
Internet Engineering Task Force
Internet Draft
Category: Standards Track

Adam Roach
dynamicsoft

February 2002
Expires August 2002

<draft-ietf-sip-events-03.fm>
SIP-Specific Event Notification

Status of this Memo

This document is an Internet-Draft and is in full conformance with all provi-
sions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups may
also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and
may be updated, replaced, or obsoleted by other documents at any time. It is
inappropriate to use Internet-Drafts as reference material or cite them other
than as “work in progress”.

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/
lid-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at http://
www.ietf.org/shadow.html

This document is an individual submission to the IETF. Comments should be
directed to the authors.

Abstract

This document describes an extension to the Session Initiation Protocol
(SIP). The purpose of this extension is to provide an extensible framework
by which SIP nodes can request notification from remote nodes indicating
that certain events have occurred.

Concrete uses of the mechanism described in this document may be stan-
dardized in the future.

Note that the event notification mechanisms defined herein are NOT
intended to be a general-purpose infrastructure for all classes of event sub-
scription and notification.
[Page 1]Roach

Internet Draft SIP-Specific Event Notification February 2002
1. Table of Contents

2. Introduction

The ability to request asynchronous notification of events proves useful in
many types of services for which cooperation between end-nodes is
required. Examples of such services include automatic callback services
(based on terminal state events), buddy lists (based on user presence events),
message waiting indications (based on mailbox state change events), and
PINT status (based on call state events).

The methods described in this document allow a framework by which notifi-
cation of these events can be ordered.

The event notification mechanisms defined herein are NOT intended to be a
general-purpose infrastructure for all classes of event subscription and noti-
fication. Meeting requirements for the general problem set of subscription
and notification is far too complex for a single protocol. Our goal is to pro-
vide a SIP-specific framework for event notification which is not so complex
as to be unusable for simple features, but which is still flexible enough to
provide powerful services. Note, however, that event packages based on this
framework may define arbitrarily complex rules which govern the subscrip-
tion and notification for the events or classes of events they describe.

This draft does not describe an extension which may be used directly; it must
be extended by other drafts (herein referred to as “event packages”.) In
object-oriented design terminology, it may be thought of as an abstract base
class which must be derived into an instantiatable class by further exten-
sions. Guidelines for creating these extensions are described in section 5.

2.1. Overview of Operation

The general concept is that entities in the network can subscribe to resource
or call state for various resources or calls in the network, and those entities
(or entities acting on their behalf) can send notifications when those states
change.

A typical flow of messages would be:

Subscriber Notifier
|-----SUBSCRIBE---->| Request state subscription
|<-------200--------| Acknowledge subscription
|<------NOTIFY----- | Return current state information
|--------200------->|
|<------NOTIFY----- | Return current state information
|--------200------->|
Roach [Page 2]

Internet Draft SIP-Specific Event Notification February 2002
Subscriptions are expired and must be refreshed by subsequent SUB-
SCRIBE messages.

2.2. Documentation Conventions

There are several paragraphs throughout the document which provide moti-
vational or clarifying text. Such passages are non-normative, and are pro-
vided only to assist with reader comprehension. These passages are set off
from the remainder of the text by being indented thus:

This is an example of non-normative explanatory text. It does not
form part of the specification, and is used only for clarification.

Numbers in square brackets (e.g. [1]) denote a reference to one of the entries
in the References section; see section 9.

The all-capital terms “MUST”, “SHOULD”, “MAY”, “SHOULD NOT”,
and “MUST NOT” are used as defined in RFC 2119 [8].

The use of quotation marks next to periods and commas follows the conven-
tion used by the American Mathematical Society; although contrary to tradi-
tional American English convention, this usage lends clarity to certain
passages.

3. Definitions

Event Package: An event package is an additional specification which
defines a set of state information to be reported by a notifier to a sub-
scriber. Event packages also define further syntax and semantics
based on the framework defined by this document required to convey
such state information.

Event Template-Package: An event template-package is a special kind of
event package which defines a set of state which may be applied to
all possible event packages, including itself.

Notification: Notification is the act of a notifier sending a NOTIFY message
to a subscriber to inform the subscriber of the state of a resource.

Notifier: A notifier is a user agent which generates NOTIFY requests for the
purpose of notifying subscribers of the state of a resource. Notifiers
typically also accept SUBSCRIBE requests to create subscriptions.

State Agent: A state agent is a notifier which publishes state information on
behalf of a resource; in order to do so, it may need to gather such
state information from multiple sources. State agents always have
Roach [Page 3]

Internet Draft SIP-Specific Event Notification February 2002
complete state information for the resource for which it is creating
notifications.

Subscriber: A subscriber is a user agent which receives NOTIFY requests
from notifiers; these NOTIFY requests contain information about the
state of a resource in which the subscriber is interested. Subscribers
typically also generate SUBSCRIBE requests and send them to noti-
fiers to create subscriptions.

Subscription: A subscription is a set of application state associated with a
dialog. This application state includes a pointer to the associated dia-
log, the event package name, and possibly an identification token.
Event packages will define additional subscription state information.
By definition, subscriptions exist in both a subscriber and a notifier.

