYefJpsdHxqFiZmklHDIaFd5A5BBvNDA1O77EKGNWablghAkEA

 zbvpPqv4+LRuchy8pZtyKTE0JWHNZlkN79mGEO4ajITqUNmx6c4PsVUQFwayz87C

 qFQdxDdHyMyRiqjd5dQ1cwJAfJsXNGcOhilkV3xBy95tb3IsVP6G5DqwtID4hrYa

 Onf9xrVzh9M29Xp+AHcwS4Y0+UgiNrd5BlbZs+ALZPD/jw==

 -----END RSA PRIVATE KEY-----

Jennings & Ono Expires January 17, 2006 [Page 45]

Internet-Draft SIP Secure Flows July 2005

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any

 Intellectual Property Rights or other rights that might be claimed to

 pertain to the implementation or use of the technology described in

 this document or the extent to which any license under such rights

 might or might not be available; nor does it represent that it has

 made any independent effort to identify any such rights. Information

 on the procedures with respect to rights in RFC documents can be

 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any

 assurances of licenses to be made available, or the result of an

 attempt made to obtain a general license or permission for the use of

 such proprietary rights by implementers or users of this

 specification can be obtained from the IETF on-line IPR repository at

 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any

 copyrights, patents or patent applications, or other proprietary

 rights that may cover technology that may be required to implement

 this standard. Please address the information to the IETF at

 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an

 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS

 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET

 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,

 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE

 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED

 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject

 to the rights, licenses and restrictions contained in BCP 78, and

 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the

 Internet Society.

Jennings & Ono Expires January 17, 2006 [Page 46]

WG R. Mahy

Internet-Draft SIP Edge LLC

Expires: January 16, 2006 July 15, 2005

 A Location Event Package using the Session Initiation Protocol (SIP)

 draft-mahy-geopriv-sip-loc-pkg-01.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any

 applicable patent or other IPR claims of which he or she is aware

 have been or will be disclosed, and any of which he or she becomes

 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF), its areas, and its working groups. Note that

 other groups may also distribute working documents as Internet-

 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at

 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at

 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 16, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 This document describes a Session Initiation Protocol (SIP) event

 package to carry location data about named SIP resources. Inherent

 in this event package are filters which limit notifications to

 compelling events which are described by the filters. The resulting

 location information is conveyed in existing location formats wrapped

 in GEOPRIV privacy extensions to the Presence Information Document

 Format (PIDF-LO). Location disclosure is limited to voluntary

 disclosure by a notifier that possesses credentials for the named

 resource.

Mahy Expires January 16, 2006 [Page 1]

Internet-Draft Location Event Package July 2005

Table of Contents

 1. Conventions . 3

 2. Overview . 3

 3. Definition of Location Filter Format 3

 3.1 XML Schema for filter format 11

 4. Containment schema . 11

 5. Event Package Formal Definition 13

 5.1 Event Package Name . 13

 5.2 Event Package Parameters 14

 5.3 SUBSCRIBE Bodies . 14

 5.4 Subscription Duration 14

 5.5 NOTIFY Bodies . 14

 5.6 Subscriber generation of SUBSCRIBE requests 14

 5.7 Notifier processing of SUBSCRIBE requests 15

 5.8 Notifier generation of NOTIFY requests 15

 5.9 Subscriber processing of NOTIFY requests 15

 5.10 Handling of Forked Requests 15

 5.11 Rate of notifications 16

 5.12 State Agents and Lists 16

 5.13 Behavior of a Proxy Server 16

 6. Examples of Usage . 16

 7. Security Considerations 17

 8. IANA Considerations . 17

 8.1 SIP Event Package Registration for ’location’ 17

 8.2 MIME Registration for

 application/location-delta-filter+xml 18

 8.3 URN Sub-Namespace Registration for

 urn:ietf:params:xml:ns:location-filter 18

 8.4 Schema Registration For location-filter 19

 8.5 URN Sub-Namespace Registration for

 urn:ietf:params:xml:ns:pidf:geopriv10:containment 19

 8.6 Schema Registration For containment 20

 9. Acknowledgments . 20

 10. References . 20

 10.1 Normative References 20

 10.2 Informational References 21

 Author’s Address . 22

 Intellectual Property and Copyright Statements 23

Mahy Expires January 16, 2006 [Page 2]

Internet-Draft Location Event Package July 2005

1. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

 document are to be interpreted as described in RFC-2119 [4].

2. Overview

 Conveying PIDF-LO [3] bodies in most SIP [1] messages is

 straightforward protocol usage defined in [15]. In addition, a SIP

 event [2] package for location is an obvious usage of existing SIP

 capabilities. However the difficult part about asynchronous

 notification of location information is that many forms of location

 are measured as a continous gradient. Unlike notications using

 discreet quanties, it is difficult to know when a change in location

 is large enough to warrant notifications. Moreover, different

 applications require a wide variety of location resolutions. Any

 optimization made for one application would ultimately result in

 wasteful polling or a sluggish user interface for other applications.

 The mechanism described here defines filters in XML [5] documents

 which limit location notification to events which are of relevance to

 the subscriber. These filters are provided in the body of SIP

 subscription requests and persist for the duration of the

 subscription or until they are changed in an updated SIP subscription

 request with a replacement filter.

 In addition to the relevant filters, this document also defines a new

 XML schema [6] which can be included in PIDF-LO documents to indicate

 that the resource is inside or outside of a container region.

3. Definition of Location Filter Format

 The granularity of notifications necessary for various geographic

 location applications varies dramatically. The subscriber should be

 able to get asynchronous notifications with appropriate granularity

 and accuracy, without having to poll or flood the network with

 notifications which are not important to the application.

 Notifications should only happen when the notification would be

 considered an Interesting Event to the subscriber. Subscriptions to

 this event package contain a filter document in the XML document

 format defined in this section. The terminal elements in this format

 are defined in terms of existing Geographic Markup Language (GML)

 [10] data types.

 The notifications are in PIDF-LO (by default) or any other format

 acceptable to both the subscriber and notifier. The selection of

 a subset of GML or specific location format capabilities contained

 in a PIDF-LO body is a generic issue for the GEOPRIV Working Group

Mahy Expires January 16, 2006 [Page 3]

Internet-Draft Location Event Package July 2005

 to define, and is out of the scope of this document.

 This document defines the following as an initial list of Interesting

 Events:

 1. the resource moves more than a specific distance horizontally or

 vertically since the last notification

 2. the resource exceeds a specific speed

 3. the resource enters or exits one or more GML objects (for

 example, a set of 2-dimensional or 3-dimensional regions)

 included or referenced in the filter.

 4. one or more of the values of the specified address labels has

 changed for the resource (for example, the A1 value of the

 civilAddress has changed from California to Nevada)

 This specification makes use of XML namespaces [7] for identifying

 location filter documents and document fragments. The namespace URI

 for elements defined by this specification is a URN [11], using the

 namespace identifier ’ietf’ defined by [12] and extended by [13].

 This URN is:

 urn:ietf:params:xml:ns:location-filter

 The filter format starts with a top-level XML element called

 "<location-filter>", which contains one or more filter events. The

 semantics of multiple elements inside a location-filter is a logical

 OR. In other words, if any of the individual filter events occurs,

 the event satisfies the location-filter and triggers a notification.

 The movedHoriz and movedVert filter events each indicate a minimum

 horizontal motion or vertical distance (respectively) that the

 resource must have moved from the location of the resource when the

 last notification was sent in order to trigger this event. The

 distance is measured absolutely from the point of last notification

 rather than in terms of cumulative motion (For example, someone

 pacing inside a room will not trigger an event if the trigger

 threshold is slightly larger than the room.) Each of these events

 can only appear once in a location-filter. These events have an

 attribute "uom" (for "units of measure"), which indicates the units

 of the element. The default unit for these events is meters.

 Similarly, the speedExceeds filter event indicates a minimum

 horizontal speed of the resource before the speedExceeds event is

 triggered. This element can appear only once in a location-filter,

 and has a "uom" attribute which defaults to meters per second if not

 present.

 This filter measures the horizontal component of speed in any

 direction. It does not measure velocity. Note also that there is

 no corresponding event triggered when speed drops below a

 threshold.

Mahy Expires January 16, 2006 [Page 4]

Internet-Draft Location Event Package July 2005

 Below are some examples. In the first example if the resource moves

 20m in the x,y direction or 3m in the z direction, send a

 notification:

 <location-filter>

 <movedHoriz uom="#meters">20</movedHoriz>

 <movedVert uom="#meters">3</movedVert>

 </location-filter>

 If the resource exceeds 3 meters per second (10.8 km/h), send a

 notification:

 <location-filter>

 <speedExceeds uom="#mps">3</speedExceeds>

 </location-filter>

 The valueChanges filter event contains a string which is interpreted

 as an XPath [8] expression evaluated within the context of the

 location-info element of the PIDF-LO document which would be

 generated by the notification. The XPath expression MUST evaluate to

 only a single Xpath node. If the value of any of the elements in the

 resulting node changes, then the filter event is triggered. Note

 that the value of the resulting node changes if any of those nodes or

 subnodes transitions from having a value to having no value or vice

 versa. A location-filter may contain multiple valueChanges filters.

 For example, given the following logical PIDF-LO document, If the

 state (A1), county (A2), city (A3), or postal code (PC) changes, send

 a notification:

Mahy Expires January 16, 2006 [Page 5]

Internet-Draft Location Event Package July 2005

 PIDF-LO Location Document:

 <?xml version="1.0" encoding="UTF-8"?>

 <presence xmlns="urn:ietf:params:xml:ns:pidf"

 xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10"

 xmlns:cl="urn:ietf:params:xml:ns:pidf:geopriv10:civilLoc"

 entity="pres:geotarget@example.com">

 <tuple id="sg89ae">

 <status>

 <gp:geopriv>

 <gp:location-info>

 <cl:civilAddress>

 <cl:country>US</cl:country>

 <cl:A1>New York</cl:A1>

 <cl:A3>New York</cl:A3>

 <cl:A6>Broadway</cl:A6>

 <cl:HNO>123</cl:HNO>

 <cl:LOC>Suite 75</cl:LOC>

 <cl:PC>10027</cl:PC>

 </cl:civilAddress>

 </gp:location-info>

 <gp:usage-rules>

 <gp:retransmission-allowed>yes</gp:retransmission-allowed>

 <gp:retention-expiry>2003-06-23T04:57:29Z

 </gp:retention-expiry>

 </gp:usage-rules>

 </gp:geopriv>

 </status>

 <timestamp>2003-06-22T20:57:29Z</timestamp>

 </tuple>

 </presence>

 Filter Document:

 <location-filter

 xmlns="urn:ietf:params:xml:ns:location-filter"

 xmlns:cl="urn:ietf:params:xml:ns:pidf:geopriv10:civilLoc">

 <valueChanges>cl:civilAddress/cl:A1</valueChanges>

 <valueChanges>cl:civilAddress/cl:A2</valueChanges>

 <valueChanges>cl:civilAddress/cl:A3</valueChanges>

 <valueChanges>cl:civilAddress/cl:PC</valueChanges>

 </location-filter>

 Finally, the "enterOrExit" filter event is triggered when the

 resource enters or exits a named 2-dimensional or 3-dimensional

 region or list of regions corresponding to a GML feature. These

 regions can be defined using inline snippets of GML, or externally

 referenced using a URI (Uniform Resource Identifier). Notifiers

 which support this document MUST be able to support 2-dimensional

 regions and lists of regions, for which the regions can be defined in

Mahy Expires January 16, 2006 [Page 6]

Internet-Draft Location Event Package July 2005

 terms of the GML extentOf a Polygon defined using an exterior

 LinearRing object. These Polygons are defined using the hierarcy in

 the figure below.

 Hierarchy for 2-D Hierarchy for 3-D

 Objects Objects

 extentOf Solid

 Polygon exterior

 exterior Surface

 LinearRing patches

 posList Polygon

 ...

 Polygon

 Similarly, Notifiers MUST be able to support 3-dimensional regions

 which can be defined as a fixed height vertical projection of such a

 2-dimensional Polygon, and lists thereof. Specifically, these are

 GML Solids defined in terms of an exterior Surface of polygonal

 patches, such that all included Polygons are either parallel

 (horizontal) or perpedicular (vertical) to the geoid.

 The posList for any 2-dimensional region MUST be defined using the

 EPSG 4326 coordinate reference system. The posList for any

 3-dimensional region MUST be defined using the EPSG 4979 coordinate

 reference system. A location-filter can contain more than one

 enterOrExit filter event.

 Notifiers MAY support other more complex geometries or additional

 coordinate reference systems. How the Subscriber negotiates

 support for more complex geometries or reference systems is out of

 the scope of this document.

 Likewise, this document does not describe how a subscriber

 discovers the existence of externally referenced features. This

 topic is out of scope of this document.

 In most cases Subscribers that use location filters based on

 enterOrExit events are especially interested in the resource’s

 relationship to those named features. Consequently, the notifier

 MUST include either a "containment" element for each feature

 mentioned in the location-filter which has changed its containment

 properties with respect to the resource since the last notification.

 These elements are defined in Section 4. The notifier MAY include

 any other form of location that is relevant.

 For example, if the resource enters or exits Building 10 (which is

 defined by specific 2-D or 3-D rectangular coordinates), send a

 notification:

Mahy Expires January 16, 2006 [Page 7]

Internet-Draft Location Event Package July 2005

 Version in 2-Dimensions:

 <location-filter>

 <enterOrExit>

 <my:Building>

 <gml:name>Building 10</gml:name>

 <gml:extentOf>

 <gml:Polygon>

 <gml:exterior>

 <gml:LinearRing>

 <gml:posList

 srsName="http://www.opengis.net/gml/srs/epsg.xml/#4979">

 37.41188 -121.93243 0

 37.41188 -121.93132 0

 37.41142 -121.93132 0

 37.41142 -121.93242 0

 37.41188 -121.93243 0

 </gml:posLis>

 </gml:LinearRing>

 </gml:exterior>

 </gml:Polygon>

 </gml:extentOf>

 </my:Building>

 </enterOrExit>

 </location-filter>

 Version in 3-Dimensions:

 <location-filter>

 <enterOrExit>

 <my:Building>

 <gml:name>Building 10</gml:name>

 <gml:Solid>

 <gml:exterior>

 <gml:Surface>

 <gml:patches>

 <gml:Polygon> <!-- floor -->

 <gml:exterior>

 <gml:LinearRing>

 <gml:posList

 srsName="http://www.opengis.net/gml/srs/epsg.xml/#4979">

 37.41188 -121.93243 0

 37.41188 -121.93132 0

 37.41142 -121.93132 0

 37.41142 -121.93242 0

 37.41188 -121.93243 0

 </gml:posLis>

 </gml:LinearRing>

 </gml:exterior>

 </gml:Polygon>

Mahy Expires January 16, 2006 [Page 8]

Internet-Draft Location Event Package July 2005

 <gml:Polygon> <!-- north wall -->

 <gml:exterior>

 <gml:LinearRing>

 <gml:posList

 srsName="http://www.opengis.net/gml/srs/epsg.xml/#4979">

 37.41188 -121.93243 0

 37.41188 -121.93243 0

 37.41188 -121.93132 25

 37.41188 -121.93132 25

 37.41188 -121.93243 0

 </gml:posLis>

 </gml:LinearRing>

 </gml:exterior>

 </gml:Polygon>

 <gml:Polygon> <!-- east wall -->

 <gml:exterior>

 <gml:LinearRing>

 <gml:posList

 srsName="http://www.opengis.net/gml/srs/epsg.xml/#4979">

 37.41188 -121.93132 0

 37.41188 -121.93132 25

 37.41142 -121.93132 25

 37.41142 -121.93132 0

 37.41188 -121.93132 0

 </gml:posLis>

 </gml:LinearRing>

 </gml:exterior>

 </gml:Polygon>

 <gml:Polygon> <!-- south wall -->

 <gml:exterior>

 <gml:LinearRing>

 <gml:posList

 srsName="http://www.opengis.net/gml/srs/epsg.xml/#4979">

 37.41142 -121.93132 0

 37.41142 -121.93132 25

 37.41142 -121.93242 25

 37.41142 -121.93242 0

 37.41142 -121.93132 0

 </gml:posLis>

 </gml:LinearRing>

 </gml:exterior>

 </gml:Polygon>

 <gml:Polygon> <!-- west wall -->

 <gml:exterior>

 <gml:LinearRing>

 <gml:posList

 srsName="http://www.opengis.net/gml/srs/epsg.xml/#4979">

 37.41142 -121.93243 0

Mahy Expires January 16, 2006 [Page 9]

Internet-Draft Location Event Package July 2005

 37.41142 -121.93243 25

 37.41188 -121.93243 25

 37.41188 -121.93243 0

 37.41142 -121.93243 0

 </gml:posLis>

 </gml:LinearRing>

 </gml:exterior>

 </gml:Polygon>

 <gml:Polygon> <!-- roof -->

 <gml:exterior>

 <gml:LinearRing>

 <gml:posList

 srsName="http://www.opengis.net/gml/srs/epsg.xml/#4979">

 37.41188 -121.93243 25

 37.41188 -121.93132 25

 37.41142 -121.93132 25

 37.41142 -121.93242 25

 37.41188 -121.93243 25

 </gml:posLis>

 </gml:LinearRing>

 </gml:exterior>

 </gml:Polygon>

 </gml:patches>

 </gml:Surface>

 </gml:exterior>

 </gml:Solid>

 </my:Building>

 </enterOrExit>

 </location-filter>

 If the resource enters or exits either the parking garage or any of

 the conference rooms (both of which are externally defined), send a

 notification:

 <location-filter>

 <enterOrExit>

 <my:ParkingGarage

 xlink:href="http://server.example.com/loc-defs/bldg-mgr/parking"/>

 </enterOrExit>

 <enterOrExit>

 <my:ConferenceRooms

 xlink:href="http://server.example.com/loc-defs/userdef/confrooms"/>

 </enterOrExit>

 </location-filter>

Mahy Expires January 16, 2006 [Page 10]

Internet-Draft Location Event Package July 2005

3.1 XML Schema for filter format

 The XML Schema for this format is defined below.

 <?xml version="1.0" encoding="UTF-8"?>

 <xs:schema

 targetNamespace="urn:ietf:params:xml:ns:location-filter"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:gml="http://www.opengis.net/gml">

 <xs:element name="location-filter">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="movedHoriz" type="gml:MeasureType"

 minOccurs="0" maxOccurs="1"/>

 <xs:element name="movedVert" type="gml:MeasureType"

 minOccurs="0" maxOccurs="1"/>

 <xs:element name="speedExceeds" type="gml:MeasureType"

 minOccurs="0" maxOccurs="1"/>

 <!-- this type needs to hold an XPath statement -->

 <xs:element name="valueChanges" type="xs:string"

 minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="enterOrExit" type="gml:FeaturePropertyType"

 minOccurs="0" maxOccurs="unbounded"/>

 <!-- Do we want to incldue this to allow new filters? -->

 <xs:any namespace="##other" processContents="lax"

 minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:schema>

4. Containment schema

 This section describes the schema for describing the resource’s

 location relative to a region or list of regions which might contain

 the resource. (These regions can be defined dynamically in an

 "enterOrExit" element in a subscription filter, or defined on the

 notifier using some out-of-band mechanism.) The "pidfResource"

 element is placed inside the location-info element in a PIDF-LO

 document. The pidfResource element can contain zero or more

Mahy Expires January 16, 2006 [Page 11]

Internet-Draft Location Event Package July 2005

 "containment" elements. Each containment element has a GML Feature

 sub-element (of type "FeaturePropertyType") and a mandatory attribute

 which specifies if the PIDF resource is inside or outside of the

 feature, or if the position of the resource with respect to the

 region or region list is undefined. If the subscriber is not

 authorized to know the relative position, the notifier MUST NOT

 reveal this private information. The RECOMMENDED way to prevent the

 subscriber from seeing private location data of this type is to

 return a containment element whose position attribute is "undefined".

 <?xml version="1.0" encoding="UTF-8"?>

 <xs:schema

 targetNamespace="urn:ietf:params:xml:ns:pidf:geopriv10:containment"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:gml="http://www.opengis.net/gml"

 xmlns:pr="urn:ietf:params:xml:ns:pidf:geopriv10:containment" >

 <xs:element name="pidfResource">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="pr:containment"

 minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="containment">

 <xs:complexType>

 <xs:sequence>

 <xs:any namespace="http://www.opengis.net/gml"

 minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

 <xs:attribute name="position" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="inside"></xs:enumeration>

 <xs:enumeration value="outside"></xs:enumeration>

 <xs:enumeration value="undefined"></xs:enumeration>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:complexType>

 </xs:element>

 </xs:schema>

 Below is an example PIDF-LO document which indicates that the

 resource is inside building 10, not outside the parking garage, and

 not permitted to know if the resource is in a conference room. Note

 that in GML, these features could be referenced by their unique

Mahy Expires January 16, 2006 [Page 12]

Internet-Draft Location Event Package July 2005

 identifiers instead.

 <?xml version="1.0" encoding="UTF-8"?>

 <presence xmlns="urn:ietf:params:xml:ns:pidf"

 xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10"

 xmlns:pr="urn:ietf:params:xml:ns:pidf:geopriv10:containment"

 entity="pres:geotarget@example.com">

 <tuple id="sg89ae">

 <status>

 <gp:geopriv>

 <gp:location-info>

 <pr:pidfResource>

 <pr:containment position="inside">

 <my:Building>

 <gml:name>Building 10</gml:name>

 </my:Building>

 </pr:containment>

 <pr:containment position="outside">

 <my:ParkingGarage

 xlink:href="http://server.example.com/loc-defs/bldg-mgr/parking"/>

 </pr:containment>

 <pr:containment position="undefined">

 <my:ConferenceRooms

 xlink:href="http://server.example.com/loc-defs/userdef/confrooms"/>

 </pr:containment>

 </pr:pidfResource>

 </gp:location-info>

 <gp:usage-rules>

 <gp:retransmission-allowed>yes</gp:retransmission-allowed>

 <gp:retention-expiry>2003-06-23T04:57:29Z

 </gp:retention-expiry>

 </gp:usage-rules>

 </gp:geopriv>

 </status>

 <timestamp>2003-06-22T20:57:29Z</timestamp>

 </tuple>

 </presence>

5. Event Package Formal Definition

5.1 Event Package Name

 This document defines a SIP Event Package as defined in RFC 3265 [2].

 The event-package token name for this package is:

 "location"

Mahy Expires January 16, 2006 [Page 13]

Internet-Draft Location Event Package July 2005

5.2 Event Package Parameters

 This package does not define any event package parameters.

5.3 SUBSCRIBE Bodies

 This package defines a SUBSCRIBE body format in Section 3, which is

 used to filter notifications. Subscribers MUST include a location

 filter with at least one filter event in every new or updated

 subscription request. (A filter is not necessary, nor desirable in

 an unsubscription request.)

5.4 Subscription Duration

 Subscriptions to this event package MAY range from minutes to weeks.

 Subscriptions in hours or days are more typical and are RECOMMENDED.

 The default subscription duration for this event package is one hour.

5.5 NOTIFY Bodies

 Both subscribers and notifiers MUST implement PIDF-LO. Notifiers MAY

 send location information in any format acceptable to the subscriber

 (based on the subscriber inclusion of these formats in an Accept

 header). "application/cpim-pidf+xml"

 A future extension MAY define other NOTIFY bodies. If no "Accept"

 header is present in the SUBSCRIBE, the body type defined in this

 document MUST be assumed.

5.6 Subscriber generation of SUBSCRIBE requests

 Each new subscribe request establishes a notification filter.

 Subsequent subscriptions keep the same filter unless a new filter is

 provided. If a new filter is provided in a subscription, it

 completely replaces the previous filter.

 Subscriber User Agents will typically SUBSCRIBE to location

 information for a period of hours or days, and automatically attempt

 to re-SUBSCRIBE well before the subscription is completely expired.

 If re-subscription fails, the Subscriber SHOULD periodically retry

 again until a subscription is successful, taking care to backoff to

 avoid network congestion. If a subscription has expired, new re-

 subscriptions MUST use a new Call-ID.

 The Subscriber MAY also explicitly fetch the current status at any

 time. The subscriber SHOULD renew its subscription immediately after

 a reboot, or when the subscriber’s network connectivity has just been

 re-established.

Mahy Expires January 16, 2006 [Page 14]

Internet-Draft Location Event Package July 2005

 The Subscriber MUST be prepared to receive and process a NOTIFY with

 new state immediately after sending a new SUBSCRIBE, a SUBSCRIBE

 renewal, an unsubscribe, or a fetch; or at any time during the

 subscription.

5.7 Notifier processing of SUBSCRIBE requests

 When a Notifier receives SUBSCRIBE messages with the location event-

 type, it SHOULD authenticate the subscription request. The Notifier

 MAY choose to provide very coarse location information to anonymous

 subscribers (ex: country, postal code, time zone). If authentication

 is successful, the Notifier SHOULD authorize the subscriber. In

 addition, the Notifier MAY provide different location granularity or

 obfuscation depending on the identity of the subscriber. If no

 location-filter is provided, the Notifier SHOULD reject the

 subscription with a 403 Forbidden response. The Notifier MAY further

 limit the duration of the subscription to an administrator defined

 amount of time as described in SIP Events.