Subscription Migration: Subscription migration is the act of moving a sub-
scription from one notifier to another notifier.

4. Node Behavior

4.1. Description of SUBSCRIBE Behavior

The SUBSCRIBE method is used to request current state and state updates
from a remote node.

4.1.1. Subscription Duration

SUBSCRIBE requests SHOULD contain an “Expires” header (defined in
SIP [1]). This expires value indicates the duration of the subscription. In
order to keep subscriptions effective beyond the duration communicated in
the “Expires” header, subscribers need to refresh subscriptions on a periodic
basis using a new SUBSCRIBE message on the same dialog as defined in
SIP [1].

If no “Expires” header is present in a SUBSCRIBE request, the implied
default is defined by the event package being used.

200-class responses to SUBSCRIBE requests also MUST contain an
“Expires” header. The period of time in the response MAY be shorter but
MUST NOT be longer than specified in the request. The period of time in
the response is the one which defines the duration of the subscription.

An “expires” parameter on the “Contact” header has no semantics for SUB-
SCRIBE and is explicitly not equivalent to an “Expires” header in a SUB-
SCRIBE request or response.
Roach [Page 4]

Internet Draft SIP-Specific Event Notification February 2002
A natural consequence of this scheme is that a SUBSCRIBE with an
“Expires” of 0 constitutes a request to unsubscribe from an event.

In addition to being a request to unsubscribe, a SUBSCRIBE mes-
sage with “Expires” of 0 also causes a fetch of state; see section
4.3.6.

Notifiers may also wish to cancel subscriptions to events; this is useful, for
example, when the resource to which a subscription refers is no longer avail-
able. Further details on this mechanism are discussed in section 4.2.2.

4.1.2. Identification of Subscribed Events and Event Classes

Identification of events is provided by three pieces of information: Request
URI, Event Type, and (optionally) message body.

The Request URI of a SUBSCRIBE request, most importantly, contains
enough information to route the request to the appropriate entity. It also con-
tains enough information to identify the resource for which event notifica-
tion is desired, but not necessarily enough information to uniquely identify
the nature of the event (e.g. “sip:adam@dynamicsoft.com” would be an
appropriate URI to subscribe to for my presence state; it would also be an
appropriate URI to subscribe to the state of my voice mailbox).

Subscribers MUST include exactly one “Event” header in SUBSCRIBE
requests, indicating to which event or class of events they are subscribing.
The “Event” header will contain a token which indicates the type of state for
which a subscription is being requested. This token will be registered with
the IANA and will correspond to an event package which further describes
the semantics of the event or event class. The “Event” header MAY also con-
tain an “id” parameter. This “id” parameter, if present, contains an opaque
token which identifies the specific subscription within a dialog. An “id”
parameter is only valid within the scope of a single dialog.

If the event package to which the event token corresponds defines behavior
associated with the body of its SUBSCRIBE requests, those semantics apply.

Event packages may also define parameters for the Event header; if they do
so, they must define the semantics for such parameters.

4.1.3. Additional SUBSCRIBE Header Values

Because SUBSCRIBE requests create a dialog as defined in SIP [1], they
MAY contain an “Accept” header. This header, if present, indicates the body
formats allowed in subsequent NOTIFY requests. Event packages MUST
Roach [Page 5]

Internet Draft SIP-Specific Event Notification February 2002
define the behavior for SUBSCRIBE requests without “Accept” headers;
usually, this will connote a single, default body type.

Header values not described in this document are to be interpreted as
described in SIP [1].

4.1.4. Subscriber SUBSCRIBE Behavior

4.1.4.1. Requesting a Subscription

SUBSCRIBE is a dialog-creating method, as described in SIP [1].

When a subscriber wishes to subscribe to a particular state for a resource, it
forms a SUBSCRIBE message. If the initial SUBSCRIBE represents a
request outside of a dialog (as it typically will), its construction follows the
procedures outlined in SIP [1] for UAC request generation outside of a dia-
log.

This SUBSCRIBE request will be confirmed with a final response. 200-class
responses indicate that the subscription has been accepted, and that a
NOTIFY will be sent immediately. A 200 response indicates that the sub-
scription has been accepted and that the user is authorized to subscribe to the
requested resource. A 202 response merely indicates that the subscription
has been understood, and that authorization may or may not have been
granted.

The “Expires” header in a 200-class response to SUBSCRIBE indicates the
actual duration for which the subscription will remain active (unless
refreshed).

Non-200 class final responses indicate that no subscription or dialog has
been created, and no subsequent NOTIFY message will be sent. All non-200
class responses (with the exception of “489”, described herein) have the
same meanings and handling as described in SIP [1].

A SUBSCRIBE request MAY include an “id” parameter in its “Event”
header to allow differentiation between multiple subscriptions in the same
dialog.

4.1.4.2. Refreshing of Subscriptions

At any time before a subscription expires, the subscriber may refresh the
timer on such a subscription by sending another SUBSCRIBE request on the
same dialog as the existing subscription, and with the same “Event” header
“id” parameter (if one was present in the initial subscription). The handling
Roach [Page 6]

Internet Draft SIP-Specific Event Notification February 2002
for such a request is the same as for the initial creation of a subscription
except as described below.