 For new subscriptions, or anytime the location-filter is updated by

 the subscriber, the notifier MUST include appropriate containment

 locations for every feature mentioned in an enterOrExit element in

 the corresponding filter. If the subscriber is not authorized to

 receive this information, the notifier MUST either include each these

 locations with the value of undefined, or alternatively, send a 403

 Forbidden response to the subscriber.

5.8 Notifier generation of NOTIFY requests

 Immediately after a subscription is accepted, the Notifier MUST send

 a NOTIFY with the current location information as appropriate based

 on the identity of the subscriber. This allows the Subscriber to

 resynchronize its state. When the location changes sufficiently to

 trigger any of the filter events in the current location-filter for

 the subscription, the notifier sends a notification with the new

 location information.

5.9 Subscriber processing of NOTIFY requests

 The Subscriber MUST be prepared to receive NOTIFYs from different

 Contacts corresponding to the same SUBSCRIBE. (The SUBSCRIBE may

 have been forked).

5.10 Handling of Forked Requests

 Forked requests are allowed for this event type and may install

 multiple subscriptions. Note that different Notifiers MAY provide

 (different) location information for different tuples. In this case,

Mahy Expires January 16, 2006 [Page 15]

Internet-Draft Location Event Package July 2005

 multiple instances representing the same presentity have different

 locations.

 In other cases, different Notifiers might provide different location

 for the same tuple. This presents an administrative problem.

 Certainly it is acceptable for me to express my location as "In San

 Jose, California, USA" and at specific coordinates or a specific

 address. Conventions for expressing multiple locations or multiple

 location formats are discussed in [9].

 If all of the tuples contain information which is not

 contradictory, then this is not an error. If multiple notifiers

 provide contradictory information for the same tuple, this is an

 error. If multiple notifiers provide different tuples, or non-

 contradictory location information for the same tuple, this is not

 an error.

5.11 Rate of notifications

 A Notifier MAY choose to hold NOTIFY requests in "quarantine" for a

 short administrator-defined period (milliseconds or seconds) when the

 location is changing rapidly. Requests in the quarantine which

 become invalid are replaced by newer notifications, thus reducing the

 total volume of notifications. This behavior is encouraged for

 implementations with heavy interactive use.

 Notifiers SHOULD NOT generate NOTIFY requests more frequently than

 ten per second, nor more frequently than thirty in a thirty-second

 period of time.

5.12 State Agents and Lists

 This document does not preclude implementations from building state

 agents which support this event package. Likewise, this document

 does not preclude subscriptions to lists of resources using the event

 list extension [14].

5.13 Behavior of a Proxy Server

 There are no additional requirements on a SIP Proxy, other than to

 transparently forward the SUBSCRIBE and NOTIFY methods as required in

 SIP.

6. Examples of Usage

 The examples shown below are for informational purposes only. For a

 normative description of the event package, please see sections 3 and

 5 of this document.

Mahy Expires January 16, 2006 [Page 16]

Internet-Draft Location Event Package July 2005

 In the example call flow below, the Subscriber subscribes to the

 status of the Notifier’s location. Via headers are omitted for

 clarity. [TODO:]

7. Security Considerations

 Location information is typically very privacy sensitive. At

 minimum, subscriptions to this event package SHOULD be authenticated

 and properly authorized. Furthermore, GEOPRIV requires that

 notifications MUST be encrypted and integrity protected using either

 end-to-end mechanisms, or the hop-by-hop protection afforded messages

 sent to SIPS URIs.

 Implementations of this event package MUST implement the sips:

 scheme, and MUST implement the security requirements described in

 PIDF-LO [3]. In addition, all SIP implementations are already

 requried to implement Digest authentication.

 Additional privacy and security considerations are discussed in

 detail in [9] and in SIP [1] and SIP Events [2].

8. IANA Considerations

8.1 SIP Event Package Registration for ’location’

 Package name: location

 Type: package

 Contact: [Mahy]

 Published Specification: This document.

Mahy Expires January 16, 2006 [Page 17]

Internet-Draft Location Event Package July 2005

8.2 MIME Registration for application/location-delta-filter+xml

 MIME media type name: application

 MIME subtype name: application/location-delta-filter+xml

 Required parameters: none.

 Optional parameters: none.

 Encoding considerations: Same as for XML.

 Security considerations: See the "Security Considerations"

 section in this document.

 Interoperability considerations: none

 Published specification: This document.

 Applications which use this media: The application/

 location-delta-filter+xml application subtype supports the exchange

 of filters to throttle asynchronous notifications of location

 information in SIP networks.

 Additional information:

 1. Magic number(s): N/A

 2. File extension(s): N/A

 3. Macintosh file type code: N/A

8.3 URN Sub-Namespace Registration for

 urn:ietf:params:xml:ns:location-filter

 This section registers a new XML namespace, as per the guidelines in

 [13].

 URI: The URI for this namespace is

 urn:ietf:params:xml:ns:location-filter.

 Registrant Contact: IETF, GEOPRIV working group, <geopriv@ietf.org>,

 as delegated by the IESG <iesg@ietf.org>.

 XML:

Mahy Expires January 16, 2006 [Page 18]

Internet-Draft Location Event Package July 2005

 BEGIN

 <?xml version="1.0"?>

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"

 "http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">

 <html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <meta http-equiv="content-type"

 content="text/html;charset=iso-8859-1"/>

 <title>Location Filter Namespace</title>

 </head>

 <body>

 <h1>Namespace for PIDF-LO Location Filters</h1>

 <h2>urn:ietf:params:xml:ns:location-filter</h2>

 <p>See RFCXXXX.</p>

 </body>

 </html>

 END

8.4 Schema Registration For location-filter

 This specification registers a schema, as per the guidelines in in

 [13].

 URI: please assign.

 Registrant Contact: IETF, GEOPRIV Working Group

 (geopriv@ietf.org), as delegated by the IESG (iesg@ietf.org).

 XML: The XML can be found as the sole content of Section 3.1.

8.5 URN Sub-Namespace Registration for

 urn:ietf:params:xml:ns:pidf:geopriv10:containment

 This section registers a new XML namespace, as per the guidelines in

 [13].

 URI: The URI for this namespace is

 urn:ietf:params:xml:ns:pidf:geopriv10:containment.

 Registrant Contact: IETF, GEOPRIV working group, <geopriv@ietf.org>,

 as delegated by the IESG <iesg@ietf.org>.

 XML:

Mahy Expires January 16, 2006 [Page 19]

Internet-Draft Location Event Package July 2005

 BEGIN

 <?xml version="1.0"?>

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"

 "http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">

 <html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <meta http-equiv="content-type"

 content="text/html;charset=iso-8859-1"/>

 <title>PIDF-LO Location Containment Namespace</title>

 </head>

 <body>

 <h1>Namespace for PIDF-LO location containment elements</h1>

 <h2>urn:ietf:params:xml:ns:pidf:geopriv10:containment</h2>

 <p>See RFCXXXX.</p>

 </body>

 </html>

 END

8.6 Schema Registration For containment

 This specification registers a schema, as per the guidelines in in

 [13].

 URI: please assign.

 Registrant Contact: IETF, GEOPRIV Working Group

 (geopriv@ietf.org), as delegated by the IESG (iesg@ietf.orgw).

 XML: The XML can be found as the sole content of Section 4.

9. Acknowledgments

 Thanks to Allan Thompson, James Winterbottom, and Martin Thomson for

 their comments.

10. References

10.1 Normative References

 [1] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,

 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:

 Session Initiation Protocol", RFC 3261, June 2002.

 [2] Roach, A., "Session Initiation Protocol (SIP)-Specific Event

 Notification", RFC 3265, June 2002.

 [3] Peterson, J., "A Presence-based GEOPRIV Location Object

 Format", draft-ietf-geopriv-pidf-lo-03 (work in progress),

 September 2004.

Mahy Expires January 16, 2006 [Page 20]

Internet-Draft Location Event Package July 2005

 [4] Bradner, S., "Key words for use in RFCs to Indicate Requirement

 Levels", BCP 14, RFC 2119, March 1997.

 [5] Bray, T., Paoli, J., Sperberg-McQueen, C., and E. Maler,

 "Extensible Markup Language (XML) 1.0 (2nd ed)", W3C REC-xml,

 October 2000, <http://www.w3.org/TR/REC-xml>.

 [6] Thompson, H., Beech, D., Maloney, M., and N. Mendelsohn, "XML

 Schema Part 1: Structures", W3C REC-xmlschema-1, May 2001,

 <http://www.w3.org/TR/xmlschema-1/>.

 [7] Bray, T., Hollander, D., and A. Layman, "Namespaces in XML",

 W3C REC-xml-names, January 1999,

 <http://www.w3.org/TR/REC-xml-names>.

 [8] Clark, J. and S. DeRose, "XML Path Language (XPath) Version

 1.0", W3C Recommendation xpath, November 1999,

 <http://www.w3.org/TR/xpath>.

 [9] Winterbottom, J., "GEOPRIV PIDF-LO Usage Clarification,

 Considerations and Recommendations",

 draft-winterbottom-geopriv-pdif-lo-profile-00 (work in

 progress), February 2005.

 [10] OpenGIS, "Open Geography Markup Language (GML) Implementation

 Specification", OpenGIS OGC 02-023r4, January 2003,

 <http://www.opengis.org/techno/implementation.htm>.

10.2 Informational References

 [11] Moats, R., "URN Syntax", RFC 2141, May 1997.

 [12] Moats, R., "A URN Namespace for IETF Documents", RFC 2648,

 August 1999.

 [13] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

 January 2004.

 [14] Roach, A., Rosenberg, J., and B. Campbell, "A Session

 Initiation Protocol (SIP) Event Notification Extension for

 Resource Lists", draft-ietf-simple-event-list-07 (work in

 progress), January 2005.

 [15] Polk, J. and B. Rosen, "Session Initiation Protocol Location

 Conveyance", draft-ietf-sip-location-conveyance-00 (work in

 progress), June 2005.

Mahy Expires January 16, 2006 [Page 21]

Internet-Draft Location Event Package July 2005

Author’s Address

 Rohan Mahy

 SIP Edge LLC

 Email: rohan@ekabal.com

Mahy Expires January 16, 2006 [Page 22]

Internet-Draft Location Event Package July 2005

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any

 Intellectual Property Rights or other rights that might be claimed to

 pertain to the implementation or use of the technology described in

 this document or the extent to which any license under such rights

 might or might not be available; nor does it represent that it has

 made any independent effort to identify any such rights. Information

 on the procedures with respect to rights in RFC documents can be

 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any

 assurances of licenses to be made available, or the result of an

 attempt made to obtain a general license or permission for the use of

 such proprietary rights by implementers or users of this

 specification can be obtained from the IETF on-line IPR repository at

 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any

 copyrights, patents or patent applications, or other proprietary

 rights that may cover technology that may be required to implement

 this standard. Please address the information to the IETF at

 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an

 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS

 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET

 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,

 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE

 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED

 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject

 to the rights, licenses and restrictions contained in BCP 78, and

 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the

 Internet Society.

Mahy Expires January 16, 2006 [Page 23]

SIP J. Rosenberg

Internet-Draft Cisco Systems

Expires: January 12, 2006 C. Jennings

 Cisco

 J. Peterson

 Neustar

 July 11, 2005

 Identity Privacy in the Session Initiation Protocol (SIP)

 draft-rosenberg-sip-identity-privacy-00

Status of this Memo

 By submitting this Internet-Draft, each author represents that any

 applicable patent or other IPR claims of which he or she is aware

 have been or will be disclosed, and any of which he or she becomes

 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF), its areas, and its working groups. Note that

 other groups may also distribute working documents as Internet-

 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at

 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at

 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 12, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 RFC3323 defines procedures for privacy in the Session Initiation

 Protocol (SIP). These mechanisms make use of a privacy service that

 resides in the network, which can remove identifying information from

 messages. Its approach to privacy was compatible with the identity

 mechanisms in RFC 3325, which defined the P-Asserted-ID header field.

Rosenberg, et al. Expires January 12, 2006 [Page 1]

Internet-Draft Identity Privacy July 2005

 However, its approach does not work well with the new cryptographic-

 based mechanisms in draft-ietf-sip-identity. As such, this document

 proposes a new framework for user privacy in SIP.

Table of Contents

 1. Introduction . 3

 2. Overview of Operation 5

 3. UAC Behavior . 7

 3.1 Determining the Level of Anonymity 7

 3.2 Minting an Anonymous AOR 8

 3.3 Obtaining an Anonymous IP Address 9

 4. Registrar Behavior . 10

 5. Proxy Behavior . 11

 6. Anonymity Providers . 11

 7. Grammar . 13

 8. Examples . 13

 9. Security Considerations 13

 10. IANA Considerations . 13

 11. References . 13

 11.1 Normative References 13

 11.2 Informative References 14

 Authors’ Addresses . 15

 Intellectual Property and Copyright Statements 16

Rosenberg, et al. Expires January 12, 2006 [Page 2]

Internet-Draft Identity Privacy July 2005

1. Introduction

 RFC 3323 [2] defines procedures for privacy in the Session Initiation

 Protocol (SIP). It provides guidelines for a UA to follow in the

 construction of its messages, so that identifying information is not

 placed into the message in the first place. However, it also defines

 a network-based privacy service that can be invoked by the client

 through the insertion of the Privacy header field. This privacy

 service typically runs within the user’s default outbound proxy, and

 is responsible for removal of additional information from the

 messages. Two levels of privacy can be provided by this service -

 "header" privacy, which obfuscates identifying information from the

 SIP messages, and "session" level privacy, which includes the IP

 addresses used for exchange of media.

 RFC 3325 [9], which defined the P-Asserted-ID header field, has seen

 widespread usage as the means for network authenticated identity in

 SIP. It defines another privacy service, the "id" service. This

 service causes elements in the network to strip the P-Asserted-ID

 header field when a request traverses a trust boundary.

 RFC3325’s form of identity has numerous drawbacks. Of these, the

 most significant is that the trustworthiness of the asserted identity

 is equal to the trustworthiness of the least trustworthy provider

 within the network of providers that constitute the trust domain.

 This works well in single provider environments, but in larger scale

 interconnects it eventually breaks apart. Unfortunately, the

 trustworthiness of an identity is a key property needed for nearly

 all of the VoIP anti-spam techniques [13]. For this reason, amongst

 others, [3] was developed. It provides strong cryptographic

 assurances of identity. It does so by providing a signature over the

 From header field in the request, and including in that signature

 information that provides referential integrity of the signature.

 This allows for recipients of the request to validate that the

 asserting domain has truly asserted the requestor’s identity for that

 request. Since the mechanism is fundamentally domain-based, it also

 allows validating entites to apply policies regarding the

 trustworthiness of the asserting provider. This fundamentally avoids

 the "weakest link" property of RFC 3325.

 There are numerous issues in the direct applicability of RFC 3323 to

 draft-ietf-sip-identity, many of which are pointed out in Section 13

 of [3] (herein referred to as the "SIP identity specification" or the

 "SIP identity mechanism"). These problems are:

Rosenberg, et al. Expires January 12, 2006 [Page 3]

Internet-Draft Identity Privacy July 2005

 Intra-Domain Privacy: Because the SIP identity mechanism relies on

 the domain of the From header field as a key for obtaining

 certificates used to validate the identity in the From header

 field, anonymity is restricted to being within a domain. It is no

 longer possible, as described in RFC 3323, to populate the From

 header field with "anonymous.invalid" as the domain. As a

 consequence, a recipient of the request will be able to determine

 the domain of the originator of the request, though they will not

 be able to determine which user within that domain sent the

 request. This limitation is not very troubling for domains with

 extremely large numbers of users. However, for small domains,

 such as enterprises or home networks, it can be equally revealing

 as the identity of the requestor themselves.

 Contact Privacy lost: Because the SIP identity mechanism relies on a

 signature over the Contact header field for referential integrity,

 a privacy service that provides header privacy cannot actually

 modify the Contact value. This will reveal the IP address of the

 requestor to the recipient of the request, which can often provide

 substantial information about the requestor.

 Session Privacy lost: Session privacy is accomplished through a back-

 to-back user agent (b2bua) that rewrites the SDP to relay session

 media through an intermediary. This no longer works at all with

 the SIP identity mechanism, as it relies on a signature over the

 body of the request (which contains the SDP) to provide

 referential integrity.

 Subscriber Identity Lost within Originating Domain: One of the

 benefits of the P-Asserted-ID header field when used in

 conjunction with the "id" level of privacy is that elements within

 the domain of the originator of the request will still be able to

 determine the identity of the originator. This is necessary for

 providing features for the requestor, accounting for their usage,

 and so on. With the SIP identity mechanism, if privacy is needed,

 the From header field contains an anonymous URI. As a result, the

 request has no information that can identity the user within their

 own domain, unless the SIP identity mechanism is used in

 conjunction with RFC3325, which is redundant.

 These problems are in addition to the problems inherent in RFC 3323

 to begin with:

 Sensitivity to Boundary Configuration: Although RFC3323 argues

 strongly in favor of placing the privacy service very near the

 originator of the request, this goal is at odds with RFC 3325,

 which requires the privacy service to be on the egress edge of the

 trust domain. As a result, privacy is actually provided only if

Rosenberg, et al. Expires January 12, 2006 [Page 4]

Internet-Draft Identity Privacy July 2005

 every egress proxy is properly configured to take positive action

 and remove the P-Asserted-ID header field. Because positive

 action from the network is required to provide privacy, this

 mechanism is sensitive to misconfiguration of network elements,

 particularly in large interconnected trust domains.

 Complicated Call Trace: In many networks, there is a requirement to

 provide a call trace feature that allows for malicious callers to

 be traced back to their source so that legal action can be taken.

 The utility of such features in a global SIP network aside, RFC

 3323 makes such a feature difficult to provide since the identity

 of the requestor is literally removed from the request. This

 complicates the tracking procedures needed to identify the

 originator later on.

 Limited Flexibility The degrees of privacy that RFC 3323 could

 provide were coded into the tokens valid in the Privacy header

 field. More complicated combinations - anonymity for certain

 media streams but not others, for example - were not possible.

 This specification provides an alternate formulation for user privacy

 that works well in conjunction with [3]. This mechanism resolves

 nearly all of the limitations described above by moving more

 intelligence to the client, and having it act in cooperation with

 network services that provide atomic anonymity functions - IP address

 privacy via Traversal Using Relay NAT (TURN) [5] and URI privacy via

 an anonymous URI minting process.

2. Overview of Operation

 When a user wishes to make an anonymous request, the user agent

 determines the set of identifying information that is to be

 obfuscated. This identifying information includes IP addresses, such

 as those in the Session Description Protocol (SDP) [6] and Via header

 fields, and URIs, such as those in the From header field and Contact

 header field of the request. User agents can anonymize any subset of

 this information in the request.

 To anonymize IP addresses, the client contacts a TURN server [5], and

 obtains an IP address and port on the server which route to it.

 Ideally, this is done with a TURN server that is specifically

 dedicated to anonymous services, and thus can provide a higher degree

 of anonymity by obtaining anonymized IP address from a separate

 provider (see Section 6) than a normal one. The client uses the

 TURN-derived addresses in those fields of the message where the UA

 wishes to anonymize an IP address.

 To anonymize URIs, and in particular the URI in the From header

Rosenberg, et al. Expires January 12, 2006 [Page 5]

Internet-Draft Identity Privacy July 2005

 field, the client needs to obtain a URI from its domain that

 possesses both the AOR property and the anonymity property (see [4]

 for a discussion of URI properties). To do that, it generates a

 special REGISTER request that effectively asks the provider to create

 a new URI for the user, and at the same time, register it. The

 network will construct this URI such that other network elements

 within the domain can use it to identify the requestor, but those

 outside cannot. This is readily done by creating the URI by

 encrypting the actual identity of the requestor combined with a large

 random number. Any element that shares the decryption key can know

 the identity of the user, but others cannot. In addition, the URI

 will have the "user" URI parameter present, and set to the value of

 "anonymous". This signals to all elements that the requestor is

 asking for anonymity. This is needed to prevent downstream elements

 within the domain from inserting additional identifying information,

 and also for properly rendering the fact that the caller was

 anonmyous.

 The UAC then places this URI in the From header field of the request.

 It populates the Contact header field value with a Globally Routable

 User Agent URI (GRUU) [4] that was obtained through the registration

 which yielded the minted From URI. Beyond that, the other procedures

 of RFC 3323 around display names, Call-ID and other fields are

 followed.

 This request is then sent into the network. There is no Privacy

 header field or other network involvement needed in order to further

 anonymize the request. Within the domain of the originator, proxy

 servers that see that the From header field contains an anonymous URI

 can decrypt it to obtain the identity of the requestor. Of course,

 elements outside of the domain will not possess the key, and

 therefore will not know the identity of the requestor. Because

 positive action is required in the network to obtain their identity

 (namely, acquisition of the decryption key and decryption of the

 URI), the mechanism is privacy-safe. Network misconfiguration can,

 in the worst case, result in a proxy not determining the identity of

 the requestor.

 Furthermore, since the From field URI is carried all the way to the

 recipient of the request, it is possible to "call them back", even

 though the request was anonymous. Of course, the originating domain

 can decide to reject such requests, but this becomes a matter of

 local policy. The fact that the identity of the requestor, suitably

 encrypted, is carried all the way to the recipient of the request

 also facilitates services like malicious call trace. A network

 provider can contact the domain administrator of the domain on the

 right hand side of the at-sign, and request decryption of the user

 part in order to identify the malicious caller. Since these requests

Rosenberg, et al. Expires January 12, 2006 [Page 6]

Internet-Draft Identity Privacy July 2005

 are handled off-line and not in real time, they can be suitably

 authorized.

3. UAC Behavior

3.1 Determining the Level of Anonymity

 When a user wishes to send a request, whether it is an INVITE to

 initiate a session, or a SUBSCRIBE [10], MESSAGE [11] or any other

 method, the UA makes a determination about the level of anonymity

 that is desired. Typically, this would be based on user input or on

 local configuration or policy. The precise means for making this

 determination is outside of the scope of this specification.

 Ultimately, however, the level of anonymity is expressed as a

 function of which types of identifying information (IP address,

 hostname, URI or display name) are to be anonymized, and in which

 fields of the SIP message. The following fields typically contain

 identifying information about the user:

 From: This field contains the identity of the requestor, and will be

 signed by an identity service within the domain of the requestor.

 As such, clients desiring anonymity SHOULD populate this with a

 URI obtained through the procedures of Section 3.2. The display

 name also contains identifying information. It is RECOMMENDED

 that this be omitted when the requestor requires anonymity. This

 is a change from RFC 3323, which recommended a value of

 "Anonymous". Rather than relying on a display name to indicate an

 anonymous call, which is language-specific and not meant for

 consumption by an automata, the "user" URI parameter of the From

 header field indicates that the request was anonymous.

 Contact: This field contains a URI used to reach the UA for mid-

 dialog requests and possibly out-of-band requests, such as REFER

 [12]. It is RECOMMENDED that this field be populated with the

 GRUU obtained through the minting procedures of Section 3.2. The

 display name also contains identifying information. It is

 RECOMMENDED that this be omitted when the requestor requires

 anonymity.

 Reply-To: This field contains a URI that can be used to reach the

 user on subsequent call-backs. Clients desiring anonymity SHOULD

 populate this with a URI obtained through the procedures of

 Section 3.2. The display name also contains identifying

 information. It is RECOMMENDED that this be omitted when the

 requestor requires anonymity.

Rosenberg, et al. Expires January 12, 2006 [Page 7]

Internet-Draft Identity Privacy July 2005

 Via: This field contains an IP address and port that is used to reach

 the user agent for responses. It is RECOMMENDED that this field

 be populated with an IP address and port learned through a TURN

 server Section 3.3.

 Call-Info: This field contains additional information about the

 requestor. It is RECOMMENDED that this field be omitted from

 requests.

 Call-Info: This field contains additional information about the

 requestor’s user agent. It is RECOMMENDED that this field be

 omitted from requests.

 Organization: This field contains additional information about the

 requestor. It is RECOMMENDED that this field be omitted from

 requests.

 Subject: This field contains freeform text about the subject of the

 call. Since it is not possible to know what content a user has

 inadvertently placed into such a header field, it is RECOMMENDED

 that this field be omitted from requests.

 Call-ID: User agents SHOULD substitute for the IP address or hostname

 that is frequently appended to the Call-ID value a suitably long

 random value (the value used as the ’tag’ for the From header of

 the request might even be reused).

 SDP c/m lines: The c and m lines in the SDP body convey an IP address

 and port for receiving media. It is RECOMMENDED that this field

 be populated with an IP address and port learned through a TURN

 server Section 3.3.

 SDP o line: The username SHOULD be set to "-". The IP address in

 this field SHOULD be populated with an IP address and port learned

 through a TURN server Section 3.3.

 SDP s line: The session name SHOULD be set to "-".

 SDP i,u,e,p lines: These lines SHOULD be omitted from the SDP.

3.2 Minting an Anonymous AOR

 A key aspect of this specification is the ability of a UA to obtain

 an anonymous URI for placement into the From and Reply-To header

 fields, along with a GRUU that can be placed into the Contact header

 field. It is RECOMMENDED that the UA obtain a new anonymous URI for

 each new request outside of an existing dialog that it generates.

Rosenberg, et al. Expires January 12, 2006 [Page 8]

Internet-Draft Identity Privacy July 2005

 To obtain a new URI that is suitable for placement into the From

 header field of a new request, a UA constructs a query REGISTER

 request according to the procedures of RFC 3261. This request is not

 anonymous; a UA MUST correctly populate the To, From and other header

 fields of the request. This request MUST utilize the GRUU mechanism,

 and thus include the Supported header field with the value "gruu"

 [4]. The Contact header fields, however, are omitted as this is a

 query registration. However, the UA MUST include the Require header

 field with the option tag "anonymous". This instructs the registrar

 to view this request as a special query; one that provides the UA

 with a brand new set of anonyous URIs that represent aliases for the

 user’s AOR and registered contacts.

 The REGISTER response will contain the set of currently registered

 Contacts against the AOR in the To header field. In addition, the

 response will contain the Anonymous-To header field. This header

 field will contain a URI that has both the AOR and anonymous

 properties, and which represents an alias of sorts for the user’s

 actual AOR. Its not a pure alias, in that requests sent to that URI

 don’t get equivalent treatment to requests sent to the AOR. Domain

 policy may result in different treatment for requests made to that

 URI. This specification provides no automated means for the user to

 request specific policies. The URI from the Anonymous-To header

 field can be placed into the From and Reply-To header fields of an

 outgoing request. Note that each and every REGISTER transaction sent

 by the client with the "anonymous" option tag in the Require header

 field will mint a new anonymous URI in the Anonymous-To header field.

 In addition, because the client had indicated support for the GRUU

 mechanism, the REGISTER response will also contain a GRUU for each

 registered contact. However, these GRUU will also be freshly minted,

 and have the anonymous property as well as the GRUU property. Like

 Anonymous-To, each REGISTER transaction produces a new set of GRUU in

 the Contact header field of the REGISTER response. The client then

 uses the GRUU for its own instance in the Contact header field of a

 request.

3.3 Obtaining an Anonymous IP Address

 To obtain an anonymous IP address and port for usage in the SDP, Via

 header field and other parts of the SIP message, a client contacts a

 configured TURN server [5]. It uses normal TURN processing to

 allocate those addresses. Local policy in the TURN server will

 produce IP addresses and ports with poor correlation properties, as

 discussed below.

Rosenberg, et al. Expires January 12, 2006 [Page 9]

Internet-Draft Identity Privacy July 2005

4. Registrar Behavior

 A registrar compliant to this specification MUST support the GRUU

 specification in addition to this one.

 When the registrar receives a REGISTER request, it checks for the

 presence of the Require header field. If present, and if it includes

 the option tag "anonymous", processing follows as described in this

 section.

 If the REGISTER request contains any Contact header fields, the

 registrar MUST reject the request with a 403. REGISTER requests that

 mint anonymous URIs have to be query registrations. As such, the

 registrar follows normal RFC3261 and GRUU processing for constructing

 the response.

 Next, the registrar generates an anonymous URI that has the AOR and

 anonymous properties. This URI can be within the domain of the

 provider, however, ideally it is within a domain or set of domains

 set aside explicitly for anonymous URI. See Section 6. This

 specificaiton makes no normative recommendations on how such a URI is

 constructed. However, it MUST have the following properties:

 o The user part has at least 256 bits of randomness.

 o There is no correlation possible between two URIs given to the

 same user.

 o Network elements within the domain of the user, to whom explicit

 keying material has been granted, can extract the actual AOR of

 the user from the URI.

 o The URI MUST include the URI "user" parameter with the value

 "anonymous".

 One simple way to obtain a URI with these properties is to form the

 user part of the URI by encrypting the AOR of the subsciber

 concatenated with 256 bits of random salt.

 Once done, the registrar places this URI in the Anonymous-To header

 field of the REGISTER response. Furthermore, it takes each GRUU

 present in the Contact header fields of the REGISTER response, and

 replaces them with an anonymous URI that has the following

 properties:

 o The user part has at least 256 bits of randomness.

Rosenberg, et al. Expires January 12, 2006 [Page 10]

Internet-Draft Identity Privacy July 2005

 o There is no correlation possible between two URIs given to the

 same user.

 o Network elements within the domain of the user, to whom explicit

 keying material has been granted, can extract the actual GRUU of

 the user from the URI.

 o The URI MUST include the URI "user" parameter with the value

 "anonymous".

 A domain MAY confer other properties upon the Anonymous-To and GRUU

 URI. In particular, it is expected that the service treatment

 property would be applied, though the services invoked for incoming

 requests to that URI would likely be different. It is expected that

 services like special call logs, or time-based call blocking, would

 be applied.

5. Proxy Behavior

 A proxy that receives a request whose From header field has a URI

 whose user parameter has the value "anonymous", but needs to know the

 identity of the requestor for processing, SHOULD attempt to extract

 the AOR from the URI in the From header field based on domain-

 specific procedures. [[OPEN ISSUE: for multi-vendor SIP networks

 within a single domain, do we require these algorithms to be

 standardized?]]

 When a proxy compliant to this specification sees a request whose

 From header field has a URI whose user parameter has the value

 "anonymous", it MUST NOT insert additional information into the

 request that identifies the originator of the request, if the

 originator is known to the proxy. Besides the header fields listed

 in Section 3.1, the Path [7], Service-Route [8] and Record-Route

 header fields are inserted by proxies and often contain identifying

 information.

6. Anonymity Providers

 Note - this section is likely to be highly contentious and it is also

 highly speculative. It is readily extracted from the rest of the

 specification and it provides the mechanisms necessary for the

 highest levels of anonymity.

 Since the mechanism defined in this specification is meant to be

 compatible with [3], it relies on domain-based signatures. As such,

 identity is always within the scope of a domain that will be known to

 the recipient of the request. Similarly, IP addresses obtained from

 TURN servers will be within the IP address space of the provider of

Rosenberg, et al. Expires January 12, 2006 [Page 11]

Internet-Draft Identity Privacy July 2005

 the server. Unfortunately, the allocations of IP addresses to

 providers is a well-known property, and thus the provider can often

 be determined from examination of the IP address. As discussed

 above, simply knowing the provider of the user sending the request

 can reveal substantial information about the requestor.

 To deal with this, this specification recommends the creation of

 special providers called "anonymity providers". These are large

 providers (indeed, ideally there is a single one for the Internet),

 whose sole responsibility is to obtain and delegate names and

 addresses to actual providers using randomized allocation procedures.

 Actual SIP providers would contract with the anonymity provider under

 some form of agreement.

 An anonymity provider would obtain a relatively large block of IP

 addresses from IP address blocks throughout the Internet. When a SIP

 provider is asked by one of its own customers to allocate an IP

 address and port for the purposes of anonymous calling, the TURN

 server that has received the request will obtain an IP address from

 the anonymity provider. This can be done in many ways. The simplest

 way is to have the SIP providers TURN server send a TURN request to

 the anonymity provider’s TURN server, which then chooses one of its

 large number of addresses randomly. This approach has the drawback

 of funneling traffic through the anonymity provider. A more

 interesting approach is to have the SIP providers, on a daily or

 hourly basis, literally lease a block of addresses from the anonymity

 provider, and then inject BGP routes into the Internet for that

 address block. In this case, the anonymity provider serves the role

 of coordinator, making sure it is clear which SIP provider owns that

 particular block of IP addresses at any point in time. That avoids

 injection of the prefix into BGP from duplicate providers.

 Similarly, the anonymity provider would ideally own a TLD

 (.anonymous, for example), act as a root CA, and be capable of

 creating sub-domains within this TLD. On a daily or hourly basis,

 each SIP provider would be given a new sub-domain whose value was

 newly minted and randomized (for example, h77asff-

 dg98asdkjkasdpapiasdddd.anonymous), along with certificates that

 would allow a SIP provider to sign requests with that domain. All

 SIP endpoints would possess the root CA certificate for the anonymity

 provider (which is why there can’t be too many of them).

 For this approach to work, automated protocols need to be put in

 place for the assignment of IP address blocks, subdomains in the

 anonymous TLD, and domain certificates within those subdomains.

 Future work is needed to define the protocols appropriate for such

 procedures.

Rosenberg, et al. Expires January 12, 2006 [Page 12]

Internet-Draft Identity Privacy July 2005

 Presumably, such an anonymity provider would be required to maintain

 the strictest standards of process and security, in order to provide

 high levels of anonymity in concert with the necessary levels of

 audit and tracing when government authorities require it. For this

 reason, it would seem likely that these anonymity providers would be

 country specific, though it need not be the case.

 It should be further noted that such an anonymity provider is

 providing services that aren’t specific to SIP, and could be utilized

 by any application provider that wishes to provide anonymous services

 to its own customers. It would allow, for example, anonymous email

 or anonymous instant messaging services, or anonymous web browsing.

7. Grammar

 This specification defines a new header field, Anonymous-To, a SIP

 option tag, anonymous, and a new value of the user parameter of the

 SIP URI:

 Anonymous-To = "Anonymous-To" HCOLON (name-addr / addr-spec)

 *(SEMI generic-param)

 anonymous-tag = "anonymous"

 user-param = "user=" ("phone" / "ip" / "anonymous" /

 other-user)

8. Examples

 TODO.

9. Security Considerations

 This specification is intimately concerned with issues of security.

 A nice summary needs to go here.

10. IANA Considerations

 This specification registers a new SIP option tag, a new SIP header

 field, and a new value of an existing URI parameter. Those

 registrations will go here.

11. References

11.1 Normative References

 [1] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,

 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:

Rosenberg, et al. Expires January 12, 2006 [Page 13]

Internet-Draft Identity Privacy July 2005

 Session Initiation Protocol", RFC 3261, June 2002.

 [2] Peterson, J., "A Privacy Mechanism for the Session Initiation

 Protocol (SIP)", RFC 3323, November 2002.

 [3] Peterson, J. and C. Jennings, "Enhancements for Authenticated

 Identity Management in the Session Initiation Protocol (SIP)",

 draft-ietf-sip-identity-05 (work in progress), May 2005.

 [4] Rosenberg, J., "Obtaining and Using Globally Routable User Agent

 (UA) URIs (GRUU) in the Session Initiation Protocol (SIP)",

 draft-ietf-sip-gruu-03 (work in progress), February 2005.

 [5] Rosenberg, J., "Traversal Using Relay NAT (TURN)",

 draft-rosenberg-midcom-turn-07 (work in progress),

 February 2005.

 [6] Handley, M. and V. Jacobson, "SDP: Session Description

 Protocol", RFC 2327, April 1998.

 [7] Willis, D. and B. Hoeneisen, "Session Initiation Protocol (SIP)

 Extension Header Field for Registering Non-Adjacent Contacts",

 RFC 3327, December 2002.

 [8] Willis, D. and B. Hoeneisen, "Session Initiation Protocol (SIP)

 Extension Header Field for Service Route Discovery During

 Registration", RFC 3608, October 2003.

11.2 Informative References

 [9] Jennings, C., Peterson, J., and M. Watson, "Private Extensions

 to the Session Initiation Protocol (SIP) for Asserted Identity

 within Trusted Networks", RFC 3325, November 2002.

 [10] Roach, A., "Session Initiation Protocol (SIP)-Specific Event

 Notification", RFC 3265, June 2002.

 [11] Campbell, B., Rosenberg, J., Schulzrinne, H., Huitema, C., and

 D. Gurle, "Session Initiation Protocol (SIP) Extension for

 Instant Messaging", RFC 3428, December 2002.

 [12] Sparks, R., "The Session Initiation Protocol (SIP) Refer

 Method", RFC 3515, April 2003.

 [13] Rosenberg, J., "The Session Initiation Protocol (SIP) and

 Spam", draft-ietf-sipping-spam-00 (work in progress),

 February 2005.

Rosenberg, et al. Expires January 12, 2006 [Page 14]

Internet-Draft Identity Privacy July 2005

Authors’ Addresses

 Jonathan Rosenberg

 Cisco Systems

 600 Lanidex Plaza

 Parsippany, NJ 07054

 US

 Phone: +1 973 952-5000

 Email: jdrosen@cisco.com

 URI: http://www.jdrosen.net

 Cullen Jennings

 Cisco

 170 West Tasman Dr.

 San Jose, CA 95134

 US

 Phone: +1 408 527-9132

 Email: fluffy@cisco.com

 Jon Peterson

 Neustar

 1800 Sutter Street

 Suite 570

 Concord, CA 94520

 US

 Phone: +1 925 363-8720

 Email: jon.peterson@neustar.biz

 URI: http://www.neustar.biz

Rosenberg, et al. Expires January 12, 2006 [Page 15]

Internet-Draft Identity Privacy July 2005

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any

 Intellectual Property Rights or other rights that might be claimed to

 pertain to the implementation or use of the technology described in

 this document or the extent to which any license under such rights

 might or might not be available; nor does it represent that it has

 made any independent effort to identify any such rights. Information

 on the procedures with respect to rights in RFC documents can be

 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any

 assurances of licenses to be made available, or the result of an

 attempt made to obtain a general license or permission for the use of

 such proprietary rights by implementers or users of this

 specification can be obtained from the IETF on-line IPR repository at

 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any

 copyrights, patents or patent applications, or other proprietary

 rights that may cover technology that may be required to implement

 this standard. Please address the information to the IETF at

 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an

 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS

 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET

 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,

 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE

 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED

 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject

 to the rights, licenses and restrictions contained in BCP 78, and

 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the

 Internet Society.

Rosenberg, et al. Expires January 12, 2006 [Page 16]

SIP J. Rosenberg

Internet-Draft Cisco Systems

Expires: January 12, 2006 July 11, 2005

 Clarifying Construction of the Route Header Field in the Session

 Initiation Protocol (SIP)

 draft-rosenberg-sip-route-construct-00

Status of this Memo

 By submitting this Internet-Draft, each author represents that any

 applicable patent or other IPR claims of which he or she is aware

 have been or will be disclosed, and any of which he or she becomes

 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF), its areas, and its working groups. Note that

 other groups may also distribute working documents as Internet-

 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at

 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at

 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 12, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 The Route header field in the Session Initiation Protocol (SIP)

 protocol is used to cause a request to visit a set of hops on its way

 towards the final destination. The SIP specification defines

 construction of the Route header field at user agents. However,

 numerous other mechanisms have been described, such as Service-Route

 and the 305 response, which cause the client to set its Route header

 field for a request. As such, the specific behavior for a UA in

 construction of its Route header field is unclear. This document

Rosenberg Expires January 12, 2006 [Page 1]

Internet-Draft Route Construct July 2005

 attempts to define a consistent set of logic.

Table of Contents

 1. Introduction . 3

 2. Existing Sources . 3

 2.1 Default Outbound Proxies 3

 2.2 Service Route . 4

 2.3 Record-Routes . 4

 2.4 305 Use Proxy . 4

 3. Problems with Current Specifications 5

 4. Overview of Operation 6

 5. Detailed Processing Rules 6

 5.1 Registrar Behavior . 6

 5.2 UAC Behavior . 7

 5.3 Client Behavior . 7

 5.4 Server Behavior . 8

 6. Backwards Compatibility 9

 7. Security Considerations 10

 8. IANA Considerations . 10

 9. Acknowledgements . 10

 10. References . 11

 10.1 Normative References 11

 10.2 Informative References 11

 Author’s Address . 11

 Intellectual Property and Copyright Statements 12

Rosenberg Expires January 12, 2006 [Page 2]

Internet-Draft Route Construct July 2005

1. Introduction

 The Route header field in the Session Initiation Protocol (SIP)

 protocol is used to cause a request to visit a set of hops on its way

 towards the final destination. RFC 3261 [2] discusses how a client

 constructs the Route header field for requests. However, this logic

 is restricted to mid-dialog requests, where the route set was learned

 as a result of record-routing.

 However, additional sources of routes can exist for a UA. These

 include default outbound proxies, a service route learned from the

 Service-Route header field [3], and a redirection coming from a 305

 response. In total, there are four sources of potential route

 headers. The way in which these various sources are reconciled is

 unclear. Furthermore, the various specifications are unclear about

 which requests these Route headers are applicable to. Do they apply

 to REGISTER? Do they apply to mid-dialog requests?

 Section 2 reviews the existing sources of route sources. Section 3

 discusses problems with the existing specifications. Section 4

 overviews the proposed changes in behavior. Section 5 provides a

 detailed description of element behavior, and Section 6 discusses

 backwards compatibility issues.

2. Existing Sources

 This section examines the current set of route header field sources.

2.1 Default Outbound Proxies

 RFC 3261 discusses default outbound proxies. In Section 8.1.1.1, it

 makes reference to its interaction with Route header fields:

 In some special circumstances, the presence of a pre-existing

 route set can affect the Request-URI of the message. A pre-

 existing route set is an ordered set of URIs that identify a chain

 of servers, to which a UAC will send outgoing requests that are

 outside of a dialog. Commonly, they are configured on the UA by a

 user or service provider manually, or through some other non-SIP

 mechanism. When a provider wishes to configure a UA with an

 outbound proxy, it is RECOMMENDED that this be done by providing

 it with a pre-existing route set with a single URI, that of the

 outbound proxy.

 When a pre-existing route set is present, the procedures for

 populating the Request-URI and Route header field detailed in

 Section 12.2.1.1 MUST be followed (even though there is no

 dialog), using the desired Request-URI as the remote target URI.

Rosenberg Expires January 12, 2006 [Page 3]

Internet-Draft Route Construct July 2005

 The default outbound proxy can be learned either through DHCP [4],

 through configuration (such as the SIP configuration framework [6]),

 or through other means. In the IMS, the default outbound proxy is

 the P-CSCF and is learned through GPRS specific techniques.

 RFC 3261 does not explicitly say the set of messages to which this

 route set applies. However, the text above implies that it is for

 all requests outside of a dialog.

2.2 Service Route

 RFC 3608 specifies the Service-Route header field. This header field

 is provided to the UA in a 2xx response to a REGISTER request. The

 client uses this to populate its Route header fields for outgoing

 requests. However, RFC 3608 explicitly says that the decision a UA

 makes about how it combines the service route with other outbound

 routes is a matter of local policy. Furthermore, RFC 3608 does not

 clearly define to which requests the service route applies, and in

 particular, whether or not it applies to a REGISTER request or a mid-

 dialog request.

2.3 Record-Routes

 RFC 3261 provides a detailed description of the record-routing

 mechanism, and how the user agents in a dialog construct route sets

 from the Record-Route header field values. RFC 3261 is also clear

 that the resulting route set applies to mid-dialog requests. It

 implies (though does not explicitly say) that the resulting route set

 overrides any default outbound proxies (which represent a pre-loaded

 route set).

2.4 305 Use Proxy

 RFC 3261 defines the 305 "Use Proxy" response code, but says

 extremely little about exactly how it is used. It has this to say:

 The requested resource MUST be accessed through the proxy given by

 the Contact field. The Contact field gives the URI of the proxy.

 The recipient is expected to repeat this single request via the

 proxy. 305 (Use Proxy) responses MUST only be generated by UASs.

 It is unclear how the Contact in the redirect is used. Does it

 populate the request URI of the resulting request? Or, does it get

 used to populate the Route header field? The restriction to UASs is

 also not explained.

 Historically, the reason for the restriction to UAs was to avoid

 routing loops. Consider an outbound proxy that generates a 305,

Rosenberg Expires January 12, 2006 [Page 4]

Internet-Draft Route Construct July 2005

 instead of proxying the request. The concern was that the client

 would then recurse on the response, populate the Contact into a new

 request URI, and send the request to its default outbound proxy,

 which redirects once more. To avoid this, the RFC says that only a

 UAS can redirect with a 305, not a proxy.

 However, this design decision on 305 handling was made prior to the

 conception of loose routing, although both ended up in RFC 3261. The

 design of the 305 mechanism, unfortunately, was not revisited after

 loose routing was specified. As such, the draft is not clear about

 whether or not the contact gets utilized as a Route header field

 value or whether it replaces the Request URI.

3. Problems with Current Specifications

 Because the interactions between these various sources of routes are

 unspecified, certain features have proven impossible to provide,

 and/or interoperability problems have resulted.

 One problem is that, depending on the way a client constructs its

 route set, it may be impossible to change a users outbound proxy

 without updating its configuration. Such changes are extremely

 useful for many operational reasons. One example is movement of

 subscribers between geographically distributed sites in cases where a

 site must be gracefully taken out of service, and the subscribers

 using it need to be moved. If the client uses the service route to

 augment the route from corresponding to its default outbound proxy, a

 network provider cannot move a subscriber.

 Another problem is the client bootstrapping problem. Consider the

 same SIP network that utilizes geographically distributed sites.

 Each site contains a subset of the user database - the subset for the

 users in that site. When a SIP UA first boots up, it needs to obtain

 its configuration. As such, it has a hard-coded default proxy it

 uses for an initial SUBSCRIBE to enroll in its configuration [6].

 This proxy, however, may not be the one in site to which the user of

 that SIP UA is associated. Ideally, the initial SUBSCRIBE could be

 routed to a server that redirects the client to the right proxy in

 the user’s actual site. This redirection needs to override the

 default outbound proxy for the phone. However, there is not

 currently a way to do that.

 An interoperability problem that has arisen is keeping an outbound

 proxy on the path for outbound requests. Consider a proxy in a hotel

 which a client discovers via DHCP and uses as its outbound proxy.

 This proxy wishes to be used for incoming and outgoing requests, both

 in and out of a dialog. So, it includes itself on the Path header

 field of the REGISTER. However, it has no idea if the registrar will

Rosenberg Expires January 12, 2006 [Page 5]

Internet-Draft Route Construct July 2005

 reflect the Path header field into the Service-Route, and cannot

 determine whether putting itself on the Path is effective for getting

 on the service route. Per RFC 3608 it cannot modify the Service-

 Route in the response to REGISTER. As such, if the registrar does

 not include the proxy in the Service-Route, and the endpoint

 overrides its outbound proxy setting with the Service-Route, the

 local proxy falls off the outbound path despite its best efforts.

4. Overview of Operation

 Firstly, new behavior for generation and processing of the 305 Use

 Proxy is specified. Any element in the network, proxy or UAS, can

 generate a 305, not just a UAS as specified in RFC3261. This

 redirect can be recursed by any upstream element, but it is ideally

 recursed by the element directly upstream from the one that genreated

 the redirect. To recurse on the redirect, the proxy or UAC takes the

 Contact header field value from the 305, and uses it to replace the

 top value of the Route header field used previously. If no Route

 header field was used previously, one is added. However, in neither

 case is the Request-URI modified.

 When a UAC goes to send a request, whether it is a mid-dialog request

 or a new request with any method (except CANCEL or ACK to a non-2xx

 response), the client first uses any route set learned from a record-

 route (which covers mid-dialog requests). If the request is not a

 mid-dialog reuqest, the client sees if it has any service routes

 learned through RFC 3608. If there are none, the client next uses

 any configured default outbound proxies. These three sources -

 record-routes, service routes and default outbound proxies - are

 never mixed, and one and only one of them applies to each request.

 After it is applied however, if the request results in a 305 Use

 Proxy response, the topmost Route header field is updated as

 described above.

 A registrar, upon receipt of a REGISTER, uses the Path header field

 values to construct the Service-Route in the response. The values

 from the Path are copied into the Service-Route, and the registrar

 can then add some additional ones if they are within the domain of

 the provider.

5. Detailed Processing Rules

5.1 Registrar Behavior

 The registrar MUST construct the Service-Route in the registration

 response by taking each URI from the Path header field in the

 REGISTER request, and inverting the order. After inversion, the

 registrar MAY add additional URIs at the end of the list (that is,

Rosenberg Expires January 12, 2006 [Page 6]

Internet-Draft Route Construct July 2005

 the right hand side of the list, corresponding to proxy elements that

 will be the farthest away from the UA).

 Furthermore, the registrar MAY replace or remove any URIs that are

 within a domain under the control of the registrar. When replacing a

 URI, one or more new ones can take its place. If the registrar is in

 example.com, this would include any URIs whose domain part is

 example.com. It would also include any URIs whose domain is a

 subdomain of example.com, as long as that subdomain is under the

 control of example.com. It could also include URIs whose domain part

 is unrelated to example.com, as long as those are within the control

 of example.com. It is difficult to provide a concise definition of

 "under the control", but generally it means that the administrative

 policies for the subservient domain are completely defined by the

 controlling domain.

 This behavior ensures that proxies outside of the domain of the

 registrar have a way to appear on the service route, but provides a

 way, within a domain, to provide service routes that are not coupled

 to the Path.