If the initial SUBSCRIBE message contained an “id” parameter on
the “Event” header, then refreshes of the subscription must also con-
tain an identical “id” parameter; they will otherwise be considered
new subscriptions in an existing dialog.

If a SUBSCRIBE request to refresh a subscription receives a “481”
response, this indicates that the subscription has been terminated and that the
subscriber did not receive notification of this fact. In this case, the subscriber
should consider the subscription invalid. If the subscriber wishes to re-sub-
scribe to the state, he does so by composing an unrelated initial SUB-
SCRIBE request with a freshly-generated Call-ID and a new, unique “From”
tag (see section 4.1.4.1.)

If a SUBSCRIBE request to refresh a subscription fails with a non-481
response, the original subscription is still considered valid for the duration of
the most recently known “Expires” value as negotiated by SUBSCRIBE and
its response, or as communicated by NOTIFY in the “Subscription-State”
header “expires” parameter.

4.1.4.3. Unsubscribing

Unsubscribing is handled in the same way as refreshing of a subscription,
with the “Expires” header set to “0”. Note that a successful unsubscription
will also trigger a final NOTIFY message.

4.1.4.4. Confirmation of Subscription Creation

The subscriber can expect to receive a NOTIFY message from each node
which has processed a successful subscription or subscription refresh. Until
the first NOTIFY message arrives, the subscriber should consider the state of
the subscribed resource to be in a neutral state. Event packages which define
new event packages MUST define this “neutral state” in such a way that
makes sense for their application (see section 5.4.7.).

Due to the potential for both out-of-order messages and forking, the sub-
scriber MUST be prepared to receive NOTIFY messages before the SUB-
SCRIBE transaction has completed.

Except as noted above, processing of this NOTIFY is the same as in section
4.2.4.
Roach [Page 7]

Internet Draft SIP-Specific Event Notification February 2002
4.1.5. Proxy SUBSCRIBE Behavior

Proxies need no additional behavior beyond that described in SIP [1] to sup-
port SUBSCRIBE. If a proxy wishes to see all of the SUBSCRIBE and
NOTIFY requests for a given dialog, it MUST record-route the initial SUB-
SCRIBE and any dialog-establishing NOTIFY requests. Such proxies
SHOULD also record-route all other SUBSCRIBE and NOTIFY requests.

4.1.6. Notifier SUBSCRIBE Behavior

4.1.6.1. Initial SUBSCRIBE Transaction Processing

In no case should a SUBSCRIBE transaction extend for any longer than the
time necessary for automated processing. In particular, notifiers MUST NOT
wait for a user response before returning a final response to a SUBSCRIBE
request.

This requirement is imposed primarily to prevent timer F from firing
during the SUBSCRIBE transaction, since interaction with a user
would often exceed 64*T1 seconds.

The notifier SHOULD check that the event package specified in the “Event”
header is understood. If not, the notifier SHOULD return a “489 Bad Event”
response to indicate that the specified event/event class is not understood.

The notifier SHOULD also perform any necessary authentication and autho-
rization per its local policy. See section 4.1.6.3.

If the notifier has local policy specifying a minimum allowed duration for
subscriptions, it SHOULD verify that the “Expires” header in the SUB-
SCRIBE request is not smaller than such a duration. If not, the notifier
SHOULD return a “423 Interval too small” error which contains a “Min-
Expires” header field. The “Min-Expires” header field is describe in SIP [1].

If the notifier is able to immediately determine that it understands the event
package, that the authenticated subscriber is authorized to subscribe, and that
there are no other barriers to creating the subscription, it creates the subscrip-
tion and a dialog (if necessary), and returns a “200 OK” response (unless
doing so would reveal authorization policy in an undesirable fashion; see
section 6.2.).

If the notifier cannot immediately create the subscription (e.g. it needs to
wait for user input for authorization, or is acting for another node which is
not currently reachable), or wishes to mask authorization policy, it will
return a “202 Accepted” response. This response indicates that the request
Roach [Page 8]

Internet Draft SIP-Specific Event Notification February 2002
has been received and understood, but does not necessarily imply that the
subscription has been authorized yet.

When a subscription is created in the notifier, it stores the event package
name and the “Event” header “id” parameter (if present) as part of the sub-
scription information.

The “Expires” values present in SUBSCRIBE 200-class responses behave in
the same way as they do in REGISTER responses: the server MAY shorten
the interval, but MUST NOT lengthen it. If the duration specified in a SUB-
SCRIBE message is unacceptably short, the notifier SHOULD respond with
a “423 Subscription Too Brief” message.

200-class responses to SUBSCRIBE requests will not generally contain any
useful information beyond subscription duration; their primary purpose is to
serve as a reliability mechanism. State information will be communicated
via a subsequent NOTIFY request from the notifier.

The other response codes defined in SIP [1] may be used in response to
SUBSCRIBE requests, as appropriate.

4.1.6.2. Confirmation of Subscription Creation/Refreshing

Upon successfully accepting or refreshing of a subscription, notifiers MUST
send a NOTIFY message immediately to communicate the current resource
state to the subscriber. This NOTIFY message is sent on the same dialog as
created by the SUBSCRIBE response. If the resource has no meaningful
state at the time that the SUBSCRIBE message is processed, this NOTIFY
message MAY contain an empty or neutral body. See section 4.2.2. for fur-
ther details on NOTIFY message generation.