5.2 UAC Behavior

 A UAC compliant to this specification MUST include the "lr305" option

 tag in the Supported header field of requests that it generates.

 For a request sent by a UAC that is not the result of recursion on a

 305, the following logic MUST be used to compute the route set used

 to populate the Route header field of the request. If the request is

 a mid-dialog request, the route set is computed per the procedures in

 Section 12.2.1.1 of RFC 3261. This route set overrides routes

 learned from configuration, DHCP, Service-Route or any other

 mechanism. If the request is not a mid-dialog request, the client

 checks to see if it has learned a service route as a result of

 registering the AOR it has populated in the From header field of the

 request. If it has learned a service route, the URIs from the

 Service-Route header field is used as the route set for the request.

 This route set overrides routes learned from configuration, DHCP, or

 any other mechanism. This route set is used in all requests outside

 of a dialog, including REGISTER. If the UA has not learned a service

 route, it uses the route set learned through configuration. [[OPEN

 ISSUE: Do we need to specify how to reconcile route sources learned

 across disparate configuration sources? For example DHCP and a

 config file?]]

5.3 Client Behavior

 The following logic defined here applies to all clients, both UAC and

Rosenberg Expires January 12, 2006 [Page 7]

Internet-Draft Route Construct July 2005

 proxies, and applies to the processing of a 305 response.

 It is RECOMMENDED that a client in receipt of a 305 recurse on that

 redirection, rather than forwarding it upstream. To compute the

 request that is sent as a result of the recursion, the client MUST

 take the route set used for the request that generated the 305

 response. If that request had a Route header field, the first value

 MUST be replaced with the value of the Contact header field in the

 305 with the highest q-value. If there are multiple such Contacts

 with the same q-value, one is chosen at random. The result is used

 as the route set for the new request. If the original request did

 not have a Route header field, the new request MUST contain a single

 Route header field value, equal to the URI provided in the Contact

 header field of the 305 with the highest q-value. This processing

 applies to requests both inside and outside of a dialog, and applies

 to all request methods, including REGISTER, with the exception of ACK

 and CANCEL.

 If a 305 response had multiple Contact header field values, and the

 recursed request generated a 503 response, and the client had

 exhausted all alternative servers learned from DNS [5] for the

 previous Contact header field value, the client SHOULD choose the

 Contact from the 305 with the next highest q-value, and construct

 another recursed request using the procedures defined above. In the

 event the 305 had multiple Contact header field values with

 equivalent q-values, the next highest one might have a q-value equal

 to the one that was just tried.

 If the policy of the client is such that it a request must visit a

 particular set of hops subsequent to being processed, and the route

 set constructed as a result of the recursion does not meet those

 policy constraints, the client MAY push additional route header field

 values in order for the request to meet those policy requirements.

 Proxies that do this SHOULD verify that the URI placed into the

 topmost Route header field value is an acceptable next hop, and not

 just blindly push route header field values.

5.4 Server Behavior

 Any server, either a UAS or a proxy, MAY generate a 305 in response

 to a request. Such a response can be generated either for initial or

 mid-dialog requests. The 305 SHOULD NOT be generated unless one of

 the following conditions is met:

 o The server generating the 305 has an administrative relationship

 with the previous hop element, and knows that it is capable of

 supporting this specification and will recurse on a 305 that it

 sends.

Rosenberg Expires January 12, 2006 [Page 8]

Internet-Draft Route Construct July 2005

 o The server generating the 305 believes that its previous hop is a

 UAC, and the request being redirected included a Supported header

 field with the option tag "lr305".

 These requirements provide a limited form of backwards compatibility.

 See Section 6 for a thorough discussion.

6. Backwards Compatibility

 This specification defines a different behavior for the processing of

 305 than is implied in RFC 3261 (although the behavior is not

 entirely clear). Because of this, there are two backwards

 compatibility scenarios that need to be considered:

 1. The element that recurses on the redirection does not support

 this specification. As a result, it replaces its Request-URI in

 the recursed request with the value from the Contact header field

 of the 305.

 2. The element that recurses supports this specification, and

 correctly populates the Contact header field value into the Route

 header field of the recursed request. However, the element that

 performed the recursion was not the element immediately upstream

 from the one that generated the 305. As a result, an

 intermediate element is bypassed even though the desire was for

 it to remain on the route set.

 The first of these two cases causes the Request URI to be clobbered.

 The request will arrive at the server that was the target of the

 redirection, but it probably won’t be able to process the request

 because the actual request URI is no longer present. Unfortunately,

 avoiding this failure case entirely is quite difficult. It requires

 the redirecting server to have an assurance that the element

 immediately upstream, whether it is a proxy or UAC, supports this

 specification. There is no mechanism in the suite of RFC 3261

 compatibility tools that can provide such a function. The only way

 to do this is to include another cookie in the Via branch ID, used as

 a signal that this extension is supported. However, this results in

 substantial pollution of the Via header field, and increases each

 message substantially.

 It is believed that a 305 redirection is in fairly limited usage at

 the time of writing, and so this specification provides a weaker form

 of backwards compatibility. The Supported header field is used to

 verify that clients support the mechanism. Rather than explicit

 signaling, it is assumed that proxies can know whether the previous

 hop supports this mechanism based on an administrative relationship

 with that proxy. This precludes 305 from being used inter-provider

Rosenberg Expires January 12, 2006 [Page 9]

Internet-Draft Route Construct July 2005

 until it is ubiquitously deployed. However, this does not seem like

 a major limitation, since most of the use cases are intra-provider.

 The backwards compatibility mechanism also assumes that a proxy can

 determine that its previous hop is a UAC as opposed to a proxy; this

 is hard to know for certain.

 The second backwards compatibility issue is interesting. What

 happens if the 305 is properly handled, but is recursed by an element

 that lies multiple hops upstream from the redirecting server? The

 recursing element will replace its top Route header field with the

 value from the Contact in the 305, and presumably send the request

 there directly. That may or may not be a problem, it depends on

 whether the previously-intervening proxies really need to be on the

 request path or not. To deal with this case, the specification

 allows a recursing element to push additional route headers in order

 to make sure requests traverse paths that meet their policy

 constraints.

7. Security Considerations

 An attacker that injects a fake route set, whether it is in a 305

 response, a Service-Route, a Record-Route or a configuration, can

 launch a multitude of attacks, including denial-of-service and fraud.

 For this reason, an element SHOULD NOT make use of a route set unless

 it has obtained it through a signaling channel that has been secured

 using the SIPS mechanism in RFC 3261 [2]

8. IANA Considerations

 This specification registers a new option tag for SIP, according to

 Section 27.1 of RFC 3261.

 Name: lr305

 Description: This option tag is for support of the loose routing

 behavior for the 305 Use Proxy response. It is used in the

 Supported header field of requests, and indicates that the UAC

 will properly recurse when it receives a 305.

9. Acknowledgements

 The author would like to thank Paul Kyzivat and Anders Kristensen for

 their comments.

10. References

Rosenberg Expires January 12, 2006 [Page 10]

Internet-Draft Route Construct July 2005

10.1 Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement

 Levels", BCP 14, RFC 2119, March 1997.

 [2] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,

 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:

 Session Initiation Protocol", RFC 3261, June 2002.

 [3] Willis, D. and B. Hoeneisen, "Session Initiation Protocol (SIP)

 Extension Header Field for Service Route Discovery During

 Registration", RFC 3608, October 2003.

10.2 Informative References

 [4] Schulzrinne, H., "Dynamic Host Configuration Protocol (DHCP-for-

 IPv4) Option for Session Initiation Protocol (SIP) Servers",

 RFC 3361, August 2002.

 [5] Rosenberg, J. and H. Schulzrinne, "Session Initiation Protocol

 (SIP): Locating SIP Servers", RFC 3263, June 2002.

 [6] Petrie, D., "A Framework for Session Initiation Protocol User

 Agent Profile Delivery", draft-ietf-sipping-config-framework-06

 (work in progress), February 2005.

Author’s Address

 Jonathan Rosenberg

 Cisco Systems

 600 Lanidex Plaza

 Parsippany, NJ 07054

 US

 Phone: +1 973 952-5000

 Email: jdrosen@cisco.com

 URI: http://www.jdrosen.net

Rosenberg Expires January 12, 2006 [Page 11]

Internet-Draft Route Construct July 2005

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any

 Intellectual Property Rights or other rights that might be claimed to

 pertain to the implementation or use of the technology described in

 this document or the extent to which any license under such rights

 might or might not be available; nor does it represent that it has

 made any independent effort to identify any such rights. Information

 on the procedures with respect to rights in RFC documents can be

 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any

 assurances of licenses to be made available, or the result of an

 attempt made to obtain a general license or permission for the use of

 such proprietary rights by implementers or users of this

 specification can be obtained from the IETF on-line IPR repository at

 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any

 copyrights, patents or patent applications, or other proprietary

 rights that may cover technology that may be required to implement

 this standard. Please address the information to the IETF at

 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an

 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS

 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET

 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,

 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE

 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED

 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject

 to the rights, licenses and restrictions contained in BCP 78, and

 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the

 Internet Society.

Rosenberg Expires January 12, 2006 [Page 12]

SIPPING J. Rosenberg

Internet-Draft Cisco Systems

Expires: January 14, 2006 July 13, 2005

 Registration Coupled Subscriptions in the Session Initiation Protocol

 (SIP)

 draft-rosenberg-sipping-reg-sub-00

Status of this Memo

 By submitting this Internet-Draft, each author represents that any

 applicable patent or other IPR claims of which he or she is aware

 have been or will be disclosed, and any of which he or she becomes

 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF), its areas, and its working groups. Note that

 other groups may also distribute working documents as Internet-

 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at

 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at

 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 14, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 When a Session Initiation Protocol (SIP) user agent starts up, it

 registers to the network and initiates numerous subscriptions in

 order to learn about various network events. This results in a

 chatty startup procedure which substantially impacts recovery times

 under avalanche restart. This specification proposes a mechanism

 whereby the subscriptions can be established as a side effect of the

 registration, alleviating this problem.

Rosenberg Expires January 14, 2006 [Page 1]

Internet-Draft Registration Coupled Subscriptions July 2005

Table of Contents

 1. Introduction . 3

 2. Requirements . 4

 3. Proposed Solution . 5

 3.1 Overview of Operation 5

 3.2 User Agent Behavior 8

 3.3 Registrar Behavior . 9

 3.3.1 REGISTER Processing 9

 3.3.2 PUBLISH Processing 10

 3.4 Event Server Behavior 11

 3.5 Subscription Header Field 13

 3.6 Examples . 13

 3.6.1 Registrar has Dialog Ownership 14

 3.6.2 Event Server Owned Dialog 16

 3.6.3 Hybrid Model . 17

 4. References . 18

 4.1 Normative References 18

 4.2 Informative References 18

 Author’s Address . 19

 Intellectual Property and Copyright Statements 20

Rosenberg Expires January 14, 2006 [Page 2]

Internet-Draft Registration Coupled Subscriptions July 2005

1. Introduction

 When a Session Initiation Protocol (SIP) [1] user agent starts up, it

 typically follows a series of message exchanges with servers in the

 network. At a minimum, this startup procedure involves a SIP

 registration that allows the user agent to receive incoming requests.

 However, over time, numerous event packages [2] have been defined

 that provide a user agent with useful information through the

 duration of its connection to the network. These packages include:

 Message Waiting: RFC 3842 [11] provides a message waiting indication

 event package. Typically, a user agent would subscribe to its own

 Address-of-Record (AOR) for this event package, in order to find

 out about messages that have been left for that user. This

 provides the familiar "message waiting lamp" on many business

 telephones. It is valuable for a user agent to subscribe to this

 package through the duration of its registration, in the event

 that messages are explicitly directed to a user’s voicemail and do

 not ring their phone (this can happen, for example, if the caller

 utilizes the caller preferences specification [12] to direct a

 call to voicemail).

 Registration Event: RFC 3680 [13] allows a user agent to learn about

 the status of its registration. Typically, a user agent would

 subscribe to its own AOR for this event package, in order to find

 out if the network has removed its registration. Such removals

 happen in cases of graceful network shutdown, or when a user needs

 to re-register and re-authenticate due to concerns on validity of

 credentials.

 Presence List: A user may have a "buddy list", which contains a list

 of users whose presence is desired. A user will subscribe to

 their buddy list using an event list subscription [14] to the

 presence event package [15]. This is done by subscribing to a

 resource that is synonomous with the user’s own buddy list.

 Watcher Info: In order to find out about attempts that have been made

 to subscribe to a users presence, that user makes use of the

 watcher info event template package [16]. They would do this by

 subscribing to their own AOR with the presence.winfo event

 package. Subscription attempts that are unauthorized will result

 in a notification, informing the user of this fact and allowing

 them to approve or deny the subscription.

 Dialog Events: Certain features, such as single line extension,

 require a user agent to find out about calls in progress on other

 user agents associated with the same AOR. This is done through

 subscriptions to the dialog event package [17]. The user agent

Rosenberg Expires January 14, 2006 [Page 3]

Internet-Draft Registration Coupled Subscriptions July 2005

 would typically subscribe to their own AOR, and learn about calls

 in progress to other user agents.

 Configuration Events: The configuration event package [18] allows a

 UA to learn about changes in its configuration. This is done by

 having the UA subscribe to its own identity (which may be the AOR)

 for the config event package.

 As a consequence of this, each time a user agent starts up, they will

 generate a REGISTER transaction, plus a SUBSCRIBE and a NOTIFY

 transaction for each event package the user agent is interested in.

 Based on the above discussion, this could be upwards of six event

 packages, resulting in a total of fourteen transactions that take

 place on startup. Furthermore, each of these subscriptions needs to

 be periodically refreshed (as does the registration), resulting in

 ongoing messaging.

 This overhead is particularly problematic during an avalanche

 restart. This occurs when a failure event of some sort causes all

 user agents to simultaneously re-register. This is most common when

 recovering after a power outage. When the power returns, all the

 user agents will start booting simultaneously, and at the same time,

 each will execute their startup sequence. The more complex this

 sequence, the longer it takes for the system to return to service,

 and the more robust the network has to be. Another cause of

 avalanche restart is recovery after a catastrophic network failure,

 such as a network partition. If a network partition should last

 longer than the subscription lifetime, once the partition heals, each

 client will discover this and attempt to re-register and re-subscribe

 to each event package.

 The overhead is also problematic on wireless links and other

 interfaces where bandwidth is at a premium.

2. Requirements

 A solution to this problem should meet the following requirements:

 1. The solution must substantially reduce the amount of SIP

 messaging traffic that takes place when a user agent starts up.

 2. The solution must substantially reduce the amount of network

 processing that needs to take place when a user agent starts up.

 3. The solution must not fundamentally alter the event model of

 RFC3265.

Rosenberg Expires January 14, 2006 [Page 4]

Internet-Draft Registration Coupled Subscriptions July 2005

3. Proposed Solution

 This document proposes a solution to this problem, based on the

 following observations:

 1. In all of the above cases, the subscription is desired for the

 duration of the registration of the UA.

 2. In all of the above cases, the user agent is subscribing to a

 resource which it owns; either its AOR or a related resource,

 like a buddy list. As a consequence, the authorization policies

 for the subscriptions always allow that user to subscribe. A

 policy in which a user can subscribe to their own events are

 called "self authorization".

3.1 Overview of Operation

 Based on these observations, the approach proposed here is to

 strongly couple subscriptions with registrations, and to actually use

 the registration to create the subscriptions. A subscription that is

 created as a result of a successful registration is called a

 registration-coupled subscription. The basic approach is shown in

Rosenberg Expires January 14, 2006 [Page 5]

Internet-Draft Registration Coupled Subscriptions July 2005

 +-----------+ +-----------+ +-----------+

 | | | | | |

 | Event | | Event | | Event |

 | Server | | Server | | Server |

 | | | | | |

 +-----------+ +-----------+ +-----------+

 \ | /

 \ | /

 \ | /

 \ | /

 \ | / PUBLISH

 \ | /

 V V /

 +-----------+ V

 | |

 | Registrar |

 | |

 | |

 +-----------+

 |

 |

 |

 | REGISTER+

 | NOTIFY

 |

 +--------+

 | |

 | UA |

 | |

 +--------+

 Figure 1

 To create a registration-coupled subscription, a UA includes a

 Subscription header field in its REGISTER message. This header field

 includes a list of the desired event packages, and for each, the

 resource to which a subscription is desired and any event header

 field parameters. There is no need for a Require header field. The

 registrar looks for the Subscription header field. For each value,

 it examines the event package and target resource. If the resource

 is in the domain of the registrar, and the resource has an

 authorization policy of "self", and the registrar allows registration

 coupled subscriptions for that event package, the registrar creates

 the dialog and a subscription. The 200 OK to the REGISTER contains

 an indication of whether the subscription was created, and if so, the

 remote tag needed to complete the dialog identifier.

 The UAC will create a dialog and a subscription for each value of the

Rosenberg Expires January 14, 2006 [Page 6]

Internet-Draft Registration Coupled Subscriptions July 2005

 Subscription header field in the response. As there will be one of

 these per event package, the end result is a single dialog for each

 event package that the client wants to subscribe to. Dialogs are not

 shared across event packages. The dialog identifiers are obtained by

 copying the Call-ID and local tag from the REGISTER, with the remote

 tag from the Subscription header field value. Similarly, the

 registrar will create a subscription. The dialog identifiers and

 local sequence number are set in the same way. Its route set is

 taken from the Path header field from the registration [4].

 At this point, a proper subscription is established at the UA and the

 registrar. The registrar can send a NOTIFY at any time. The initial

 NOTIFY normally sent upon receipt of a SUBSCRIBE is not required, as

 the REGISTER response serves that purpose. The subscriptions are all

 refreshed through registration refreshes. If the UAC omits an event

 and resource from a Subscription header field in its REGISTER, it

 means that the client wishes to unsubscribe. Similarly, if the 200

 OK to the REGISTER omits that event package and resource, it means

 that the subscription was terminated. However, the client cannot

 ever send a SUBSCRIBE to refresh the subscription. Any such request

 is rejected with a 403.

 It is important to note that there is a dialog properly established

 as part of this mechanism. The dialog is established by providing

 the dialog parameters through the registration, and then to make the

 dialog state part of the registration state. The dialog is then

 refreshed and maintained just like registration state. If a user has

 multiple user agents registered to the same AOR, multiple dialogs

 would be created. This means that the dialogs terminate on the

 registrar as well. In order for events to be delivered to the

 clients in NOTIFY messages, an event server generates a PUBLISH

 message when it wants to send an event to a user agent. The PUBLISH

 is routed to the registrar, where it examines the URI in the request

 URI. If the user is registered, it goes through each registered

 contact. If the registration of that contact had created a coupled

 subscription, the registrar checks if the registration-coupled

 subscriptions include the event package in the PUBLISH. If they do,

 the registrar copies the event data in the body of the PUBLISH into a

 NOTIFY, and sends it to the user agent.

 As an additional mechanism, the event servers themselves can

 subscribe to the registration event package for all subscribers.

 WHenever a user registers, a notification would get delivered to the

 event server. It can then check which users are registered or not,

 and use this information to determine whether or not it wishes to

 send a PUBLISH. Alternatively, the reg-event notifications can

 contian all of the information on the registration-coupled

 subscriptions - their dialog identifiers, event packages, and so on.

Rosenberg Expires January 14, 2006 [Page 7]

Internet-Draft Registration Coupled Subscriptions July 2005

 This would allow the event server itself to "take over" the

 subscription, and take ownership of the dialog. In that case, it can

 send the NOTIFY directly, instead of sending a PUBLISH to the

 registrar. Indeed, the event server can make a decision on a

 subscriber-by-subscriber basis as to whether it wishes to own the

 dialogs or not.

3.2 User Agent Behavior

 A user agent SHOULD be configured with a set of event packages that

 it wishes to couple with its registrations. For each such package,

 when the client performs its initial registration, it includes a

 Subscription header field value into its request. That value

 contains the address-of-record for the target of the subscription.

 This AOR MUST be one within the same domain as the domain of

 registration. Typically, it will be the same as the AOR for the user

 themselves. The UA includes any parameters it would otherwise

 include in the Event header field into the Subscription header field.

 The UA SHOULD include an Accept header field in the request, and

 include the content types the client supports for that event package.

 Otherwise, the registration is generated identically to a normal

 registration.

 If the response to the REGISTER is a 200 OK, the client looks for the

 Subscription header field. If the header field is not present, the

 user agent knows that either this mechanism is not supported in the

 registar, or is supported, but not in use for any of the event

 packages requested by the client. In that case, the user agent

 SHOULD proceed with a normal subscription according to the specifics

 of the event packages the client is interested in.

 If the 200 OK response to the REGISTER did contain a Subscription

 header field, the user agent goes through each value. It constructs

 a dialog by setting the Call-ID to the value in the REGISTER

 response, the local tag to the From tag the client placed in the

 REGISTER request, and the remote tag from the value of the

 Subscription header field. The local URI is set to the value in the

 From header field of the REGISTER request, and the remote URI to the

 value in the To header field of the REGISTER request. The local and

 remote CSeq are initially empty. Since the client never sends a

 request within the dialog, the local CSeq never needs to be

 populated. Similarly, the route set is empty. If the REGISTER

 request was sent over TLS, and the Request-URI was a sips URI, the

 "secure" flag for the dialog is set.

 The dialog state persists for the duration of the registration of

 that contact. When the UA determines that the contact expires, the

 dialog state is destroyed. A UA can determine that a contact has

Rosenberg Expires January 14, 2006 [Page 8]

Internet-Draft Registration Coupled Subscriptions July 2005

 expired because it times out and is not refreshed, or because the

 client receives a registration event notification informing it that

 the contact has been terminated.

 If the client had included a Subscription header field in the request

 for a particular event package, and the REGISTER response contained a

 Subscrption header field, but that package was not listed, it means

 that the registrar is either refusing a subscription-coupled

 registration for that event package, or that subscription failed for

 some reason. To determine the exact problem, the client SHOULD

 perform a regular, separate subscription to that event package.

 At any point during the lifetime of the registration, the client may

 receive a NOTIFY on the dialog created by the registration.

 Processing of that NOTIFY happens as described in the relevant event

 package and according to the details of RFC 3265.

 A registration refresh occurs identically to an initial registration.

 A client MUST include a Subscription header field value for each

 dialog it wishes to retain. If a client omits a Subscription header

 field value for a particular event package, the dialog associated

 with that event package is terminated upon receipt of a 200 OK to the

 REGISTER request.

 If a client wishes to perform a subscription with event filters that

 need to be placed in the body of a request, the mechanism here cannot

 be used. Rather, the client should perform a normal subscription

 using SUBSCRIBE. An alternative would be to include the event

 filters as a body of the REGISTER request. Header field parameters

 could associated each MIME body with a particular event package.

 However, this introduces a lot of complexity for a corner case. As

 such, this document recommends just performing a regular subscription

 to handle these cases.

3.3 Registrar Behavior

3.3.1 REGISTER Processing

 When a registrar receives a REGISTER request, it processes the

 registration normally per RFC 3261. If the result would otherwise

 have been a successful registration resulting in a 200 OK, the

 procedures defined here are followed.

 The registrar checks for the presence of the Subscription header

 field in the REGISTER request. The processing that follows is

 performed for each value of this header field. Firstly, the

 registrar checks to see if it supports registration-coupled

 subscriptions for that particular event package. Performing them for

Rosenberg Expires January 14, 2006 [Page 9]

Internet-Draft Registration Coupled Subscriptions July 2005

 any particular event package is a matter of local policy. Typically,

 it would be allowed when an event server is present in the network

 which supports the capabilities defined here. If the registrar

 doesn’t support registration-coupled subscriptions for that event

 package, it goes on to the next value of the Subscription header

 field. Otherwise, processing continues.

 Next, the registrar validates that the resource in the header field

 value is a valid resource within the domain of the registrar. If it

 is, processing continues. Otherwise, the registrar goes on to the

 next value of the Subscription header field. Next, it checks whether

 or not the UAC is authorized to subscribe to the resource. The means

 by which authorization occurs is outside the scope of this

 specification. Typically, registration-coupled subscriptions are

 performed with subscriptions where the authorization policy is such

 that a user is allowed to subscribe to themselves, and no others.

 This authorization policy, called "self", is readily provisioned on

 the registrar, and would not require complex interactions with other

 event servers. If the registrar cannot determine authorization, or

 if the subscription is not authorized, the registrar goes on to the

 next value of the Subscription header field. Otherwise, processing

 continues.

 At this point, the subscription has been authorized. The registrar

 stores the event header field parameters in the Subscription header

 field value as part of the state associated with the registered

 contact. These parameters are carried as a quoted string in the

 Subscription header field, so that they are readily separable from

 the Subscription header field parameters. It also stores the event

 package. The registrar chooses a tag that will serve as the remote

 tag of the dialog, according to the procedures of RFC 3261. This tag

 is also stored as part of the state associated with the registered

 contact. The Call-ID and From tag from the REGISTER request would

 have already been stored as part of normal registration processing,

 as would the Path header field value. The registrar also stores the

 From header field of the REGISTER message.

 In the 200 OK to the REGISTER request, the registrar includes the

 Subscription header field. Each value contains the event package

 name for each registration-coupled subscription that was created,

 along with the tag that completes the dialog. The AOR SHOULD NOT be

 included.

3.3.2 PUBLISH Processing

 This specification allows a registrar to act as an event server for

 registration-coupled subscriptions. When the registrar receives a

 PUBLISH message for a particular address-of-record, it checks that

Rosenberg Expires January 14, 2006 [Page 10]

Internet-Draft Registration Coupled Subscriptions July 2005

 the PUBLISH has arrived from an event server that is authorized to

 publish events for the subscriber. Typically, this is done based on

 the maintentance of a TLS connection between the registrar and the

 event server, used to identify the source of the messages to the

 registrar. The registrar would typically authorize PUBLISH messages

 for a specific event package only if they came from a specific event

 server.

 Once the sender of the PUBLISH is authorized, the registrar performs

 a registration query for the AOR in the Request-URI of the PUBLISH

 message. It checks to see if there are any contacts registered for

 that AOR that have registration-coupled subscriptions for that event

 package. For each contact it finds, the registrar constructs a

 NOTIFY message. The Call-ID of this NOTIFY is taken from the stored

 state associated with the registration. The From header field URI is

 set to the AOR of the user. The To header field URI is set to the

 value in the From header field of the most recent REGISTER message.

 The tag in the From header field is populated with the tag associated

 with the registration. The tag in the To header field is populated

 with the tag stored with the Contact. The Event header field of the

 NOTIFY is set to the event header field stored with the Contact. The

 body of the NOTIFY is taken from the body of the PUBLISH. The

 remainder of the NOTIFY is consructed as per RFC 3261, and then sent

 as a mid-dialog request.

 The registrar then generates a 200 OK to the PUBLISH request. If the

 registrar found no matching registration-coupled subscriptions for

 the PUBLISH, it generates a 403 response to the PUBLISH request.

 This informs the event server that its event was not delivered.

3.4 Event Server Behavior

 It is assumed that event servers learn about events for a particular

 package for a particular subscriber through any number of means.

 These can include non-SIP mechanisms, SIP subscriptions to a

 resource, and so on. However, they cannot include a SIP PUBLISH

 message sent to the AOR of the subscriber; those PUBLISH messages are

 routed to the registrar according to this specification.

 An event server MAY act as the dialog owner, or MAY leave that

 responsibility to the registrar. However, it MUST NOT do both for

 the same subscriber within the duration of a registration from that

 subscriber. To act as a dialog owner, the event server subscribes to

 the registration event package. It MAY subscribe to this event

 package for each subcscriber individually, or it MAY subscribe to a

 resource that represents all subscribers or a group of users at the

 registrar (for example, sip:all-users@example.com). The latter is

 preferable since it avoids the need for per-user subscription

Rosenberg Expires January 14, 2006 [Page 11]

Internet-Draft Registration Coupled Subscriptions July 2005

 maintenance at the event server.

 The notifications of the dialog event package will contain

 information on each registration-coupled subscripton for a

 subscriber. If the event server is acting as a dialog owner, it MUST

 store this information. Effectively, the reg-event notification

 creates the dialog state and the event subscription at the event

 server. When the event server wishes to send an event, it creates a

 NOTIFY using the dialog state and sends it, per RFC 3265 and RFC 3261

 procedures. These NOTIFY messages won’t even traverse the registrar.

 If the event server is not acting as a dialog owner, when it wishes

 to send a notification, it sends a PUBLISH message. The request-URI

 of the PUBLISH is set to the AOR of the subscriber for whom a

 notification is to be delivered. The content of the PUBLISH contains

 the event state that is to be delivered to the watcher. The Event

 header field is populated with the value of the event package for

 which the notifications are intended. This PUBLISH message is sent,

 and will be routed to the registrar. The processing above will

 result in a NOTIFY being sent to each registered contact for that

 AOR.

 The choice of whether to act as dialog owner or not depends on

 several factors. When the event server leaves dialog ownership to

 the registrar, it alleviates the need for the event server to

 maintain any kind of per-subscriber state. However, it imposes

 additional work on the registrar to perform the registration queries

 and construction of NOTIFY messages. Thus, this mode is useful for

 very infrequent events, such as a request to update a configuration

 profile in the configuration event package. Dialog ownership makes

 more sense for more frequent events. Also, since the registrar

 doesnt know the actual event state, it cannot send an initial NOTIFY

 with the current state when the dialog is first created. It relies

 on the event server to do that. As a result, if an event package

 requires state to be delivered as part of a NOTIFY generated when the

 subscription is created, the event server needs to maintain ownership

 of the dialog, or the hybrid model below needs to be used.

 A hybrid model is also possible. An event server can receive reg-

 event notifications, but not store dialog state. When it sees that

 the user has registerd or unregistered, it can send a PUBLISH

 message. This is useful for infrequent notifications that need to be

 triggered on registration. The hybrid model also allows the event

 server to generate a PUBLISH when a client first registers, that

 contains the current value of the event state. This will cause the

 registrar to send a NOTIFY message with the current state. This is

 useful for event packages where it is desireable to send event state

 as part of the initial NOTIFY.

Rosenberg Expires January 14, 2006 [Page 12]

Internet-Draft Registration Coupled Subscriptions July 2005

 The hybrid model is particularly attractive, since it alleviates the

 need for the event server to maintain any kind of dialog state or

 per-subscriber subscription state, and yet it allows for the full

 features of a traditional event subscription.

3.5 Subscription Header Field

 The grammar for the Subscription header field is:

 Subscription = "Subscription" HCOLON (sub-param *(COMMA

 sub-param))

 sub-param = event-type *(SEMI sub-param)

 sub-event-param = sub-aor / sub-event-param / tag-param / generic-param

 sub-aor = "aor" EQUAL (SIP-URI / SIPS-URI)

 sub-event-param = "e-param" EQUAL quoted-string

 Figure 3 and Figure 4 are an extension of Tables 2 and 3 in RFC 3261

 [1] for the Subscription header field. The column "INF" is for the

 INFO method [5], "PRA" is for the PRACK method [6], "UPD" is for the

 UPDATE method [7], "SUB" is for the SUBSCRIBE method [2], "NOT" is

 for the NOTIFY method [2], "MSG" is for the MESSAGE method [8], "PUB"

 is for the PUBLISH method [9], and "REF" is for the REFER method

 [10].

 Header field where proxy ACK BYE CAN INV OPT REG REF

 Subscription R - - - - - - o -

 Subscription 2xx - - - - - - o -

 Figure 3: Subscription header field

 Header field where proxy PRA UPD SUB NOT INF MSG PUB

 Subscription R - - - - - - - -

 Subscription 2xx - - - - - - - -

 Figure 4: Subscription header field

3.6 Examples

Rosenberg Expires January 14, 2006 [Page 13]

Internet-Draft Registration Coupled Subscriptions July 2005

3.6.1 Registrar has Dialog Ownership

 In this example, the registrar holds ownership of the dialog. The

 event server is a message waiting indicator server that publishes MWI

 events.

 UA Registrar MWI Server

 |(1) REGISTER | |

 |------------->| |

 |(2) 200 OK | |

 |<-------------| |

 | |(3) PUBLISH |

 | |<-------------|

 | |(4) 200 OK |

 | |------------->|

 |(5) NOTIFY | |

 |<-------------| |

 |(6) 200 OK | |

 |------------->| |

 Figure 5: Registrar Owned Dialogs

 The REGISTER message (1) would look like:

 REGISTER sip:example.com SIP/2.0

 To: sip:joe@example.com

 From: sip:joe@example.com;tag=asd9887g

 Subscription: message-summary;aor=sip:joe@example.com

 Expires: 3600

 Via: SIP/2.0/UDP client.biloxi.example.com;branch=z9hG4bKnashds7

 Max-Forwards: 70

 Call-ID: 1j9FpLxk3uxtm8tn@biloxi.example.com

 CSeq: 1 REGISTER

 Content-Length: 0

 Contact: sip:client.biloxi.example.com

 The 200 OK to the REGISTER indicates successful creation of the

 dialog:

Rosenberg Expires January 14, 2006 [Page 14]

Internet-Draft Registration Coupled Subscriptions July 2005

 SIP/2.0 200 OK

 To: sip:joe@example.com;tag=99j9jj

 From: sip:joe@example.com;tag=asd9887g

 Subscription: message-summary;tag=ghghghg

 Expires: 3600

 Via: SIP/2.0/UDP client.biloxi.example.com;branch=z9hG4bKnashds7

 Max-Forwards: 70

 Call-ID: 1j9FpLxk3uxtm8tn@biloxi.example.com

 CSeq: 1 REGISTER

 Content-Length: 0

 The PUBLISH from the event server comes when a new message arrives:

 PUBLISH sip:joe@example.com SIP/2.0

 To: sip:joe@example.com

 From: sip:mwi-server@example.com

 Event: message-summary

 Via: SIP/2.0/UDP mwi.example.com;branch=z9hG4bKnashas--d9

 Call-ID: 3k9FpLxhg88asd7m8tn@mwi.example.com

 CSeq: 1 PUBLISH

 Content-Type: application/simple-message-summary

 Content-Length: ---

 Messages-Waiting: yes

 Message-Account: sip:joe@mwi.example.com

 Voice-Message: 2/8 (0/2)

 This results in a notification from the registrar:

 NOTIFY sip:client.biloxi.example.com SIP/2.0

 To: sip:joe@example.com;tag=asd9887g

 From: sip:joe@example.com;tag=ghghghg

 Event: message-summary

 Via: SIP/2.0/UDP reg.example.com;branch=z9hG4bKnashas--d10

 Call-ID: 1j9FpLxk3uxtm8tn@biloxi.example.com

 CSeq: 1 NOTIFY

 Content-Type: application/simple-message-summary

 Content-Length: ---

 Messages-Waiting: yes

 Message-Account: sip:joe@mwi.example.com

 Voice-Message: 2/8 (0/2)

Rosenberg Expires January 14, 2006 [Page 15]

Internet-Draft Registration Coupled Subscriptions July 2005

3.6.2 Event Server Owned Dialog

 UA Registrar MWI Server

 | |(1) SUBSCRIBE |

 | |<-------------|

 | |(2) 200 OK |

 | |------------->|

 | |(3) NOTIFY |

 | |------------->|

 | |(4) 200 OK |

 | |<-------------|

 |(5) REGISTER | |

 |------------->| |

 |(6) 200 OK | |

 |<-------------| |

 | |(7) NOTIFY |

 | |------------->|

 | |(8) 200 OK |

 | |<-------------|

 |(9) NOTIFY | |

 |<----------------------------|

 |(10) 200 OK | |

 |---------------------------->|

 When the message waiting server starts up, it subscribes to the

 registration event package at the registrar (message 1). The request

 URI identifies all users in the domain. This generates a 200 OK

 (message 2), followed by a NOTIFY (message 3). This NOTIFY doesn’t

 contain any event state (there is too much), but it confirms the

 subscription.

 At some point later, the UA in question registers. The registration

 sequence (messages 5/6) are as above. This causes a reg-event NOTIFY

 to be sent to the mwi server (message 7). This tells the server

 about the creation of a new contact, and also tells it that a MWI

 registration-coupled subscription was created. It provides the

 dialog identifiers to the MWI server. Next, the MWI server generates

 a NOTIFY to tell the client about the event state (9).

Rosenberg Expires January 14, 2006 [Page 16]

Internet-Draft Registration Coupled Subscriptions July 2005

3.6.3 Hybrid Model

 UA Registrar MWI Server

 | |(1) SUBSCRIBE |

 | |<-------------|

 | |(2) 200 OK |

 | |------------->|

 | |(3) NOTIFY |

 | |------------->|

 | |(4) 200 OK |

 | |<-------------|

 |(5) REGISTER | |

 |------------->| |

 |(6) 200 OK | |

 |<-------------| |

 | |(7) NOTIFY |

 | |------------->|

 | |(8) 200 OK |

 | |<-------------|

 | |(9) PUBLISH |

 | |<-------------|

 | |(10) 200 OK |

 | |------------->|

 |(11) NOTIFY | |

 |<-------------| |

 |(12) 200 OK | |

 |------------->| |

 When the message waiting server starts up, it subscribes to the

 registration event package at the registrar (message 1). The request

 URI identifies all users in the domain. This generates a 200 OK

 (message 2), followed by a NOTIFY (message 3). This NOTIFY doesn’t

 contain any event state (there is too much), but it confirms the

 subscription.

 At some point later, the UA in question registers. The registration

 sequence (messages 5/6) are as above. This causes a reg-event NOTIFY

 to be sent to the mwi server (message 7). This tells the server

 about the creation of a new contact, and also tells it that a MWI

 registration-coupled subscription was created. It provides the

 dialog identifiers to the MWI server. However, instead of sending

 the NOTIFY, the MWI server discards the dialog information. It sends

 a PUBLISH request (message 9) identically to the case where the

 registrar owns the dialog. This causes the registrar to send the

 notification (message 11).

4. References

Rosenberg Expires January 14, 2006 [Page 17]

Internet-Draft Registration Coupled Subscriptions July 2005

4.1 Normative References

 [1] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,

 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:

 Session Initiation Protocol", RFC 3261, June 2002.

 [2] Roach, A., "Session Initiation Protocol (SIP)-Specific Event

 Notification", RFC 3265, June 2002.

 [3] Willis, D. and B. Hoeneisen, "Session Initiation Protocol (SIP)

 Extension Header Field for Service Route Discovery During

 Registration", RFC 3608, October 2003.

 [4] Willis, D. and B. Hoeneisen, "Session Initiation Protocol (SIP)

 Extension Header Field for Registering Non-Adjacent Contacts",

 RFC 3327, December 2002.

 [5] Donovan, S., "The SIP INFO Method", RFC 2976, October 2000.

 [6] Rosenberg, J. and H. Schulzrinne, "Reliability of Provisional

 Responses in Session Initiation Protocol (SIP)", RFC 3262,

 June 2002.

 [7] Rosenberg, J., "The Session Initiation Protocol (SIP) UPDATE

 Method", RFC 3311, October 2002.

 [8] Campbell, B., Rosenberg, J., Schulzrinne, H., Huitema, C., and

 D. Gurle, "Session Initiation Protocol (SIP) Extension for

 Instant Messaging", RFC 3428, December 2002.

 [9] Niemi, A., "Session Initiation Protocol (SIP) Extension for

 Event State Publication", RFC 3903, October 2004.

 [10] Sparks, R., "The Session Initiation Protocol (SIP) Refer

 Method", RFC 3515, April 2003.

4.2 Informative References

 [11] Mahy, R., "A Message Summary and Message Waiting Indication

 Event Package for the Session Initiation Protocol (SIP)",

 RFC 3842, August 2004.

 [12] Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Caller

 Preferences for the Session Initiation Protocol (SIP)",

 RFC 3841, August 2004.

 [13] Rosenberg, J., "A Session Initiation Protocol (SIP) Event

 Package for Registrations", RFC 3680, March 2004.

Rosenberg Expires January 14, 2006 [Page 18]

Internet-Draft Registration Coupled Subscriptions July 2005

 [14] Roach, A., Rosenberg, J., and B. Campbell, "A Session

 Initiation Protocol (SIP) Event Notification Extension for

 Resource Lists", draft-ietf-simple-event-list-07 (work in

 progress), January 2005.

 [15] Rosenberg, J., "A Presence Event Package for the Session

 Initiation Protocol (SIP)", RFC 3856, August 2004.

 [16] Rosenberg, J., "A Watcher Information Event Template-Package

 for the Session Initiation Protocol (SIP)", RFC 3857,

 August 2004.

 [17] Rosenberg, J., "An INVITE Inititiated Dialog Event Package for

 the Session Initiation Protocol (SIP)",

 draft-ietf-sipping-dialog-package-06 (work in progress),

 April 2005.

 [18] Petrie, D., "A Framework for Session Initiation Protocol User

 Agent Profile Delivery", draft-ietf-sipping-config-framework-06

 (work in progress), February 2005.

Author’s Address

 Jonathan Rosenberg

 Cisco Systems

 600 Lanidex Plaza

 Parsippany, NJ 07054

 US

 Phone: +1 973 952-5000

 Email: jdrosen@cisco.com

 URI: http://www.jdrosen.net

Rosenberg Expires January 14, 2006 [Page 19]

Internet-Draft Registration Coupled Subscriptions July 2005

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any

 Intellectual Property Rights or other rights that might be claimed to

 pertain to the implementation or use of the technology described in

 this document or the extent to which any license under such rights

 might or might not be available; nor does it represent that it has

 made any independent effort to identify any such rights. Information

 on the procedures with respect to rights in RFC documents can be

 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any

 assurances of licenses to be made available, or the result of an

 attempt made to obtain a general license or permission for the use of

 such proprietary rights by implementers or users of this

 specification can be obtained from the IETF on-line IPR repository at

 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any

 copyrights, patents or patent applications, or other proprietary

 rights that may cover technology that may be required to implement

 this standard. Please address the information to the IETF at

 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an

 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS

 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET

 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,

 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE

 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED

 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject

 to the rights, licenses and restrictions contained in BCP 78, and

 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the

 Internet Society.

Rosenberg Expires January 14, 2006 [Page 20]

SIP H. Tschofenig

Internet-Draft Siemens

Expires: January 7, 2006 J. Peterson

 NeuStar, Inc.

 J. Polk

 Cisco

 D. Sicker

 CU Boulder

 M. Tegnander

 LYIT

 July 6, 2005

 Using SAML for SIP

 draft-tschofenig-sip-saml-03.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any

 applicable patent or other IPR claims of which he or she is aware

 have been or will be disclosed, and any of which he or she becomes

 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF), its areas, and its working groups. Note that

 other groups may also distribute working documents as Internet-

 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at

 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at

 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 7, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 This document describes how to use the Security Assertion Markup

Tschofenig, et al. Expires January 7, 2006 [Page 1]

Internet-Draft Using SAML for SIP July 2005

 Language (SAML) to offer trait-based authorization. As such, it

 provides an alternative to existing authorization mechanisms for SIP.

Table of Contents

 1. Introduction . 3

 2. Terminology . 4

 3. Goals and Non-Goals . 5

 4. SAML Introduction . 6

 4.1 Assertions . 6

 4.2 Artifact . 7

 4.3 Request/Response Protocol 7

 4.4 Bindings . 7

 4.5 Profiles . 8

 5. Assertion Handling Models 9

 6. Scenarios . 14

 6.1 Network Asserted Identities 14

 6.2 SIP Conferencing . 16

 6.3 PSTN-to-SIP Phone Call 17

 6.4 Compensation using SIP and SAML 18

 7. SIP-SAML Extension . 20

 8. Example . 21

 9. Requirement Comparison 23

 10. Security Considerations 24

 10.1 Stolen Assertion . 24

 10.2 MitM Attack . 24

 10.3 Forged Assertion . 24

 10.4 Replay Attack . 25

 11. Contributors . 26

 12. Acknowledgments . 27

 13. IANA Considerations . 28

 14. Open Issues . 29

 15. References . 32

 15.1 Normative References 32

 15.2 Informative References 32

 Authors’ Addresses . 34

 Intellectual Property and Copyright Statements 35

Tschofenig, et al. Expires January 7, 2006 [Page 2]

Internet-Draft Using SAML for SIP July 2005

1. Introduction

 This document proposes a method for using the Security Assertion

 Markup Language (SAML) in collaboration with SIP to accommodate

 richer authorization mechanisms and enable trait- based authorization

 where you are authenticated using roles or traits instead of

 identity. A motivation for trait based authorization and some

 scenarios are presented in [I-D.ietf-sipping-trait-authz].

 Security Assertion Markup Language (SAML) [I-D.saml-tech-overview-

 1.1-03] is an XML extension for security information exchange that is

 being developed by OASIS. SAML is a XML-based framework for creating

 and exchanging security information.

 To provide trait-based authorization a few solutions are possible:

 authorization certificates, SPKI or extensions to the authenticated

 identity body [I-D.ietf-sip-authid-body]. The authors selected SAML

 due to the amount of work done in the area of SAML which provides

 some assurance that this technology is mature enough.

Tschofenig, et al. Expires January 7, 2006 [Page 3]

Internet-Draft Using SAML for SIP July 2005

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

 document are to be interpreted as described in [RFC2119].

 The SIP entity ’Authentication Service’ was introduced with

 [I-D.ietf-sip-identity]. We reuse this term to refer to an entity

 that authenticates and authorizes a user and creates an assertion.

 This entity is the equivalent of the asserting party in the SAML

 terminology.

 For terminology related to SAML the reader is referred to [I-D.saml-

 tech-overview-1.1-03].

Tschofenig, et al. Expires January 7, 2006 [Page 4]

Internet-Draft Using SAML for SIP July 2005

3. Goals and Non-Goals

 This document tries to accomplish the following goals:

 o This document defines how SAML assertions are carried in the SIP.

 As such, the usage of SAML assertions within SIP can be seen as a

 SAML profile.

 o The requirements and scenarios defined in [I-D.ietf-sipping-trait-

 authz] are compared to the solution described in this document by

 utilizing SAML assertions.

 The following issues are outside the scope of this document:

 o The configuration of the Authentication Service in order to attach

 certain assertions is outside the scope of this specification and

 might depend on the environment where SIP is used. To avoid

 restricting the functionality of SIP either as an in-band or an

 out-of-band mechanism, it can be defined to trigger the inclusion

 of SAML assertions. SAML itself provides mechanisms for this

 purpose.

 o The attributes stored in assertions are, for example, roles,

 membership to a certain organization, specific access rights or

 information about the authentication. A definition of most of

 these attributes is application dependent and not defined in this

 document. The SAML specification itself provides a number of

 common attributes and provides extension points for future

 enhancements. A brief overview of the available attributes within

 an assertion is given in Section 4.1.

 o SIP is not used as a request/response protocol between the Relying

 Party and the Asserting Party to fetch an assertion based on a

 received artifact.

Tschofenig, et al. Expires January 7, 2006 [Page 5]

Internet-Draft Using SAML for SIP July 2005

4. SAML Introduction

 In SAML there are three main entities: the user, the asserting party

 and the relying party. A user requests an assertions and receives

 them after a successful authentication and authorization protocol

 execution. The asserting party provides assurance that a particular

 user has been given proper authorization. The relying party has to

 trust the asserting party with regard to the provided information and

 then decides whether or not to accept the assertions provided, giving

 different levels of privileges.

 The components of SAML are:

 o Assertions/Artifact

 o Request/Response protocols

 o Bindings

 o Profiles

 We describe each in turn below

4.1 Assertions

 An assertion is a package of information including authentication

 statements, attribute statements and authorization decision

 statements. All of statements do not have to be present, but at

 least one does. An assertion contains several elements:

 Issuing information:

 Who issued the assertion, when was it issued and the assertion

 identifier.

 Subject information:

 The name of the subject, the security domain and optional subject

 information, like public key.

 Conditions under which the assertion is valid:

 Special kind of conditions like assertion validity period,

 audience restriction and target restriction.

Tschofenig, et al. Expires January 7, 2006 [Page 6]

Internet-Draft Using SAML for SIP July 2005

 Additional advice:

 Explaining how the assertion was made, for example.

 In an authentication statement, an issuing authority asserts that a

 certain subject was authenticated by certain means at a certain time.

 In an attribute statement, an issuing authority asserts that a

 certain subject is associated with certain attributes which has

 certain values. For example, user jon@cs.example.com is associated

 with the attribute ’Department’, which has the value ’Computer

 Science’.

 In an authorization decision statement, a certain subject with a

 certain access type to a certain resource has given certain evidence

 that the identity is correct. Based on this, the relying party then

 makes the decision on giving access or not. The subject could be a

 human or a program, the resource could be a webpage or a web service,

 for example.

4.2 Artifact

 The artifact used in the Browser/Artifact profile, is a base-64

 encoded string that is 40 bytes long. 20 bytes consists of the

 typecode, which is the source id. The remaining 20 bytes consists of

 a random number that servers use to look up an assertion. The source

 server stores the assertion temporarily. The destination server

 receives the artifact and pulls the assertion from the source site.

 The purpose of the artifact is to act as a token that references an

 assertion for the subject who holds the artifact.

4.3 Request/Response Protocol

 SAML defines a request/response protocol for obtaining assertions.

 The request asks for an assertion or makes queries for

 authentication, attribute and authorization decisions. The response

 carries back the requested assertion.

4.4 Bindings

 The bindings in SAML maps between the SAML protocol and a transport

 and messaging protocol. With SAML Version 1.1 there is only one

 binding specified, which is SAML embedded in SOAP-over-HTTP. In a

 binding, a transport and messaging protocol is used only for

 transporting the request/response mechanism.