Note that a NOTIFY message is always sent immediately after any 200-class
response to a SUBSCRIBE request, regardless of whether the subscription
has already been authorized.

4.1.6.3. Authentication/Authorization of SUBSCRIBE requests

Privacy concerns may require that notifiers apply policy to determine
whether a particular subscriber is authorized to subscribe to a certain set of
events. Such policy may be defined by mechanisms such as access control
lists or real-time interaction with a user. In general, authorization of sub-
scribers prior to authentication is not particularly useful.

SIP authentication mechanisms are discussed in SIP [1]. Note that, even if
the notifier node typically acts as a proxy, authentication for SUBSCRIBE
requests will always be performed via a “401” response, not a “407;” notifi-
Roach [Page 9]

Internet Draft SIP-Specific Event Notification February 2002
ers always act as a user agents when accepting subscriptions and sending
notifications.

If authorization fails based on an access list or some other automated mecha-
nism (i.e. it can be automatically authoritatively determined that the sub-
scriber is not authorized to subscribe), the notifier SHOULD reply to the
request with a “403 Forbidden” or “603 Decline” response, unless doing so
might reveal information that should stay private; see section 6.2.

If the notifier owner is interactively queried to determine whether a subscrip-
tion is allowed, a “202 Accept” response is returned immediately. Note that a
NOTIFY message is still formed and sent under these circumstances, as
described in the previous section.

If subscription authorization was delayed and the notifier wishes to convey
that such authorization has been declined, it may do so by sending a
NOTIFY message containing a “Subscription-State” header with a value of
“terminated” and a reason parameter of “rejected”.

4.1.6.4. Refreshing of Subscriptions

When a notifier receives a subscription refresh, assuming that the subscriber
is still authorized, the notifier updates the expiration time for subscription.
As with the initial subscription, the server MAY shorten the amount of time
until expiration, but MUST NOT increase it. The final expiration time is
placed in the “Expires” header in the response. If the duration specified in a
SUBSCRIBE message is unacceptably short, the notifier SHOULD respond
with a “423 Subscription Too Brief” message.

If no refresh for a notification address is received before its expiration time,
the subscription is removed. When removing a subscription, the notifier
SHOULD send a NOTIFY message with a “Subscription-State” value of
“terminated” to inform it that the subscription is being removed. If such a
message is sent, the “Subscription-State” header SHOULD contain a “rea-
son=timeout” parameter.

The sending of a NOTIFY when a subscription expires allows the
corresponding dialog to be terminated, if appropriate.

4.2. Description of NOTIFY Behavior

NOTIFY messages are sent to inform subscribers of changes in state to
which the subscriber has a subscription. Subscriptions are typically put in
place using the SUBSCRIBE method; however, it is possible that other
means have been used.
Roach [Page 10]

Internet Draft SIP-Specific Event Notification February 2002
If any non-SUBSCRIBE mechanisms are defined to create subscriptions, it
is the responsibility of the parties defining those mechanisms to ensure that
correlation of a NOTIFY message to the corresponding subscription is possi-
ble. Designers of such mechanisms are also warned to make a distinction
between sending a NOTIFY message to a subscriber who is aware of the
subscription, and sending a NOTIFY message to an unsuspecting node. The
latter behavior is invalid, and MUST receive a “481 Subscription does not
exist” response (unless some other 400- or 500-class error code is more
applicable), as described in section 4.2.4. In other words, knowledge of a
subscription must exist in both the subscriber and the notifier to be valid,
even if installed via a non-SUBSCRIBE mechanism.

A NOTIFY does not terminate its corresponding subscription; in other
words, a single SUBSCRIBE request may trigger several NOTIFY requests.

4.2.1. Identification of Reported Events, Event Classes, and Current State

Identification of events being reported in a notification is very similar to that
described for subscription to events (see section 4.1.2.).

As in SUBSCRIBE requests, NOTIFY “Event” headers will contain a single
event package name for which a notification is being generated. The package
name in the “Event” header MUST match the “Event” header in the corre-
sponding SUBSCRIBE message. If an “id” parameter was present in the
SUBSCRIBE message, that “id” parameter MUST also be present in the cor-
responding NOTIFY messages.

Event packages may define semantics associated with the body of their
NOTIFY requests; if they do so, those semantics apply. NOTIFY bodies are
expected to provide additional details about the nature of the event which
has occurred and the resultant resource state.

When present, the body of the NOTIFY request MUST be formatted into
one of the body formats specified in the “Accept” header of the correspond-
ing SUBSCRIBE request. This body will contain either the state of the sub-
scribed resource or a pointer to such state in the form of a URI.

4.2.2. Notifier NOTIFY Behavior

When a SUBSCRIBE request is answered with a 200-class response, the
notifier MUST immediately construct and send a NOTIFY request to the
subscriber. When a change in the subscribed state occurs, the notifier
SHOULD immediately construct and send a NOTIFY request, subject to
authorization, local policy, and throttling considerations.
Roach [Page 11]

Internet Draft SIP-Specific Event Notification February 2002
A NOTIFY request is considered failed if the response times out, or a non-
200 class response code is received which has no “Retry-After” header and
no implied further action which can be taken to retry the request (e.g. “401
Authorization Required”.)