Tschofenig, et al. Expires January 7, 2006 [Page 7]

Internet-Draft Using SAML for SIP July 2005

4.5 Profiles

 When using a profile, SAML is used to provide assertions about a

 resource in the body of the message itself. In Version 1.1 of SAML,

 there are two profiles specified, the Browser/Artifact profile and

 the Browser/POST profile. The Browser/Artifact profile represents a

 "pull" model, where a special reference to the assertion called an

 artifact, is sent to the relying party from the asserting party. The

 artifact is then used to "pull" the assertion from the asserting

 party. The Browser/POST profile represents a "push" model, where an

 assertion is posted (using the HTTP POST command) directly to the

 relying party. These two models are described in Figure 1 and

 Figure 2.

Tschofenig, et al. Expires January 7, 2006 [Page 8]

Internet-Draft Using SAML for SIP July 2005

5. Assertion Handling Models

 As mentioned in Section 4.5, two main models can be used in SAML and

 therefore also with the SIP-SAML extension defined in this document:

 The Push and the Pull model.

 In the Pull model the end host requests an assertion from the

 Asserting Party and receives, after successful authentication and

 authorization, an artifact. The artifact is a special form of an

 assertion. This artifact can be compared with the call-by reference

 approach where a reference to the assertion is stored at the

 Asserting Party and can later be dereferenced into the real assertion

 on a request by a replying party. The Relying Party later fetches

 the SAML assertion after receiving a request by the user which

 includes the artifact. For communicating the SAML request and

 response messages, a separate message exchange is needed with a

 protocol such as SOAP or HTTP. This is outside the scope of this

 document.

Tschofenig, et al. Expires January 7, 2006 [Page 9]

Internet-Draft Using SAML for SIP July 2005

 +----------+ +--------------+ +--------------+

 | User | | Asserting | | Relying |

 | | | Party | | Party |

 +----+-----+ +------+-------+ +------+-------+

 | | |

 | Request Assertion | |

 |--------------------->| |

 | | |

 | User Authentication | |

 | and Authorization | |

 |<---------------------| |

 |--------------------->| |

 | | |

 | Artifact | |

 |<---------------------| |

 | | |

 | Request + Artifact |

 |----------------------+------------------------->|

 | | |

 | | SAML request |

 | |<-------------------------|

 | | |

 | |SAML response + Assertion |

 | |------------------------->|

 | | |

 | Accept/Reject |

 |<---------------------+--------------------------|

 | | |

 Figure 1: SAML Pull model

 With the Push model, the user requests an assertion from the

 Asserting Party. The user can also trigger the Asserting Party to

 attach an assertion to the request. The assertion, which is added to

 the service request, can be verified by the Relying Party without

 additional protocol interactions with the Asserting Party. The

 assertion therefore contains enough information to authorize the

 service request. This model realizes a call-by value style of

 communication.

Tschofenig, et al. Expires January 7, 2006 [Page 10]

Internet-Draft Using SAML for SIP July 2005

 +----------+ +--------------+ +--------------+

 | User | | Asserting | | Relying |

 | | | Party | | Party |

 +----+-----+ +------+-------+ +------+-------+

 | | |

 | Request Assertion | |

 |--------------------->| |

 | | |

 | | |

 | User Authentication | |

 | and Authorization | |

 |<---------------------| |

 |--------------------->| |

 | | |

 | | |

 | Assertion | |

 |<---------------------| |

 | | |

 | Request + Assertion |

 |----------------------+------------------------->|

 | | |

 | | |

 | Accept/Reject |

 |<---------------------+--------------------------|

 | | |

 Figure 2: SAML Push model

 The usage of SAML in HTTP-based environments and in SIP is, however,

 affected by some architectural differences.

 The function of the entities in the Push and the Pull model are shown

 in Figure 1 and in Figure 2.

 The user has to request an assertion at the Asserting Party and both

 entities mutually authenticate each other. The requested assertion

 is sent to the user in a confidential manner to prevent eavesdroppers

 from obtaining this assertion. The Relying Party trusts the

 Asserting Party. It is assumed that the accessed resource is located

 at the Relying Party and that this entity does not become malicious

 or act on behalf of the user to impersonate him or her to other

 parties with regard to access to his resources. To prevent some

 degree of misuse, attributes in the assertion limit its applicability

 for certain applications, servers or time frame.

 Signaling in SIP can, however, involve a number of entities in more

 complex scenarios. As an example, the scenario addressed in

 [I-D.ietf-sip-identity] aims to replace end-to-end authentication via

Tschofenig, et al. Expires January 7, 2006 [Page 11]

Internet-Draft Using SAML for SIP July 2005

 S/MIME by a "mediated authentication architecture". The end hosts

 only need to be able to verify assertions signed by an Authentication

 Service which guarantees that the sender was authenticated.

 Directly applying SAML to such a scenario, however, causes a problem:

 a SIP proxy, which securely receives a SAML assertion (such as

 confidentially protected to prevent eavesdroppers between the SIP UA

 and the SIP proxy to learn the assertion), can store this assertion

 to impersonate the user in future requests towards other SIP end

 users. The fact that multiple parties see the assertion along the

 path (i.e., SIP proxies) make the situation worse. The assertion

 might include some attributes which restrict its usage (such as

 recipient(s), unique identifier for the message or a time-based

 constraint) but they cannot fully prevent impersonation.

 This problem appears if SAML assertions are not bound to a particular

 protocol run. Binding the assertion to a particular protocol session

 is not useful if the property of single-sign on is required.

 To provide referential integrity, a solution as mentioned in

 [I-D.ietf-sip-authid-body] can be used. which allows a party in a SIP

 transaction to cryptographically sign the headers that assert the

 identity of the originator of a message, and provide some other

 headers necessary for reference integrity. An authenticated identity

 body (AIB) is a MIME body of type ’message/sipfrag’. This MIME body

 has a Content-Disposition type of ’aib’. The MIME body is optional.

 The header fields From, Contact, Date and Call-ID must be used for

 providing identity. Contact and Date header fields are required for

 providing reference integrity. AIBs may contain other headers that

 help to uniquely identify the transaction or that provides related

 reference integrity.

 The requirements for a non-INVITE AIB is very much the same as for an

 INVITE: From, Call-ID, Date and Contact header fields are required.

 The same that goes for requests also goes for responses with some

 small differences. The From header field of the AIB in the response

 to an INVITE must correspond to the address-of-record of the

 responder and not the From header field in the received request. The

 To header field of the request must not be included. A new Date

 header field has to be generated for the response while the Call-ID

 and CSeq are copied from the request.

 Following is an example of the format of an AIB for an INVITE:

Tschofenig, et al. Expires January 7, 2006 [Page 12]

Internet-Draft Using SAML for SIP July 2005

 Content-Type: message/sipfrag

 Content-Disposition: aib; handling=optional

 From: Alice <sip:alice@example.com>

 To: Bob <sip:bob@example2.com>

 Contact: <sip:alice@pc33.example.com>

 Date: Thu, 26 Aug 2004 13:51:34 GMT

 Call-ID: b76m5l94s90835

 CSeq: 435431 INVITE

 Figure 3: AIB Format for an INVITE

 The same concept is applicable to this document as well with regard

 to reference integrity. For a further discussion on this topic see

 Section 14 and [I-D.peterson-message-identity].

Tschofenig, et al. Expires January 7, 2006 [Page 13]

Internet-Draft Using SAML for SIP July 2005

6. Scenarios

 This section shows message flows based on scenarios in [I-D.ietf-

 sipping-trait-authz] enriched with a SAML based solution.

 Section 6.1 provides an example of enhanced network asserted

 identities and Section 6.2 shows a SIP conferencing scenario with

 role-based access control using SAML. A future version of this

 document will cover more scenarios from [I-D.ietf-sipping-trait-

 authz].

6.1 Network Asserted Identities

 Figure 4 shows an enhanced network asserted identity scenario based

 on [I-D.ietf-sip-identity] which again utilizes extensions proposed

 with [I-D.ietf-sip-authid-body]. The enhancement is based on the

 attributes asserted by the Authentication Service.

 Figure 4 shows three entities, Alice@example.com, AS@example.com and

 Bob@example2.com. If Alice wants to communicate with Bob, she sends

 a SIP INVITE to her preferred AS. Depending on the chosen SIP

 security mechanism either digest authentication, S/MIME or Transport

 Layer Security is used to provide the AS with a strong assurance

 about the identity of Alice. During this step authorization

 attributes for inclusion into the SAML assertion can be selected.

 After Alice is authenticated and authorized, a SAML assertion is

 attached to the SIP message. The Authentication Service can be

 configured to attach a number of assertions, not limited to the

 authenticated identity.

 To bind the SAML assertion to a specific SIP session, it is necessary

 for the AS to compute a hash of some fields of the message. A list

 of the fields to hash is described in [I-D.ietf-sip-identity] and

 particularly in [I-D.ietf-sip-authid-body]. The hash is digitally

 signed and inserted into the SAML assertion and placed into the SAML

 header. The SAML header also contains information about the entity

 which created the digital signature. Upon reception of the message,

 Bob verifies the signature of the SAML assertion and verifies the

 binding to the SIP message in order to prevent cut-and-paste attacks.

 The provided SAML assertion can then be used to assist during the

 authorization procedure. If Bob does not understand the extension

 defined in this document, he silently ignores it. When the 200 OK

 message arrives at Bob’s AS, the same procedure as when Alice sent

 her INVITE to her AS can be performed, if desired. This exchange is

 not shown in Figure 4.

 Note that this scenario does not imply that the SAML assertions are

 solely used by SIP UAs. Assertions can also be helpful for SIP

Tschofenig, et al. Expires January 7, 2006 [Page 14]

Internet-Draft Using SAML for SIP July 2005

 proxies or B2B UAs. Additionally, a push model is shown in this

 section but it is reasonable to use a pull as well. For simplicity

 reasons a push model should be prefered since an additional message

 exchange between the Authentication Service and the UA can be

 omitted.

 +--------+ +--------------+ +--------+

 |Alice@ | |Authentication| | Bob@ |

 |example | |Service | |example2|

 |.com | |@example.com | |com |

 | | | | | |

 +---+----+ +------+-------+ +---+----+

 | | |

 | INVITE | |

 |---------------------->| |

 | From:alice@foo.com | |

 | | |

 | 407 Proxy auth. req. | |

 |<----------------------| |

 | Challenge | |

 | | |

 | Challenge response | |

 |---------------------->| |

 | | |

 | INVITE | |

 |---------------------->| |

 | | INVITE |

 | | + SAML assertion |

 | |--------------------->|

 | | |

 | 200 OK | |

 |<----------------------+----------------------|

 | | |

 Figure 4: Network Asserted Identities

 A variation of the scenario presented in Figure 4 is given in

 Figure 5 where an end host (Alice@example.com) obtains an assertion

 from its SIP proxy server which acts as an Authentication Service.

 This assertion is then attached by the end host to the outgoing

 INVITE message. Unlike in case of an artifact, Bob@example.com does

 not need to contact the Proxy Server.

 An example of this scenario could be to preempt a lower priority call

 if enough assurance for doing so is presented in the attached SAML

 assertion. This would also mean that there is a priority value

 included in the INVITE (for example in the Resource-Priority Header).

Tschofenig, et al. Expires January 7, 2006 [Page 15]

Internet-Draft Using SAML for SIP July 2005

 +--------+ +--------------+ +--------+

 | Alice@ | |Proxy Server | | Bob@ |

 |example | |(AS | |example |

 |.com | |@example.com | |.com |

 | | | | | |

 +---+----+ +------+-------+ +---+----+

 | | |

 | INVITE | |

 |---------------------->| |

 | From:alice@example.com| |

 | | |

 | 407 Proxy auth. req. | |

 |<----------------------| |

 | SAML Auth Header | |

 | to use | |

 | | |

 | INVITE + SAML assertion |

 |-----------------------+--------------------->|

 | | |

 | 200 OK | |

 |<----------------------+----------------------|

 | | |

 Figure 5: End host attaching SAML Assertion

 Note that Bob and Alice do not need to be in the same administrative

 domain. It is feasible that Bob is in a domain that is federated

 with Alice’s domain.

 The assertion obtained by Alice@example.com needs to be associated

 with a particular SIP messaging session. How to achieve this binding

 is for further consideration.

6.2 SIP Conferencing

 This section is meant to raise some discussions about the usage of

 SAML in the domain of conferencing. A user who routes its SIP

 message through the Authentication Service (Asserting Party) towards

 a conferencing server may want SAML assertions to be included. The

 following properties could be provided by this procedure:

 o The user identity can be replaced to allow the user to be

 anonymous with regard to the Focus

 o The user identity could be asserted to the Focus

 o The SAML assertion could provide additional information such as

 group membership (belongs to the students, staff, faculty group of

Tschofenig, et al. Expires January 7, 2006 [Page 16]

Internet-Draft Using SAML for SIP July 2005

 university X). This could, for non-identity-based authorization

 systems, imply certain rights.

 The corresponding SIP message flow (in high level detail) could have

 the following shape:

 +-----+ +-----------+ +-----------+

 | | | SIP Proxy | | Focus |

 |User | |(Asserting | | (Relying |

 | | | party) | | party) |

 +--+--+ +-----+-----+ +-----+-----+

 | INVITE | |

 |sip:conf-factory | |

 |------------------>| INVITE+SAML |

 | |------------------>|

 | | |

 | | Ringing |

 | Ringing |<------------------|

 |<------------------| |

 | | |

 | | OK |

 | OK |<------------------|

 |<------------------| |

 | | |

 | ACK | |

 |------------------>| ACK |

 | |------------------>|

 | | |

 | | |

 ... many more msgs...

 Figure 6: SIP Conferencing and SAML

6.3 PSTN-to-SIP Phone Call

 Alice, using a phone connected to the PSTN, wants to make a call to

 Bob, which resides in a SIP network. Her call is switched through

 the PSTN by means of PSTN signaling (outside the scope of this

 document) to the PSTN/SIP gateway. At the gateway, the call is

 converted from SS7 signaling to SIP signaling. Since Alice was

 previously ’authenticated’ through PSTN signaling mechanisms, the

 gateway can create an assertion based on signaling information from

 Alice and digitally sign it with his private key. Alice’s call is

 forwarded from the SIP/PSTN gateway to Bob’s phone. Bob can certify

 that the identity of Alice is correct by examining the SAML

 assertion.

Tschofenig, et al. Expires January 7, 2006 [Page 17]

Internet-Draft Using SAML for SIP July 2005

 +-----------+

 +----------------------+ | |

 | | SS7 | SIP/PSTN |

 | Public Switched |--------------------->| Gateway |

 | | | |

 | | | |

 | Telephone Network | +--+-----------+----+

 | ^ | | | |

 +---------+------------+ | | SIP+SAML |

 | SS7 | v |

 | | +--------+ |

 O | | | |

 O /|\ <----+----| SIP | |

 /|\ / \ SIP+ | Proxy | |

 / \ Bob SAML | | |

 Alice | +--------+ |

 | SIP based |

 | Network |

 +-------------------+

 Figure 7: PSTN to SIP call

6.4 Compensation using SIP and SAML

 This section briefly elaborates a scenario where SAML is used in SIP

 to realize compensation functionality as described in [I-D.jennings-

 sipping-pay]

 Section 1 of [I-D.jennings-sipping-pay] shows a message exchange

 which is used by a number of payment protocols and hence can also be

 used by a SAML specified protocol. To avoid repetition in this

 document a second alternative is provided in Figure 8. Alice

 initiates a communication with an Authentication Service which acts

 as a financial institution. Note that Alice does not necessarily

 need to use SIP for communication with the Authentication Service.

 Instead, it might be possible to use HTTP or other protocols which

 offer the necessary user credential or offer additional information

 (such as a web page). After a successful authentication and

 authorization Alice obtains an assertion (or an artifact) which might

 contain payment relevant information. For a later service access,

 Alice contacts the merchant Bob with the assertion. Bob verifies the

 assertion and, it might want to contact the Authentication Service

 for a credit check. A financial settlement between the merchant Bob

 and the Trusted Third Party is assumed. Depending on the type of

 service, a one-time payment with immediate amount deduction may take

 place (e.g., in case of a prepaid account) or the amount is captured

 as a batch transaction.

Tschofenig, et al. Expires January 7, 2006 [Page 18]

Internet-Draft Using SAML for SIP July 2005

 The aspect of lightweight protocol execution is provided by

 o The alternative usage of an artifact which leads to a lower

 bandwidth consumption.

 o The ability to use a single assertion for multiple service access

 protocol executions, if desired.

 o SAML, furthermore allows a cryptographic key to be bound to an

 assertion. A high degree of flexibility is provided with regard

 to the possible credentials. For example, it might not be

 necessary to use public key cryptography with every service

 access. This might be useful if the cost of public key

 cryptographic is too expensive for a cheap service or when devices

 have performance limitations. In this case, it might be useful to

 rely on symmetric cryptographic, such as hash chains.

 +--------+ +--------------+ +--------+

 |User | |Authentication| |Merchant|

 |Alice | |Server | |Bob |

 | | |(Trusted Third| | |

 | | | Party) | | |

 +---+----+ +------+-------+ +---+----+

 | | |

 | SIP, HTTP, etc. | |

 |---------------------->| |

 | | |

 | Assertion | |

 |<----------------------| |

 | | |

 | | |

 | INVITE + SAML assertion |

 |-----------------------+--------------------->|

 | | |

 | 200 OK | |

 |<----------------------+----------------------|

 | | |

 Figure 8: Message flow for SIP payment

 The main difference between the above-described mechanism and the one

 described in Section 1 of [I-D.jennings-sipping-pay] is the degree of

 user involvement and the type of protocol interaction. In both cases

 it is possible to provide an indication to the user about the costs

 of a service access. In fact, the assertion might specify these type

 of constraints directly or indirectly with the help of recurring

 service requests/responses.

Tschofenig, et al. Expires January 7, 2006 [Page 19]

Internet-Draft Using SAML for SIP July 2005

7. SIP-SAML Extension

 To carry SAML assertions and artifacts two mechanisms are defined:

 o The SIP header may either carry an Artifcat or a CID URI [RFC2392]

 pointing to an assertion in the SIP body. The name of this new

 SIP header is SAML-Payload. A SAML artifact consists of a

 TypeCode, SourceID and an AssertionHandle. It is thereby assumed

 that the Relying Party will maintain a table of sourceID values as

 well as URLs for Asserting Parties to contact. This information

 is communicated out-of-band. This document also allows the

 Asserting Party to add a URL to point to the assertion to prevent

 this level of indirection.

 o The SIP body may carry one or more SAML assertions. The MIME type

 of this SAML assertion is defined in [I-D.hodges-saml-mediatype].

 A SIP user agent may add an assertion to the body of a SIP message or

 may add a reference to the assertion into the SIP header. SIP

 proxies MUST NOT add the assertion to the body. The SIP header MUST

 be used instead when an assertion has to be added.

 A SAML assertion SHOULD be protected and when added by a SIP entity

 then S/MIME MUST be used rather than XML digital signatures.

 To bind a SAML assertion to a SIP message a few selected SIP message

 fields are input to a hash function. The digest-string, defined in

 Section 10 of [I-D.ietf-sip-identity], is included into the

 conditions extension point of the SAML assertion. Details are for

 further study.

Tschofenig, et al. Expires January 7, 2006 [Page 20]

Internet-Draft Using SAML for SIP July 2005

8. Example

 This is an example of a SAML assertion and how it is structured in

 XML.

 <saml:Assertion

 xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"

 MajorVersion="1"

 MinorVersion="1"

 AssertionID="P1YaAz/tP6U/fsw/xA+jax5TPxQ="

 Issuer="www.example.com"

 IssueInstant="2004-06-28T17:15:32.753Z">

 <saml:Conditions NotBefore="2004-06-28T17:10:32.753Z"

 NotOnOrAfter="2004-06-28T17:20:32.753Z" />

 <saml:AuthenticationStatement

 AuthenticationMethod="urn:ietf:rfc:3075"

 AuthenticationInstant="2004-06-28T17:15:12.706Z">

 <saml:Subject>

 <saml:NameIdentifier>

 NameQualifier=alice@example.com

 Format="urn:oasis:names:tc:SAML:1.1:nameid-

 format:emailAddress">uid=alice

 </saml:NameIdentifier>

 <saml:SubjectConfirmation>

 <saml:ConfirmationMethod>

 urn:oasis:names:tc:SAML:1.0:

 cm:SIP-artifact-01

 </saml:ConfirmationMethod>

 </saml:SubjectConfirmation>

 </saml:Subject>

 </saml:AuthenticationStatement>

 </saml:Assertion>

 The elements in the assertion have the following meaning:

Tschofenig, et al. Expires January 7, 2006 [Page 21]

Internet-Draft Using SAML for SIP July 2005

 +---------------------+-----+-------------------------------+

 | Tag name |Req- | Description |

 | |uired| |

 +---------------------+-----+-------------------------------+

 |MajorVersion | X |Major version of the assertion |

 +---------------------+-----+-------------------------------+

 |MinorVersion | X |Minor version of the assertion |

 +---------------------+-----+-------------------------------+

 |AssertionID | X |ID of the assertion |

 +---------------------+-----+-------------------------------+

 |Issuer | X |The name of the SAML authority |

 | | |that created the assertion |

 +---------------------+-----+-------------------------------+

 |IssuerInstant | X |Issuing time of the assertion |

 +---------------------+-----+-------------------------------+

 | | |Conditions that MUST be taken |

 |Conditions | |into account when assessing |

 | | |the validity of the assertion |

 +---------------------+-----+-------------------------------+

 | | |Specifies |

 |AuthenticationMethod | X |what kind of authentication |

 | | |took place |

 +---------------------+-----+-------------------------------+

 |AuthenticationInstant| X |Specifies the time when the |

 | | |authentication took place |

 +---------------------+-----+-------------------------------+

 |Qualifier | |The name by which the subject |

 | | |is recognized |

 +---------------------+-----+-------------------------------+

 | | |A URI reference representing |

 |Format | |the format of NameIdentifier |

 | | | |

 +---------------------+-----+-------------------------------+

 | | |Specifies a subject by supply- |

 |SubjectConfirmation | |ing data that allows the sub- |

 | | |ject to be authenticated |

 +---------------------+-----+-------------------------------+

 | | |Identifies |

 |ConfirmationMethod | |which method to be used for |

 | | |authenticating the subject |

 +---------------------+-----+-------------------------------+

 Figure 10: Tag descriptions

Tschofenig, et al. Expires January 7, 2006 [Page 22]

Internet-Draft Using SAML for SIP July 2005

9. Requirement Comparison

 A future version of this document will compare the requirements

 listed in [I-D.ietf-sipping-trait-authz] with the solution provided

 in this document.

Tschofenig, et al. Expires January 7, 2006 [Page 23]

Internet-Draft Using SAML for SIP July 2005

10. Security Considerations

 This section discusses security considerations when using SAML with

 SIP.

10.1 Stolen Assertion

 Threat:

 If an eavesdropper can copy the real user’s SAML response and

 included assertions and construct a SIP message of his own, then

 the eavesdropper could be able to impersonate the user at other

 SIP entities.

 Countermeasures:

 By providing adequate confidentiality, eavesdropping of a SAML

 assertion can be stopped.

10.2 MitM Attack

 Threat:

 Since the SAML assertion is carried within a SIP message, a

 malicious site could impersonate the user at some other SIP

 entities. These SIP entities would believe the adversary to be

 the subject of the assertion.

 Countermeasures:

 If the adversary is a not-participating in the SIP signaling

 itself (i.e., it is not a SIP proxy or a SIP UA), this threat can

 be eliminated by employing inherent SIP security mechanisms, such

 as TLS. However, if this entity is part of the communication

 itself then reference integrity needs to be provided. Assertions

 with tight restrictions (e.g., validity of the assertion) can also

 limit the possible damage.

10.3 Forged Assertion

 Threat:

 A malicious user could forge or alter a SAML assertion in order to

 communicate with the SIP entities.

Tschofenig, et al. Expires January 7, 2006 [Page 24]

Internet-Draft Using SAML for SIP July 2005

 Countermeasures:

 To avoid this kind of attack, the entities must assure that proper

 mechanisms for protecting the SAML assertion needs to be in place.

 It is recommended to protect the assertion using a digital

 signature.

10.4 Replay Attack

 Threat:

 In the case of using SIP with the SAML pull model, the threat of

 replay lies in the fact that the artifact is a one-time-use

 subject. The same artifact can be used again to gain access to

 resources.

 Countermeasures:

 Cases where multiple requests are made which references the same

 request must be tracked in order to avoid the threat.

Tschofenig, et al. Expires January 7, 2006 [Page 25]

Internet-Draft Using SAML for SIP July 2005

11. Contributors

 The authors would like to thank Henning Schulzrinne for his

 contributions to this document.

Tschofenig, et al. Expires January 7, 2006 [Page 26]

Internet-Draft Using SAML for SIP July 2005

12. Acknowledgments

 We would like to thank RL ’Bob’ Morgan and Stefan Goeman for their

 comments to this draft.

Tschofenig, et al. Expires January 7, 2006 [Page 27]

Internet-Draft Using SAML for SIP July 2005

13. IANA Considerations

 This document contains a number of IANA considerations. A future

 version of this document will list them in this section.

Tschofenig, et al. Expires January 7, 2006 [Page 28]

Internet-Draft Using SAML for SIP July 2005

14. Open Issues

 This document raises a number of issues with regard to the SIP

 protocol interaction. Some of them are raised in this document (such

 as reference integrity, who is allowed to add which information,

 etc.) but a more detailed treatment of this topic with a focus of

 identity management is described in [I-D.peterson-message-identity].

 In particular, the following sections are highly relevant for this

 document:

 Assertion Constraints and Scope:

 This aspect deals with the problem of binding a SIP assertion to a

 specific SIP message. The goal is to provide a security property

 called reference integrity to prevent replay and impersonation

 attacks. As described in Section 5 that a number of fields can be

 used for this purpose. This document also considers scenarios

 where the SAML assertion was obtained outside a SIP protocol run.

 In these cases SIP fields are not available to provide reference

 integrity. The concept of the holder-of-the-key assertion is

 described below and relevant for this discussion.

 Canonicalization versus Replication:

 To provide reference integrity a few selected fields need to be

 hashed, signed and placed into the assertion. Two approaches are

 available for this purpose. Hence it needs to be studied how the

 interworking between reference integrity and the usage of obtained

 SAML assertion can be properly accomplished. For example, who

 indicates which fields are included?

 Placement of Assertions and Keys in Messages:

 This document assumes that the assertions are added to the SIP

 body and artifacts or references to assertions located in the SIP

 body are added to the SIP header. A central question is therefore

 where these assertions should be attached? Should the SIP user

 agent or intermediate SIP proxies add assertions/artifacts? In

 the scenarios depicted in Section 6, we have both approaches

 depending on what kind of scenario it is. In Figure 4, they are

 added at the UA and in contrast we have Figure 7, where the

 assertions are added at the PSTN/SIP gateway.

 MIME bodies can only be attached at the UA. Proxies by definition

 do not attach MIME bodies; if an intermediary were to do so, it

 would not be playing the proxy server role in the SIP

 architecture. The SIP content indirection mechanism [I-D.ietf-

 sip-content-indirect-mech] is also relevant in this discussion.

Tschofenig, et al. Expires January 7, 2006 [Page 29]

Internet-Draft Using SAML for SIP July 2005

 To provide reference integrity (by binding a SIP session and a SAML

 assertion together) two alternative approaches exist:

 Hashing of SIP message fields:

 If a hash is computed over a number of selected SIP fields and

 subsequently digitally signed then there is a some degree of

 protection that the assertion cannot be copied to other SIP

 messages and reused. The drawback thereby is that the assertion

 has a very limited time period. The hashed fields may vary from

 context to context.

 Holder-of-the-Key Assertion:

 SAML introduces the concept of a holder-of-the-key assertion to

 bind the assertions (authorization information) to a cryptographic

 key. As a result, the end host which was quite passive when

 dealing with assertions can be turned into an active protocol

 participant. The end host obtained the assertion and attached

 them to selected messages but did not provide any cryptographic

 computations with regard to the assertion itself. With the end

 host being active in the protocol exchange security is improved a

 lot. Furthermore, it is possible to combine the benefits of the

 work done with SIPPING-CERT [I-D.ietf-sipping-certs] and this

 document by binding a self-signed certificate created by the user

 and stored at the credential server to an assertion. As noted in

 Section 9 of [I-D.ietf-sipping-certs] in the context of signing

 SIP messages the usage of a self-signed certificate is not very

 helpful except used with an Authentication Service. Combined with

 a SAML assertion the signature would protect the SIP message and

 the SAML assertion would provide authorization information.

 A number of credentials can be used with the KeyInfo element of the

 Holder-of-the-Key assertion as described in Section 4.4 of [xmldsig-

 core].

 Further open issues are:

 o Some work on option-tags is required. Are there cases when

 processing of the assertion would be required by the sender? Or

 when a proxy server wants to be able to say that a UA must supply

 this header in order to access a particular resource? If so, an

 option-tag should be defined for this extension that can be used

 in Require, Supported, 420, etc.

 o Specific SAML confirmation method identifiers and identifiers for

 the bindings or profiles must be defined and registered with

 OASIS. A confirmation method identifier is a URI that specifies

Tschofenig, et al. Expires January 7, 2006 [Page 30]

Internet-Draft Using SAML for SIP July 2005

 which method should be used by the target domain to assure that

 the identity of the subject is true.

 This mechanism seems to be provide the same reference integrity

 properties as the hash over the various headers/bodies proposed in

 the identity draft.

 o Further use cases would be interesting. For example, a mechanism

 to provide additional security for the SIP REFER method [RFC3515].

 o A few new URIs need to be registered. The proposed URIs for

 identification are:

 SIP Binding: urn:oasis:names:tc:SAML:1.0:bindings:SIP-binding

 Artifact

 profile: urn:oasis:names:tc:SAML:1.0:profiles:SIP-artifact-01

 Assertion

 profile: urn:oasis:names:tc:SAML:1.0:profiles:SIP-assertion-01

 o The proposed URIs for Confirmation Method Identifiers are:

 Artifact profile: urn:oasis:names:tc:SAML:1.0:cm:SIP-artifact-01

 Assertion profile: urn:oasis:names:tc:SAML:1.0:cm:SIP-bearer

 o These are based on the URIs already used in the existing SOAP-SAML

 binding, specified in Section 3 of [I-D.saml-bindings-1.1].

 o An alignment with the work done by Liberty Alliance on Federated

 Identities as described in [I-D.liberty-idff-arch-overview] would

 be useful.

 o The security consideration needs more details.

Tschofenig, et al. Expires January 7, 2006 [Page 31]

Internet-Draft Using SAML for SIP July 2005

15. References

15.1 Normative References

 [I-D.hodges-saml-mediatype]

 Hodges, J., "application/saml+xml Media Type

 Registration", draft-hodges-saml-mediatype-01 (work in

 progress), June 2004.

 [I-D.ietf-sipping-trait-authz]

 Peterson, J., "Trait-based Authorization Requirements for

 the Session Initiation Protocol (SIP)",

 draft-ietf-sipping-trait-authz-01 (work in progress),

 February 2005.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", March 1997.

 [RFC2392] Levinson, E., "Content-ID and Message-ID Uniform Resource

 Locators", RFC 2392, August 1998.

15.2 Informative References

 [I-D.ietf-sip-authid-body]

 Peterson, J., "SIP Authenticated Identity Body (AIB)

 Format", draft-ietf-sip-authid-body-03 (work in progress),

 May 2004.

 [I-D.ietf-sip-content-indirect-mech]

 Burger, E., "A Mechanism for Content Indirection in

 Session Initiation Protocol (SIP) Messages",

 draft-ietf-sip-content-indirect-mech-05 (work in

 progress), October 2004.

 [I-D.ietf-sip-identity]

 Peterson, J. and C. Jennings, "Enhancements for

 Authenticated Identity Management in the Session

 Initiation Protocol (SIP)", draft-ietf-sip-identity-05

 (work in progress), May 2005.

 [I-D.ietf-sipping-certs]

 Jennings, C. and J. Peterson, "Certificate Management

 Service for The Session Initiation Protocol (SIP)",

 draft-ietf-sipping-certs-01 (work in progress),

 February 2005.

 [I-D.jennings-sipping-pay]

 Jennings, C., "Payment for Services in Session Initiation

Tschofenig, et al. Expires January 7, 2006 [Page 32]

Internet-Draft Using SAML for SIP July 2005

 Protocol (SIP)", draft-jennings-sipping-pay-01 (work in

 progress), February 2005.

 [I-D.liberty-idff-arch-overview]

 Wason, T., "Liberty ID-FF Architecture Overview", 2004.

 [I-D.peterson-message-identity]

 Peterson, J., "Security Considerations for Impersonation

 and Identity in Messaging Systems",

 draft-peterson-message-identity-00 (work in progress),

 October 2004.

 [I-D.saml-bindings-1.1]

 Maler, E., Philpott, R., and P. Mishra, "Bindings and

 Profiles for the OASIS Security Assertion Markup Language

 (SAML) V1.1", September 2003.

 [I-D.saml-core-1.1]

 Maler, E., Philpott, R., and P. Mishra, "Assertions and

 Protocol for the OASIS Security Assertion Markup Language

 (SAML) V1.1", September 2003.

 [I-D.saml-sec-consider-1.1]

 Maler, E. and R. Philpott, "Security and Privacy

 Considerations for the OASIS Security Markup Language

 (SAML) V1.1", September 2003.

 [I-D.saml-tech-overview-1.1-03]

 Maler, E. and J. Hughes, "Technical Overview of the OASIS

 Security Assertion Markup Language (SAML) V1.1",

 March 2004.

 [RFC2543] Handley, M., Schulzrinne, H., Schooler, E., and J.

 Rosenberg, "SIP: Session Initiation Protocol", RFC 2543,

 March 1999.

 [RFC3515] Sparks, R., "The Session Initiation Protocol (SIP) Refer

 Method", RFC 3515, April 2003.

 [xmldsig-core]

 Eastlake, D., Reagle, J., and D. Solo, "XML-Signature

 Syntax and Processing, W3C Recommendation (available at

 http://www.w3.org/TR/xmldsig-core/)", February 2002.

Tschofenig, et al. Expires January 7, 2006 [Page 33]

Internet-Draft Using SAML for SIP July 2005

Authors’ Addresses

 Hannes Tschofenig

 Siemens

 Otto-Hahn-Ring 6

 Munich, Bavaria 81739

 Germany

 Email: Hannes.Tschofenig@siemens.com

 Jon Peterson

 NeuStar, Inc.

 1800 Sutter St Suite 570

 Concord, CA 94520

 US

 Email: jon.peterson@neustar.biz

 James Polk

 Cisco

 2200 East President George Bush Turnpike

 Richardson, Texas 75082

 US

 Email: jmpolk@cisco.com

 Douglas C. Sicker

 University of Colorado at Boulder

 ECOT 430

 Boulder, CO 80309

 US

 Email: douglas.sicker@colorado.edu

 Marcus Tegnander

 Letterkenny Institute of Technology

 Port Road

 Letterkenny, Donegal

 Ireland

Tschofenig, et al. Expires January 7, 2006 [Page 34]

Internet-Draft Using SAML for SIP July 2005

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any

 Intellectual Property Rights or other rights that might be claimed to

 pertain to the implementation or use of the technology described in

 this document or the extent to which any license under such rights

 might or might not be available; nor does it represent that it has

 made any independent effort to identify any such rights. Information

 on the procedures with respect to rights in RFC documents can be

 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any

 assurances of licenses to be made available, or the result of an

 attempt made to obtain a general license or permission for the use of

 such proprietary rights by implementers or users of this

 specification can be obtained from the IETF on-line IPR repository at

 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any

 copyrights, patents or patent applications, or other proprietary

 rights that may cover technology that may be required to implement

 this standard. Please address the information to the IETF at

 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an

 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS

 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET

 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,

 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE

 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED

 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject

 to the rights, licenses and restrictions contained in BCP 78, and

 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the

 Internet Society.

Tschofenig, et al. Expires January 7, 2006 [Page 35]

SIP Working Group D. Willis, Ed.

Internet-Draft Cisco Systems

Expires: December 16, 2005 A. Allen

 Research in Motion (RIM)

 June 14, 2005

 Requesting Answering and Alerting Modes for the Session Initiation

 Protocol (SIP)

 draft-willis-sip-answeralert-00

Status of this Memo

 By submitting this Internet-Draft, each author represents that any

 applicable patent or other IPR claims of which he or she is aware

 have been or will be disclosed, and any of which he or she becomes

 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF), its areas, and its working groups. Note that

 other groups may also distribute working documents as Internet-

 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at

 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at

 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on December 16, 2005.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 This document defines two SIP extension header fields and associated

 option tags that can be used in INVITE requests to convey the

 requester’s preference for user-interface handling of that request.

 The first header, "Answer-Mode", expresses a preference as to whether

 the target node’s user interface waits for user input before

 accepting the request or instead accepts the request without waiting

Willis & Allen Expires December 16, 2005 [Page 1]

Internet-Draft SIP Answering and Alerting Modes June 2005

 on user input. The second header, "Alert-Mode", expresses a

 preference as to whether the target node’s user interface alerts the

 user about the request. These behaviors have applicability to

 applications such as Push-to-Talk and to diagnostics like loop-back.

 This document also defines use of the SIP extension header field

 "Answer-Mode", in a response to an INVITE request to inform the

 requester as to which answer mode was actually applied to this

 request. There are significant security considerations, especially

 when the two request options are used together.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

 document are to be interpreted as described in [1].

Willis & Allen Expires December 16, 2005 [Page 2]

Internet-Draft SIP Answering and Alerting Modes June 2005

Table of Contents

 1. Background . 5

 2. Requirements . 6

 2.1 Requirements for Requesting an Answering Mode 6

 2.2 Requirements for Requesting an Alerting Mode 8

 2.3 Requirements for Indicating the Applied Answer Mode

 in a Response . 8

 3. Syntax of Header Fields and Tags 9

 3.1 Syntax of Header Field and Tags 9

 3.2 Amendments to Table 2 and 3 of RFC3261 9

 4. Usage of the Answer-Mode Header Field, Option, and Media

 Feature Tags in a Request 10

 4.1 Procedures at the UAC 10

 4.1.1 All Requests . 10

 4.1.2 REGISTER Transactions 10

 4.1.3 INVITE Transactions 11

 4.2 Procedures at Intermediate Proxies 12

 4.3 Procedures at the UAS 12

 4.4 Issues with Automatic Answering and Forking 13

 5. Usage of the Alert-Mode Header Field, Option, and Media

 Feature Tags In a Request 14

 5.1 Procedures at the UAC 14

 5.1.1 All Requests . 14

 5.1.2 REGISTER Transactions 14

 5.1.3 INVITE transactions 14

 5.2 Procedures at Intermediate Proxies 15

 5.3 Procedures at the UAS 15

 6. Usage of the Answer-Mode Header Field in a Response 15

 6.1 Procedures at the UAS 16

 6.2 Procedures at the UAC 16

 7. Examples of Usage . 16

 7.1 REGISTER Request . 17

 7.2 INVITE Request . 17

 7.3 200 OK response . 17

 8. Security Considerations 17

 9. IANA Considerations . 18

 9.1 Registration of Header Fields 18

 9.2 Registration of Header Field Parameters 19

 9.3 Registration of Extension Option Tags 19

Willis & Allen Expires December 16, 2005 [Page 3]

Internet-Draft SIP Answering and Alerting Modes June 2005

 10. Acknowledgements . 20

 11. References . 20

 11.1 Normative References 20

 11.2 Informative References 21

 Authors’ Addresses . 22

 Intellectual Property and Copyright Statements 23

Willis & Allen Expires December 16, 2005 [Page 4]

Internet-Draft SIP Answering and Alerting Modes June 2005

1. Background

 There has been discussion of how to deal with "auto-answer" and

 related issues in the SIP community for several years. Discussion in

 the SIPPING working group, augmented by input from other

 organizations such as the Open Mobile Alliance, resulted in a

 consensus observed in the SIPPING meeting at IETF 62 to extend SIP,

 which is defined in [2]. Further discussion of the topic on the SIP

 mailing list after IETF 62 led to a consensus to pursue this work in

 the SIP working group as a standards-track effort.

 Two different use cases converged to create the consensus for the

 development of this specification. Other use cases presumably exist,

 but two is enough to establish the level of reusability required to

 justify a standards-track extension as opposed to a "P-header" under

 [3].

 The first key use case was the requirement for diagnostic loopback

 calls. In this sort of scenario, a testing service sends an INVITE

 to a node being tested. The tested node accepts and a dialog is

 established. But rather than establishing a two-way media flow, the

 tested node loops back or "echoes" media received from the testing

 service back toward the testing service. The testing service can

 then analyze the media flow for quality and timing characteristics.

 SDP usage for this sort of flow is described in [11]. In this sort

 of application, it may not be needful that the human using the node

 under test interact with the node in any way for the test to be

 satisfactorily executed. In some cases, it might be appropriate to

 alert the user to the ongoing test, and in other cases it might not

 be.

 The second use case is that of "Push to Talk" applications as

 described in [12] and relates to a service being specified by the

 Open Mobile Alliance. In this sort of environment, SIP is used to

 establish ‘a dialog supporting asynchronous delivery of

 unidirectional media flow, giving a user experience like that of a

 traditional two-way radio. It is conventional for the INVITES used

 to be automatically accepted by the called UA (User Agent), and the

 media is commonly played out on a loudspeaker.

 These sorts of mechanisms are not required to provide the

 functionality of an "answering machine" or "voice mail recorder".

 Such a device knows that it should answer and does not require a SIP

 extension to support its behavior.

 Much of the discussion of this topic in working group meetings and on

 the mailing list dealt with disambiguating "answering mode" from

 "alerting mode". Some early work, such as [12], did not make this

Willis & Allen Expires December 16, 2005 [Page 5]

Internet-Draft SIP Answering and Alerting Modes June 2005

 distinction. We therefore proceed with the following definitions:

 o Answering Mode includes behaviors in a SIP UA relating to

 acceptance or rejection of a request that are contingent on

 interaction between the UA and the user of that UA after the UA

 has received the request. We are principally concerned with the

 user interaction involved in accepting the request and initiating

 an active session. An example of this might be pressing the "yes"

 button on a mobile phone.

 o Alerting Mode includes behaviors in a SIP UA relating to to

 informing the user of the UA that a request to initiate a session

 has been received. An example of this might be activating the

 ring tone of a mobile phone.

2. Requirements

 Requirements in the following are expressed relative to the node

 initiating an INVITE request (UAC), the node receiving and

 potentially responding to that request (UAS), and the users of those

 nodes (UAC-user and UAS-user).

2.1 Requirements for Requesting an Answering Mode

 The requirements relating to requesting a specific answering mode

 include:

 Req-1: It MUST be possible for UAC to ask that the UAS answer the

 request without requiring interaction between UAS-user and the

 user interface (UI) of the UAS. We refer to this as "automatic

 answer mode". This mode is useful for diagnostic loopback

 procedures and critical for "two-way radio" or "push to talk"

 applications.

 Req-2: It MUST be possible for UAC to ask that the UAS answer the

 request only after UAS-user has directed UAS to answer this

 specific request. We refer to this as "manual answer mode". This

 mode is useful in "push to talk" applications where the sender

 requires a reassurance that somebody is listening.

 Req-3: It MUST be possible for UAS to apply local policy to each

 request and determine whether or not to provide the requested

 answer mode for this request. This policy determination MAY

 include authentication checks, authorization against "buddy lists"

 as used in some presence systems, or other mechanisms outside the

 scope of this specification. This behavior is critical in

 avoiding major security pitfalls, such as turning the victim’s

 phone into a "bug" or eavesdropping device.

Willis & Allen Expires December 16, 2005 [Page 6]

Internet-Draft SIP Answering and Alerting Modes June 2005

 Req-4: It MUST be possible for UAC to indicate in the request that

 this extension for selecting answering mode is required, such that

 UAS MUST reject the request if it does not support this extension.

 This can be used to prevent automated diagnostic loopback requests

 from annoying nodes not supporting this extension

 Req-5: It MUST be possible for UAC to indicate at least two different

 priority levels for the desired answer mode. We refer to these as

 "normal" and "override" priorities. In normal usage, we expect

 that "normal" priority would be used in a user-to-user fashion,

 whereas "override" priorities would be used for diagnostic

 procedures or some sorts of emergency session establishment. This

 behavior allows a device to be set up such that it might not auto-

 answer routine calls, but could be convinced to auto-answer an

 emergency or other high-priority call.

 Req-6: It MUST be possible for UAS or proxies acting on behalf of UAS

 to apply policy relative to the indicated priority level. This

 MAY include having different authentication and or authorization

 procedures for each priority level. This capability allows

 functions like time-of-day call screening, so that routine calls

 that would normally be rejected locally by the device would be

 blocked by a proxy without access network costs, but high-priority

 calls that would override routine call screening could be passed

 to the device.

 Req-7: It MUST be possible for UAS to indicate its support for the

 selection of answer modes in a REGISTER request so that that the

 routing proxy can selectively route requests requiring the

 selection of answer mode to UAS. This requirement enables the

 functions described in the next requirement.

 Req-8: It MUST be possible for the UAC to construct the request in

 such a way that the routing proxy infrastructure, if present, will

 select only contacts supporting the selection of answer modes.

 This can efficiently (minimal access network traffic and minimal

 forking load) prevent devices that do not support this extension

 from being reached by requests that require this extension. Note

 that this requirement does NOT include selection of a singular UAS

 from a set to which the request might be forked.

 Req-9: It MUST be possible for UAC to discover whether UAS supports

 the selection of answer modes via a SIP OPTIONS request.

 Req-10: It MUST be possible for an intermediate proxy acting on

 behalf of UAC or UAS to apply policy relative to the answer mode

 indicated in a request. For example, a proxy may require special

 authentication and authorization for a request that places a high

 priority on auto-answer capabilities. Application of policy here

 means altering the requested answer mode and/or inserting or

 deleting a request for a specific answer mode.

Willis & Allen Expires December 16, 2005 [Page 7]

Internet-Draft SIP Answering and Alerting Modes June 2005

2.2 Requirements for Requesting an Alerting Mode

 The requirements relating to requesting a specific alerting mode

 include:

 Req-11: It MUST be possible for UAC to ask that UAS answer the

 request without alerting UAS-user. This allows for diagnostic

 loopbacks that do not needlessly interrupt the user of a device.

 Req-12: It MUST be possible for UAS to apply local policy to each

 request and determine whether or not to provide the requested

 alerting mode for this request. This policy determination MAY

 include authentication checks, authorization against "buddy lists"

 as used in some presence systems, or other mechanisms outside the

 scope of this specification.

 Req-13: It MUST be possible for UAC to indicate in the request that

 this extension for selecting alerting mode is required, such that

 UAS MUST reject the request if it does not support this extension.

 This capability augments the ability of automated testing

 functions to operate non-intrusively when some devices in a

 network do not support this extension.

 Req-14: It MUST be possible for UAC to discover whether UAS supports

 the selection of alerting modes via a SIP OPTIONS request.

 Req-15: It MUST be possible for UAS to indicate its support for the

 selection of alerting modes in a REGISTER request so that that the

 routing proxy can selectively route requests requiring the

 selection of alerting mode to UAS. This supports the

 functionality described in the following requirement.

 Req-16: It MUST be possible for UAC to construct the request in such

 a way that the routing proxy infrastructure, if present, will

 select only contacts supporting the selection of alerting modes.

 This allows the proxy network to efficiently avoid sending the

 request to nodes that do not support this extension.

 Req-17: It MUST be possible for an intermediate proxy acting on

 behalf of UAC or UAS to apply policy relative to the alerting mode

 indicated in a request. Application of policy here means altering

 the requested alerting mode and/or inserting or deleting a request

 for a specific alerting mode.

2.3 Requirements for Indicating the Applied Answer Mode in a Response

 The requirements relating to indicating which answering mode applied

 to the request include:

 Req-18: It MUST be possible for UAS when sending a positive response

 to a request to indicate the answering mode that applied to the

 request. This allows UAC to inform UAC-user as to whether the

 request was answered automatically or as a result of user

 interaction, knowledge that may be important in informing UAC-

Willis & Allen Expires December 16, 2005 [Page 8]

Internet-Draft SIP Answering and Alerting Modes June 2005

 user’s usage of the session.

 Req-19: UAS SHOULD accurately represent the answering mode that was

 applied, but MAY either not include this information or MAY

 misinform UAC in order to maintain the privacy expectations of

 UAS-user. Consequently, applications MUST NOT rely on the

 veracity of this information.

3. Syntax of Header Fields and Tags

3.1 Syntax of Header Field and Tags

 The syntax for the header fields defined in this document is:

 Answer-Mode = "Answer-Mode" HCOLON answer-mode

 answer-mode = "Manual" / "ManualReq" / "Auto" / "AutoReq"

 Alert-Mode = "Alert-Mode" HCOLON alert-mode

 alert-mode = "Normal" / "Null"

 The syntax of the Alert-Mode option tag is:

 Alert-Mode = "alertmode"

 The syntax of the Answer-Mode option tag is:

 Answer-Mode = "answermode"

 The syntax of the feature tag indicating support for selection of the

 answer mode is:

 Answer-Mode = "answermode"

 The syntax for feature tags is defined in [4]

 The value range of the Answer-Mode feature tag is binary, with

 values of "TRUE" or "FALSE".

3.2 Amendments to Table 2 and 3 of RFC3261

 The allowable usage of header fields is described in Tables 2 and 3

 of [2]. The following additions to this table are needed for the

 extension header fields defined in this document.