If the NOTIFY request fails (as defined above) due to a timeout condition,
and the subscription was installed using a soft-state mechanism (such as
SUBSCRIBE), the notifier SHOULD remove the subscription.

This behavior prevents unnecessary transmission of state informa-
tion for subscribers who have crashed or disappeared from the net-
work. Because such transmissions will be sent 11 times (instead of
the typical single transmission for functioning clients), continuing to
service them when no client is available to acknowledge them could
place undue strain on a network. Upon client restart or reestablish-
ment of a network connection, it is expected that clients will send
SUBSCRIBE messages to refresh potentially stale state information;
such messages will re-install subscriptions in all relevant nodes.

If the NOTIFY request fails (as defined above) due to an error response, and
the subscription was installed using a soft-state mechanism, the notifier
MUST remove the corresponding subscription.

A notify error response would generally indicate that something has
gone wrong with the subscriber or with some proxy on the way to the
subscriber. If the subscriber is in error, it makes the most sense to
allow the subscriber to rectify the situation (by re-subscribing) once
the error condition has been handled. If a proxy is in error, the peri-
odic SUBSCRIBE refreshes will re-install subscription state once the
network problem has been resolved.

If a NOTIFY request receives a 481 response, the notifier MUST remove the
corresponding subscription even if such subscription was installed by non-
SUBSCRIBE means (such as an administrative interface).

If the above behavior were not required, subscribers receiving a
notify for an unknown subscription would need to send an error sta-
tus code in response to the NOTIFY and also send a SUBSCRIBE
request to remove the subscription. Since this behavior would make
subscribers available for use as amplifiers in denial of service
attacks, we have instead elected to give the 481 response special
meaning: it is used to indicate that a subscription must be cancelled
under all circumstances.

NOTIFY requests MUST contain a “Subscription-State” header with a value
of “active”, “pending”, or “terminated”. The “active” value indicates that the
Roach [Page 12]

Internet Draft SIP-Specific Event Notification February 2002
subscription has been accepted and has been authorized (in most cases; see
section 6.2.). The “pending” value indicates that the subscription has been
received, but that policy information is insufficient to accept or deny the sub-
scription at this time. The “terminated” value indicates that the subscription
is not active.

If the value of the “Subscription-State” header is “active” or “pending”, the
notifier SHOULD also include in the “Subscription-State” header an
“expires” parameter which indicates the time remaining on the subscription.
The notifier MAY use this mechanism to shorten a subscription; however,
this mechanism MUST NOT be used to lengthen a subscription.

Including expiration information for active and pending subscrip-
tions is useful in case the SUBSCRIBE request forks, since the
response to a forked SUBSCRIBE may not be received by the sub-
scriber. Note well that this “expires” value is a parameter on the
“Subscription-State” header, NOT an “Expires” header.

If the value of the “Subscription-State” header is “terminated”, the notifier
SHOULD also include a “reason” parameter. The notifier MAY also include
a “retry-after” parameter, where appropriate. For details on the value and
semantics of the “reason” and “retry-after” parameters, see section 4.2.4.

4.2.3. Proxy NOTIFY Behavior

Proxies need no additional behavior beyond that described in SIP [1] to sup-
port NOTIFY. If a proxy wishes to see all of the SUBSCRIBE and NOTIFY
requests for a given dialog, it MUST record-route the initial SUBSCRIBE
and any dialog-establishing NOTIFY requests. Such proxies SHOULD also
record-route all other SUBSCRIBE and NOTIFY requests.

4.2.4. Subscriber NOTIFY Behavior

Upon receiving a NOTIFY request, the subscriber should check that it
matches at least one of its outstanding subscriptions; if not, it MUST return a
“481 Subscription does not exist” response unless another 400- or 500-class
response is more appropriate. The rules for matching NOTIFY requests with
subscriptions that create a new dialog are described in section 4.3.4. Notifi-
cations for subscriptions which were created inside an existing dialog match
if they are in the same dialog and the “Event” headers match (as described in
section 7.5.1.)

If, for some reason, the event package designated in the “Event” header of
the NOTIFY request is not supported, the subscriber will respond with a
“489 Bad Event” response.
Roach [Page 13]

Internet Draft SIP-Specific Event Notification February 2002
To prevent spoofing of events, NOTIFY requests SHOULD be authenti-
cated, using any defined SIP authentication mechanism.

NOTIFY requests MUST contain “Subscription-State” headers which indi-
cate the status of the subscription.

If the “Subscription-State” header value is “active”, it means that the sub-
scription has been accepted and (in general) has been authorized. If the
header also contains an “expires” parameter, the subscriber SHOULD take it
as the authoritative subscription duration and adjust accordingly. The “retry-
after” and “reason” parameters have no semantics for “active”.

If the “Subscription-State” value is “pending”, the subscription has been
received by the notifier, but there is insufficient policy information to grant
or deny the subscription yet. If the header also contains an “expires” param-
eter, the subscriber SHOULD take it as the authoritative subscription dura-
tion and adjust accordingly. No further action is necessary on the part of the
subscriber. The “retry-after” and “reason” parameters have no semantics for
“pending”.