 Additions to SIP Table 3:

 Header field where proxy ACK BYE CAN INV OPT REG PRA

 Answer-Mode I adm - - - - - - -

 Alert-Mode I adm - - - - - - -

 Answer-Mode 200 - - - X - - -

Willis & Allen Expires December 16, 2005 [Page 9]

Internet-Draft SIP Answering and Alerting Modes June 2005

 Figure 1

4. Usage of the Answer-Mode Header Field, Option, and Media Feature

 Tags in a Request

 The Answer-Mode header field is used by a UAC to request specific

 handling of an INVITE request by the responding UAS related to

 "automatic answering" functionality. If no Answer-Mode header field

 is included in the request, answering behavior is at the discretion

 of the UAS, as it would be in the absence of this specification. The

 desired handling is indicated by the the value of the Answer-Mode

 header field, as follows:

 Manual: The UAS is asked to not accept the request (send a 200 OK)

 until the user of the UAS has interacted with the user interface

 (UI) of the UAS in such a way as to indicate that the user desires

 the UAS to accept the request.

 ManualReq: The UAS is strongly asked to accept the request manually,

 as in "Manual". Further, the UAS is asked to override local user

 preferences relating to automatic answer, and answer manually even

 if the user preferences are to automatically answer requests

 having a Answer-Mode header field value of "Manual". The UAS is

 also asked NOT to answer automatically, and to reject the request

 if it is unwilling to answer manually.

 Auto: The UAS is asked to accept the request automatically, without

 waiting for the user of the UAS to interact with the UI of the UAS

 in such a way as to indicate that the user desires the UAS to

 accept the request.

 AutoReq: The UAS is strongly asked to accept the request

 automatically, as in "Auto". Further, the UAS is asked to

 override local user preferences relating to automatic answer, and

 answer automatically even if the user preferences are to not

 automatically answer requests having a Answer-Mode header field

 value of "Auto". The UAS is also asked NOT to answer manually,

 and to reject the request if it is unwilling to answer

 automatically.

4.1 Procedures at the UAC

4.1.1 All Requests

 A UAC supporting this specification indicates its support for this

 extension by including an option tag of "answermode" in the Supported

 header field of all requests it sends.

4.1.2 REGISTER Transactions

 To indicate that it supports the answer-mode negotiation feature, a

Willis & Allen Expires December 16, 2005 [Page 10]

Internet-Draft SIP Answering and Alerting Modes June 2005

 UA includes a SIP extension feature tag of "answermode" in the

 Contact: header field of its REGISTER requests. This usage of

 feature tags is described in [5].

4.1.3 INVITE Transactions

 A UAC supporting this specification includes a Answer-Mode header

 field and appropriate value in an INVITE where it wishes to influence

 the answering mode of the responding UAS.

 To request that the UAS answer only after having interacted with its

 user and receiving an affirmative instruction from that user, the UAC

 includes a Answer-Mode header field having a value of "Manual".

 To request that the UAS answer manually, and ask that it reject the

 INVITE request if unable or unwilling to answer manually, the UAC

 includes a Answer-Mode header field having a value of "ManualReq".

 To request that the UAS answer automatically without waiting for

 input from the user, the UAC includes a Answer-Mode header field

 having a value of "Auto".

 To request that the UAS answer automatically, and ask that it reject

 the INVITE request if unable or unwilling to answer automatically,

 the UAC includes a Answer-Mode header field having a value of

 "AutoReq".

 To require that the UAS either support this extension or reject the

 request, the UAC includes a Required: header field having the value

 "answermode". Note that this does not actually force the UAS to

 automatically answer, it just requires that the UAS understand this

 negotiation mechanism. We do not have a negotiation technique (like

 "requires") to force specific behavior. Rather, the desired behavior

 is indicated in the SIP extension itself.

 To request that retargeting proxies in the path preferentially select

 targets that have indicated support for this extension in their

 registration, a UAC includes an Accept-Contact header field having a

 parameter of "answermode". This usage of Accept-Contact is described

 in [6].

 To request that retargeting proxies in the path do not select targets

 that have indicated non-support for this extension in their

 registration, a UAC includes an Accept-Contact header field having a

 parameter of "answermode" and an option field of "require". This

 usage of Accept-Contact is described in [6].

 To request that retargeting proxies in the path exclusively select

Willis & Allen Expires December 16, 2005 [Page 11]

Internet-Draft SIP Answering and Alerting Modes June 2005

 targets that have indicated support for this extension in their

 registration, a UAC includes an Accept-Contact header field having a

 parameter of "answermode" and option fields of "require" and

 "explicit". This usage of Accept-Contact is described in [6].

4.2 Procedures at Intermediate Proxies

 The general procedure at all intermediate proxies including the UAC’s

 serving proxy or proxies and the UAS’s serving proxy or proxies is to

 ignore the Answer-Mode header field. However, the serving proxies

 MAY exercise control over the requested answer mode, either inserting

 or deleting a Answer-Mode header field or altering the value of an

 existing header field in accord with local policy. Note that this

 may result in behavior that is inconsistent with user expectations,

 such as having a call that was intended to be a diagnostic loopback

 answered by a human, and consequently must be done very carefully.

 These serving proxies MAY also reject a request according to local

 policy, and SHOULD use the rejection codes as specified below for the

 UAS if they do so.

4.3 Procedures at the UAS

 For a request having an Answer-Mode value of "Manual", the UAS SHOULD

 defer accepting the request until the user of the UAS has confirmed

 willingness to accept the request. This behavior MAY be altered as

 needed for unattended UAS or other local characteristics or policy.

 For example, an auto-attendant system that always answers

 automatically would go ahead and answer, despite the presence of the

 "Manual" Answer-Mode header field value.

 For a request having an Answer-Mode value of "ManualReq", the UAS

 SHOULD defer accepting the request until the user of the UAS has

 confirmed willingness to accept the request. If the UAS is not

 capable of answering the request in this "Manual" mode or is

 unwilling to do so, it SHOULD reject the request with a "403

 Forbidden" response and MAY include a Reason [7] header field value

 of:

 Reason: SIP ;cause=403 ;text="manual answer forbidden"

 For a request having an Answer-Mode value of "Auto", the UAS SHOULD,

 if the calling party is authenticated and authorized for automatic

 answering, accept the request without further user input. The UAS

 MAY, according to local policy or user preferences, treat this

 request as it would treat a request having a Answer-Mode with a value

 of "Manual" or having no Answer-Mode header field. If the calling

 party is not authenticated and authorized for automatic answer, the

 UAS may either handle the request as per "manual", or reject the

Willis & Allen Expires December 16, 2005 [Page 12]

Internet-Draft SIP Answering and Alerting Modes June 2005

 request. If the UAS rejects the request, it SHOULD do so with a "403

 Forbidden" response, and MAY include a Reason [7] header field value

 of:

 Reason: SIP ;cause=403 ;text="automatic answer forbidden"

 For a request having an Answer-Mode value of "AutoReq", the UAS

 SHOULD apply authentication and authorization checks before accepting

 such a request. The UAS MUST NOT allow "manual" answer of this

 request, but MAY reject it. If, for whatever reason, the UAS chooses

 not to accept the request automatically, the UAS MUST reject the

 request and SHOULD do so with a "403 Forbidden" response, and MAY

 include a Reason [7] header field value of:

 Reason: SIP ;cause=403 ;text="automatic answer forbidden"

4.4 Issues with Automatic Answering and Forking

 One of the well-known issues with forking is the problem of multiple

 acceptance. If an INVITE request is forked to several UAS, and more

 than one of those UAS respond with a 200 OK, the conventional

 approach is to continue the dialog with the first respondent, and

 tear down the dialog (via BYE) with all other respondents.

 While this problem exists without an auto-answer negotiation

 capability, it is apparent that widespread adoption of UAS that

 engage in auto-answer behavior will exacerbate the multiple

 acceptance problem. Consequently, systems designers need to take

 this aspect into consideration. In general, auto-answer is probably

 NOT RECOMMENDED in environments that include forking.

 As an alternative, it might be reasonable to use a variation on

 manual-answer combined with no alerting and early media. In this

 approach, the initial message or talk-burst is transmitted as early

 media to all recipients, where it is displayed or played out. Any

 response utterance from the user of a UAS following this would serve

 as an "acceptance", resulting in a 200 OK response being transmitted

 by their UAS. Consequently, the race-condition for acceptance would

 be limited to the subset of UAs actually responding under user

 control, rather than the full set of UAS to which the request was

 forked.

 Another alternative would be to use dynamic conferencing instead of

 forking. In this approach, instead of forking the request, a

 conference would be initiated and all UAs invited into that

 conference. The mixer attached to the conference would then mediate

 traffic flows appropriately.

Willis & Allen Expires December 16, 2005 [Page 13]

Internet-Draft SIP Answering and Alerting Modes June 2005

5. Usage of the Alert-Mode Header Field, Option, and Media Feature Tags

 In a Request

 The Alert-Mode header field is used by a UAC to request specific

 handling of an INVITE request by the responding UAS related to the

 alerting of the user of the UAS. If no Alert-Mode header field is

 included in the request, alerting behavior is at the discretion of

 the UAS, as it would be in the absence of this specification. The

 desired handling is indicated by the the value of the Alert-Mode

 header field, as follows:

 Normal: The UAS is asked to treat the request as it normally would in

 the absence of this specification and exercise whatever alerting

 mechanism it might have and be configured to use.

 Null: The UAS is asked to not alert its user to the request.

5.1 Procedures at the UAC

5.1.1 All Requests

 A UAC supporting this specification indicates its support for this

 extension by including an option tag of "answermode" in the Supported

 header field of all requests it sends.

5.1.2 REGISTER Transactions

 To indicate that it supports the alert-mode negotiation feature, a UA

 includes a SIP extension feature tag of "alertmode" in the Contact:

 header field of its REGISTER requests. This usage of feature tags is

 described in [5].

5.1.3 INVITE transactions

 A UAC supporting this specification includes a Alert-Mode header

 field and appropriate value in an INVITE where it wishes to influence

 the alerting mode of the responding UAS.

 To request that the UAS not alert its user the UAC includes a Alert-

 Mode header field having a value of "Null".

 To request that the UAS apply its normal procedures for alerting the

 user the UAC either includes a Alert-Mode header field having a value

 of "Normal" or it includes no Alert-Mode header field.

 To require that the UAS either support this extension or reject the

 request, the UAC includes a Required: header field having a value of

 "alertmode".

Willis & Allen Expires December 16, 2005 [Page 14]

Internet-Draft SIP Answering and Alerting Modes June 2005

5.2 Procedures at Intermediate Proxies

 The general procedure at all intermediate proxies including the UAC’s

 serving proxy or proxies and the UAS’s serving proxy or proxies is to

 ignore the Alert-Mode header field. However, the serving proxies MAY

 exercise control over the requested answer mode, either inserting or

 deleting a Alert-Mode header field or altering the value of an

 existing header field in accord with local policy. Note that this

 may result in behavior that is inconsistent with user expectations,

 such as having a call that was intended to be a silent diagnostic

 loopback answered by a human, and consequently must be done very

 carefully. These serving proxies MAY also reject a request according

 to local policy, and SHOULD use the rejection codes as specified

 below for the UAS if they do so.

5.3 Procedures at the UAS

 A UAS supporting this specification considers the value of the Alert-

 Mode header field in an INVITE request in determining how and/or

 whether to alert the user of the UAS to the request. The UAS may

 also consider local policy, the presence of an authenticated identity

 or other authentication, and other elements of the request in making

 this determination.

 If the conclusion is to alert the user, the UAS invokes its preferred

 alerting mechanism. If the conclusion is to not alert the user, the

 UAS proceeds to process the request. Note that the decision of

 whether to accept the request is independent of the alerting

 decision, but one can generally not expect the user to make this

 decision unless the user has been alerted to the request.

 The general intent of a request having a Alert-Mode header field with

 a value of "Null" is that the user not be invasively interrupted by

 the request. Consequently, it might be appropriate to invoke a less-

 disruptive alerting mechanism (perhaps blinking a small light) as an

 alternative to not invoking any alerting mechanism.

6. Usage of the Answer-Mode Header Field in a Response

 The Answer-Mode header field may be inserted by a UAS into a response

 in order to indicate how it handled the associated request with

 respect to automatic answering functionality. The UAC may use this

 information to inform the user or otherwise adapt the behavior of the

 user interface. The handling is indicated by the the value of the

 Answer-Mode header field, as follows:

Willis & Allen Expires December 16, 2005 [Page 15]

Internet-Draft SIP Answering and Alerting Modes June 2005

 Manual: The UAS responded after the user of the UAS interacted with

 the user interface (UI) of the UAS in such a way as to indicate

 that the user desires the UAS to accept the request.

 ManualReq: The UAS responded manually, as above. Further, the

 request contained a Answer-Mode header field with the value

 "ManualReq", and the UAS has honored this requirement.

 Auto: The UAS responded automatically, without waiting for the user

 of the UAS to interact with the UI of the UAS in such a way as to

 indicate that the user desires the UAS to accept the request.

 AutoReq: The UAS responded automatically (as above). Further, the

 request contained a Answer-Mode header field with the value

 "AutoReq", and the UAS has honored this requirement.

 The Answer-Mode header field, when used in a response, is only valid

 in a 200 OK response to an INVITE request.

6.1 Procedures at the UAS

 A UAS supporting this specification inserts a Answer-Mode header

 field into the 200 OK response to an INVITE request when it wishes to

 inform the UAC as to whether the request was answered manually or

 automatically. The full rationale for including or not including

 this header field in a response is outside of the scope of this

 specification. However, it is reasonable for a UAS to assume that if

 the UAC included a Answer-Mode header field in the request that it

 would probably like to see a Answer-Mode header field in the

 response.

6.2 Procedures at the UAC

 A UAC can use the value of the Answer-Mode header field, if present,

 to adapt the user interface and/or inform the user about the handling

 of the request. For example, the user of a push-to-talk system might

 speak differently if she knows that the called party answered "in

 person" vs. having the call blare out of an unattended speaker phone.

7. Examples of Usage

 The following examples show Bob registering a contact that supports

 negotiation of answer mode and alerting mode. Alice then calls Bob

 with an an INVITE request, asking for automatic answering with normal

 alerting and explicitly asking that the request not be routed to

 contacts that have not indicated support for this extension.

 Further, Alice requires that the request be rejected if Bob’s UA does

 not support negotiation of alerting and answer modes. Bob responds

 with a 200 OK indicating that the call was answered automatically.

Willis & Allen Expires December 16, 2005 [Page 16]

Internet-Draft SIP Answering and Alerting Modes June 2005

7.1 REGISTER Request

 REGISTER sip:example.com SIP/2.0

 From: Bob <sip:bob@example.com>

 To: Bob <sip:bob@example.com>

 Contact: sip:cell-phone@example.com;

 +sip.extensions="answermode";

 methods="INVITE,BYE,OPTIONS,CANCEL,ACK"

7.2 INVITE Request

 INVITE <sip:bob@example.com SIP/2. 0>

 Via: SIP/2.0/TCP client-alice.example.com:5060;branch=z9hG4bK74b43

 Max-Forwards: 70

 From: Alice <sip:alice@atlanta.example.com>;tag=9fxced76sl

 To: Bob <sip:bob@example.com>

 Call-ID:3848276298220188511@client-alice.example.com

 CSeq: 1 INVITE

 Contact: <sip:alice@client.atlanta.example.com;transport=tcp>

 Requires: answermode, alertmode

 Accept-contact:*;require;explicit;

 +sip.extensions="answermode";

 +sip.extensions="alertmode";

 Answer-Mode: Auto

 Alert-Mode: Null

 Content-Type: application/sdp

 Content-Length: ...

7.3 200 OK response

 SIP/2.0 200 OK

 Via: SIP/2.0/TCP client-alice.example.com:5060;branch=z9hG4bK74bf9

 From: Alice <sip:alice@example.com>;tag=9fxced76sl

 To: Bob <sip:bob@example.com>;tag=8321234356

 Call-ID: 3848276298220188511@client-alice.example.com

 CSeq: 1 INVITE

 Contact: <sip:bob@client.biloxi.example.com;transport=tcp>

 Answer-Mode: Auto

 Content-Type: application/sdp

 Content-Length: ...

8. Security Considerations

 This specification adds the ability for a UAC to request potentially

 risky user interface behavior relating to the acceptance of an INVITE

 request by the UAS receiving the request. These behaviors include

 accepting the request without notification of the user of the UAS,

 and accepting the request without input to the UAS by the user of the

Willis & Allen Expires December 16, 2005 [Page 17]

Internet-Draft SIP Answering and Alerting Modes June 2005

 UAS.

 There are several attacks possible here, with the most obvious being

 the ability to turn a phone into a remote listening device without

 its user being aware of it. Additional attacks include reverse

 charge fraud, unsolicited "push to talk" communications (SPPTT),

 battery-rundown denial-of-service, "forced busy" denial of service,

 and phishing via session insertion (where an ongoing session is

 replaced by another without the victim’s awareness.

 In the most common use cases, the security aspects are somewhat

 mitigated by design aspects of the application. For example, in

 push-to-talk applications, no media is sent from the called UA

 without user input (the "push" of "push-to-talk"). Consequently,

 there is no "bugging" attack when the "Null" Alert-Mode option is

 exercised in conjunction with automatic answering. Furthermore, the

 incoming initial talk burst, if present, may serve to alert the

 called user. However, there is still the potential for an

 "unsolicited message transmission". For example, the initial talk-

 burst of an auto-answered push-to-talk session might include an

 advertisement for pharmaceuticals, or broadcast rude noises in the

 tradition of the "whoopee cushion."

 Consequently, the UAS generally or its supporting proxy MUST

 authenticate the sender of such requests, using mechanisms such as

 SIP Digest Authentication, [2], the SIP Identity mechanism [13], or

 the SIP mechanism for Asserted Identity Within Private Networks[8],

 in networks for which it is suitable.

 The authenticated identity of the requester MUST then be matched

 against authorization policy appropriate to the requested

 application. For example, it might be appropriate to allow a

 designated systems administrator to start a diagnostic loopback

 session without alerting the user. It might also be appropriate to

 allow a known "buddy" to start a push-to-talk session without

 requiring the user of the UAS to actively accept the call. It is

 almost certainly NOT appropriate to allow an unauthenticated and

 unauthorized requester to start a session without alerting and

 receiving a confirmation of acceptance (manual answer) from the

 targeted user.

9. IANA Considerations

9.1 Registration of Header Fields

 This document defines new SIP header fields named "Answer-Mode",

 "Alert-Mode", and "Answer-Mode".

Willis & Allen Expires December 16, 2005 [Page 18]

Internet-Draft SIP Answering and Alerting Modes June 2005

 The following rows shall be added to the "Header Fields" section of

 the SIP parameter registry:

 +-------------+--------------+-----------+

 | Header Name | Compact Form | Reference |

 +-------------+--------------+-----------+

 | Answer-Mode | | [RFCXXXX] |

 | Alert-Mode | | [RFCXXXX] |

 | Answer-Mode | | [RFCXXXX] |

 +-------------+--------------+-----------+

 Editor Note: [RFCXXXX] should be replaced with the designation of

 this document.

9.2 Registration of Header Field Parameters

 This document defines parameters for the header fields defined in the

 preceding section. The header field named "Answer-Mode" may take the

 values "Manual", "Auto", or "AutoReq". The header field named

 "Alert-Mode" may take the values "Normal" or "Null".

 The following rows shall be added to the "Header Field Parameters and

 Parameter Values" section of the SIP parameter registry:

 +--------------+----------------+-------------------+-----------+

 | Header Field | Parameter Name | Predefined Values | Reference |

 +--------------+----------------+-------------------+-----------+

 | Answer-Mode | Manual | Yes | [RFCXXXX] |

 | Answer-Mode | Auto | Yes | [RFCXXXX] |

 | Answer-Mode | AutoReq | Yes | [RFCXXXX] |

 | Alert-Mode | Normal | Yes | [RFCXXXX] |

 | Alert-Mode | Null | Yes | [RFCXXXX] |

 +--------------+----------------+-------------------+-----------+

 Editor Note: [RFCXXXX] should be replaced with the designation of

 this document.

9.3 Registration of Extension Option Tags

 This document defines new SIP option tags "answermode" and

 "alertmode".

Willis & Allen Expires December 16, 2005 [Page 19]

Internet-Draft SIP Answering and Alerting Modes June 2005

 The following rows shall be added to the "Option Tags" section of the

 SIP Parameters registry:

 +----------------------+----------------------+---------------------+

 | Name | Description | Reference |

 +----------------------+----------------------+---------------------+

 | answermode | This option tag is | [RFCXXXX] |

 | | used in a Requires | |

 | | header field to | |

 | | indicate that the | |

 | | UAS must support | |

 | | negotiation of | |

 | | answer mode. | |

 | alertmode | This option tag is | [RFCXXXX] |

 | | used in a Requires | |

 | | header field to | |

 | | indicate that the | |

 | | UAS must support | |

 | | negotiation of | |

 | | alerting mode. | |

 +----------------------+----------------------+---------------------+

 Editor Note: [RFCXXXX] should be replaced with the designation of

 this document.

10. Acknowledgements

 This document draws requirements and a large part of its methodology

 from the work of the Open Mobile Alliance, and specifically from the

 internet draft [12] by Andrew Allen, Jan Holm, and Tom Hallin.

 The editor would also like to recognize the contributions of David

 Oran and others who argued on the SIPPING mailing list and at the OMA

 ad-hoc meeting at IETF 62 that the underlying ideas of the above

 draft were broadly applicable to the SIP community, and that the

 concepts of alerting and answering should be clearly delineated.

11. References

11.1 Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement

 Levels", BCP 14, RFC 2119, March 1997.

 [2] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,

 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:

 Session Initiation Protocol", RFC 3261, June 2002.

Willis & Allen Expires December 16, 2005 [Page 20]

Internet-Draft SIP Answering and Alerting Modes June 2005

 [3] Mankin, A., Bradner, S., Mahy, R., Willis, D., Ott, J., and B.

 Rosen, "Change Process for the Session Initiation Protocol

 (SIP)", BCP 67, RFC 3427, December 2002.

 [4] Klyne, G., "A Syntax for Describing Media Feature Sets",

 RFC 2533, March 1999.

 [5] Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Indicating

 User Agent Capabilities in the Session Initiation Protocol

 (SIP)", RFC 3840, August 2004.

 [6] Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Caller

 Preferences for the Session Initiation Protocol (SIP)",

 RFC 3841, August 2004.

 [7] Schulzrinne, H., Oran, D., and G. Camarillo, "The Reason Header

 Field for the Session Initiation Protocol (SIP)", RFC 3326,

 December 2002.

 [8] Jennings, C., Peterson, J., and M. Watson, "Private Extensions

 to the Session Initiation Protocol (SIP) for Asserted Identity

 within Trusted Networks", RFC 3325, November 2002.

 [9] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax

 Specifications: ABNF", RFC 2234, November 1997.

 [10] Holtman, K., Mutz, A., and T. Hardie, "Media Feature Tag

 Registration Procedure", BCP 31, RFC 2506, March 1999.

11.2 Informative References

 [11] Hedayat, K., "An Extension to the Session Initiation Protocol

 (SIP) for Media Loopback", draft-hedayat-media-loopback-01

 (work in progress), October 2004.

 [12] Allen, A., "Private Header (P-Header) Extensions to the Session

 Initiation Protocol (SIP) for the Open Mobile Alliance (OMA)

 Push to talk over Cellular (PoC)",

 draft-allen-sipping-poc-p-headers-01 (work in progress),

 February 2005.

 [13] Peterson, J., "Enhancements for Authenticated Identity

 Management in the Session Initiation Protocol (SIP)",

 draft-ietf-sip-identity-04 (work in progress), February 2005.

Willis & Allen Expires December 16, 2005 [Page 21]

Internet-Draft SIP Answering and Alerting Modes June 2005

Authors’ Addresses

 Dean Willis (editor)

 Cisco Systems

 3100 Independence Pkwy #311-164

 Plano, Texas 75075

 USA

 Phone: unlisted

 Fax: unlisted

 Email: dean.willis@softarmor.com

 Andrew Allen

 Research in Motion (RIM)

 122 West John Carpenter Parkway, Suite 430

 Irving, Texas 75039

 USA

 Phone: unlisted

 Fax: unlisted

 Email: aallen@rim.com

Willis & Allen Expires December 16, 2005 [Page 22]

Internet-Draft SIP Answering and Alerting Modes June 2005

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any

 Intellectual Property Rights or other rights that might be claimed to

 pertain to the implementation or use of the technology described in

 this document or the extent to which any license under such rights

 might or might not be available; nor does it represent that it has

 made any independent effort to identify any such rights. Information

 on the procedures with respect to rights in RFC documents can be

 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any

 assurances of licenses to be made available, or the result of an

 attempt made to obtain a general license or permission for the use of

 such proprietary rights by implementers or users of this

 specification can be obtained from the IETF on-line IPR repository at

 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any

 copyrights, patents or patent applications, or other proprietary

 rights that may cover technology that may be required to implement

 this standard. Please address the information to the IETF at

 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an

 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS

 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET

 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,

 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE

 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED

 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject

 to the rights, licenses and restrictions contained in BCP 78, and

 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the

 Internet Society.

Willis & Allen Expires December 16, 2005 [Page 23]