If the “Subscription-State” value is “terminated”, the subscriber should con-
sider the subscription terminated. The “expires” parameter has no semantics
for “terminated”. If a reason code is present, the client should behave as
described below. If no reason code or an unknown reason code is present, the
client MAY attempt to re-subscribe at any time (unless a “retry-after” param-
eter is present, in which case the client SHOULD NOT attempt re-subscrip-
tion until after the number of seconds specified by the “retry-after”
parameter). The defined reason codes are:

deactivated: The subscription has been terminated, but the client SHOULD
retry immediately with a new subscription. One primary use of such
a status code is to allow migration of subscriptions between nodes.
The “retry-after” parameter has no semantics for “deactivated”.

probation: The subscription has been terminated, but the client SHOULD
retry at some later time. If a “retry-after” parameter is also present,
the client SHOULD wait at least the number of seconds specified by
that parameter before attempting to re-subscribe.

rejected: The subscription has been terminated due to change in authoriza-
tion policy. Clients SHOULD NOT attempt to re-subscribe. The
“retry-after” parameter has no semantics for “rejected”.

timeout: The subscription has been terminated because it was not refreshed
before it expired. Clients MAY re-subscribe immediately. The “retry-
after” parameter has no semantics for “timeout”.
Roach [Page 14]

Internet Draft SIP-Specific Event Notification February 2002
giveup: The subscription has been terminated because the notifier could not
obtain authorization in a timely fashion. If a “retry-after” parameter
is also present, the client SHOULD wait at least the number of sec-
onds specified by that parameter before attempting to re-subscribe;
otherwise, the client MAY retry immediately, but will likely get put
back into pending state.

Once the notification is deemed acceptable to the subscriber, the subscriber
SHOULD return a 200 response. In general, it is not expected that NOTIFY
responses will contain bodies; however, they MAY, if the NOTIFY request
contained an “Accept” header.

Other responses defined in SIP [1] may also be returned, as appropriate. In
no case should a NOTIFY transaction extend for any longer than the time
necessary for automated processing. In particular, subscribers MUST NOT
wait for a user response before returning a final response to a NOTIFY
request.

4.3. General

4.3.1. Detecting support for SUBSCRIBE and NOTIFY

Neither SUBSCRIBE nor NOTIFY necessitate the use of “Require” or
“Proxy-Require” headers; similarly, there is no token defined for “Sup-
ported” headers. If necessary, clients may probe for the support of SUB-
SCRIBE and NOTIFY using the OPTIONS request defined in SIP[1].

The presence of the “Allow-Events” header in a message is sufficient to
indicate support for SUBSCRIBE and NOTIFY.

The “methods” parameter for Contact may also be used to specifically
announce support for SUBSCRIBE and NOTIFY messages when register-
ing. (See reference [7] for details on the “methods” parameter).

4.3.2. CANCEL requests

No semantics are associated with cancelling SUBSCRIBE or NOTIFY.

4.3.3. Forking

In accordance with the rules for proxying non-INVITE requests as defined in
SIP [1], successful SUBSCRIBE requests will receive only one 200-class
response; however, due to forking, the subscription may have been accepted
by multiple nodes. The subscriber MUST therefore be prepared to receive
NOTIFY requests with “From:” tags which differ from the “To:” tag
received in the SUBSCRIBE 200-class response.
Roach [Page 15]

Internet Draft SIP-Specific Event Notification February 2002
If multiple NOTIFY messages are received in response to a single SUB-
SCRIBE message, they represent different destinations to which the SUB-
SCRIBE request was forked. For information on subscriber handling in such
situations, see section 5.4.9.

4.3.4. Dialog creation and termination

If an initial SUBSCRIBE request is not sent on a pre-existing dialog, the
subscriber will wait for a response to the SUBSCRIBE request or a matching
NOTIFY.

Responses are matched to such SUBSCRIBE requests if they contain the
same the same “Call-ID”, the same “From” header field, the same “To”
header field, excluding the “tag”, and the same “CSeq”. Rules for the com-
parison of these headers are described in SIP [1]. If a 200-class response
matches such a SUBSCRIBE request, it creates a new subscription and a
new dialog (unless they have already been created by a matching NOTIFY
request; see below).

NOTIFY requests are matched to such SUBSCRIBE requests if they contain
the same “Call-ID”, a “From” header field which matches the “To” header
field of the SUBSCRIBE, excluding the “tag”, a “To” header field which
matches the “From” header field of the SUBSCRIBE, and the same “Event”
header field. Rules for comparisons of the “Event” headers are described in
section 7.5.1. If a matching NOTIFY request contains a “Subscription-State”
of “active” or “pending”, it creates a new subscription and a new dialog
(unless they have already been created by a matching response, as described
above).

If an initial SUBSCRIBE is sent on a pre-existing dialog, a matching 200-
class response or successful NOTIFY request merely creates a new subscrip-
tion associated with that dialog.

Multiple subscriptions can be associated with a single dialog. Subscriptions
may also exist in dialogs associated with INVITE-created application state
and other application state created by mechanisms defined in other specifica-
tions. These sets of application state do not interact beyond the behavior
described for a dialog (e.g. route set handling).

A subscription is destroyed when a notifier sends a NOTIFY request with a
“Subscription-State” of “terminated”.

A subscriber may send a SUBSCRIBE request with an “Expires”
header of 0 in order to trigger the sending of such a NOTIFY
request; however, for the purposes of subscription and dialog life-
Roach [Page 16]

Internet Draft SIP-Specific Event Notification February 2002
time, the subscription is not considered terminated until the NOTIFY
with a “Subscription-State” of “terminated” is sent.

If a subscription’s destruction leaves no other application state associated
with the dialog, the dialog terminates. The destruction of other application
state (such as that created by an INVITE) will not terminate the dialog if a
subscription is still associated with that dialog.

Note that the above behavior means that a dialog created with an
INVITE does not necessarily terminate upon receipt of a BYE. Simi-
larly, in the case that several subscriptions are associated with a sin-
gle dialog, the dialog does not terminate until all the subscriptions in
it are destroyed.

4.3.5. State Agents and Notifier Migration

When state agents (see section 5.4.11.) are used, it is often useful to allow
migration of subscriptions between state agents and the nodes for which they
are providing state aggregation (or even among various state agents). Such
migration may be effected by sending a NOTIFY message with a “Subscrip-
tion-State” header of “terminated”, and a reason parameter of “deactivated”.
This NOTIFY request is otherwise normal, and is formed as described in
section 4.2.2.

Upon receipt of this NOTIFY message, the subscriber SHOULD attempt to
re-subscribe (as described in the preceding sections). Note that this subscrip-
tion is established on a new dialog, and does not re-use the route set from the
previous subscription dialog.

The actual migration is effected by making a change to the policy (such as
routing decisions) of one or more servers to which the SUBSCRIBE request
will be sent in such a way that a different node ends up responding to the
SUBSCRIBE request. This may be as simple as a change in the local policy
in the notifier from which the subscription is migrating so that it serves as a
proxy or redirect server instead of a notifier.

Whether, when, and why to perform notifier migrations may be described in
individual event packages; otherwise, such decisions are a matter of local
notifier policy, and are left up to individual implementations.

4.3.6. Polling Resource State

A natural consequence of the behavior described in the preceding sections is
that an immediate fetch without a persistent subscription may be effected by
sending a SUBSCRIBE with an “Expires” of 0.
Roach [Page 17]

Internet Draft SIP-Specific Event Notification February 2002
Of course, an immediate fetch while a subscription is active may be effected
by sending a SUBSCRIBE with an “Expires” equal to the number of seconds
remaining in the subscription.

Upon receipt of this SUBSCRIBE request, the notifier (or notifiers, if the
SUBSCRIBE request was forked) will send a NOTIFY request containing
resource state in the same dialog.

Note that the NOTIFY messages triggered by SUBSCRIBE messages with
“Expires” headers of 0 will contain a “Subscription-State” value of “termi-
nated”, and a “reason” parameter of “timeout”.

4.3.7. Allow-Events header usage

The “Allow-Events” header, if present, includes a list of tokens which indi-
cates the event packages supported by the client (if sent in a request) or
server (if sent in a response). In other words, a node sending an “Allow-
Events” header is advertising that it can process SUBSCRIBE requests and
generate NOTIFY requests for all of the event packages listed in that header.

Any node implementing one or more event packages SHOULD include an
appropriate “Allow-Events” header indicating all supported events in all
methods which initiate dialogs and their responses (such as INVITE) and
OPTIONS responses.

This information is very useful, for example, in allowing user agents to ren-
der particular interface elements appropriately according to whether the
events required to implement the features they represent are supported by the
appropriate nodes.

Note that “Allow-Events” headers MUST NOT be inserted by proxies.

4.3.8. PINT Compatibility

The “Event” header is considered mandatory for the purposes of this docu-
ment. However, to maintain compatibility with PINT (see [3]), servers MAY
interpret a SUBSCRIBE request with no “Event” header as requesting a sub-
scription to PINT events. If a server does not support PINT, it SHOULD
return “489 Bad Event” to any SUBSCRIBE messages without an “Event”
header.

5. Event Packages

This section covers several issues which should be taken into consideration
when event packages based on SUBSCRIBE and NOTIFY are proposed.
Roach [Page 18]

Internet Draft SIP-Specific Event Notification February 2002
5.1. Appropriateness of Usage

When designing an event package using the methods described in this draft
for event notification, it is important to consider: is SIP an appropriate mech-
anism for the problem set? Is SIP being selected because of some unique fea-
ture provided by the protocol (e.g. user mobility), or merely because “it can
be done?” If you find yourself defining event packages for notifications
related to, for example, network management or the temperature inside your
car’s engine, you may want to reconsider your selection of protocols.

Those interested in extending the mechanism defined in this docu-
ment are urged to read “Guidelines for Authors of SIP Exten-
sions”[2] for further guidance regarding appropriate uses of SIP.

Further, it is expected that this mechanism is not to be used in applications
where the frequency of reportable events is excessively rapid (e.g. more than
about once per second). A SIP network is generally going to be provisioned
for a reasonable signalling volume; sending a notification every time a user’s
GPS position changes by one hundreth of a second could easily overload
such a network.

5.2. Event Template-packages

Normal event packages define a set of state applied to a specific type of
resource, such as user presence, call state, and messaging mailbox state.

Event template-packages are a special type of package which define a set of
state applied to other packages, such as statistics, access policy, and sub-
scriber lists. Event template-packages may even be applied to other event
template-packages.

To extend the object-oriented analogy made earlier, event template-packages
can be thought of as templatized C++ packages which must be applied to
other packages to be useful.

The name of an event template-package as applied to a package is formed by
appending a period followed by the event template-package name to the end
of the package. For example, if a template-package called “winfo” were
being applied to a package called “presence”, the event token used in
“Event” and “Allow-Events” would be “presence.winfo”.

Event template-packages must be defined so that they can be applied to any
arbitrary package. In other words, event template-packages cannot be specif-
ically tied to one or a few “parent” packages in such a way that they will not
work with other packages.
Roach [Page 19]

Internet Draft SIP-Specific Event Notification February 2002
5.3. Amount of State to be Conveyed

When designing event packages, it is important to consider the type of infor-
mation which will be conveyed during a notification.

A natural temptation is to convey merely the event (e.g. “a new voice mes-
sage just arrived”) without accompanying state (e.g. “7 total voice mes-
sages”). This complicates implementation of subscribing entities (since they
have to maintain complete state for the entity to which they have sub-
scribed), and also is particularly susceptible to synchronization problems.

There are two possible solutions to this problem that event packages may
choose to implement.

5.3.1. Complete State Information

For packages which typically convey state information that is reasonably
small (on the order of 1 kb or so), it is suggested that event packages are
designed so as to send complete state information when an event occurs.

In some circumstances, conveying the current state alone may be insufficient
for a particular class of events. In these cases, the event packages should
include complete state information along with the event that occurred. For
example, conveying “no customer service representatives available” may not
be as useful as conveying “no customer service representatives available;
representative sip:46@cs.xyz.int just logged off”.

5.3.2. State Deltas

In the case that the state information to be conveyed is large, the event pack-
age may choose to detail a scheme by which NOTIFY messages contain
state deltas instead of complete state.

Such a scheme would work as follows: any NOTIFY sent in immediate
response to a SUBSCRIBE contains full state information. NOTIFY mes-
sages sent because of a state change will contain only the state information
that has changed; the subscriber will then merge this information into its cur-
rent knowledge about the state of the resource.

Any event package that supports delta changes to states MUST use a pay-
load which contains a version number that increases by exactly one for each
NOTIFY message. Note that the state version number appears in the body of
the message, not in a SIP header.

If a NOTIFY arrives that has a version number that is incremented by more
than one, the subscriber knows that a state delta has been missed; it ignores
Roach [Page 20]

Internet Draft SIP-Specific Event Notification February 2002
the NOTIFY message containing the state delta (except for the version num-
ber, which it retains to detect message loss), and re-sends a SUBSCRIBE to
force a NOTIFY containing a complete state snapshot.

5.4. Event Package Responsibilities

Event packages are not required to re-iterate any of the behavior described in
this document, although they may choose to do so for clarity or emphasis. In
general, though, such packages are expected to describe only the behavior
that extends or modifies the behavior described in this document.

Note that any behavior designated with “SHOULD” or “MUST” in this doc-
ument is not allowed to be weakened by extension documents; however,
such documents may elect to strengthen “SHOULD” requirements to
“MUST” strength if required by their application.

In addition to the normal sections expected by “Instructions to RFC
Authors”[5] and “Guidelines for Authors of SIP Extensions”[2],
authors of event packages need to address each of the issues detailed
in the following subsections, whenever applicable.

5.4.1. Event Package Name

This section, which MUST be present, defines the token name to be used to
designate the event package. It MUST include the information which
appears in the IANA registration of the token. For information on registering
such types, see section 7.

5.4.2. Event Package Parameters

If parameters are to be used on the “Event” header to modify the behavior of
the event package, the syntax and semantics of such headers MUST be
clearly defined.

5.4.3. SUBSCRIBE Bodies

It is expected that most, but not all, event packages will define syntax and
semantics for SUBSCRIBE method bodies; these bodies will typically mod-
ify, expand, filter, throttle, and/or set thresholds for the class of events being
requested. Designers of event packages are strongly encouraged to re-use
existing MIME types for message bodies where practical.

This mandatory section of an event package defines what type or types of
event bodies are expected in SUBSCRIBE requests (or specify that no event
bodies are expected). It should point to detailed definitions of syntax and
semantics for all referenced body types.
Roach [Page 21]

Internet Draft SIP-Specific Event Notification February 2002
5.4.4. Subscription Duration

It is RECOMMENDED that event packages give a suggested range of times
considered reasonable for the duration of a subscription. Such packages
MUST also define a default “Expires” value to be used if none is specified.

5.4.5. NOTIFY Bodies

The NOTIFY body is used to report state on the resource being monitored.
Each package MUST define a what type or types of event bodies are
expected in NOTIFY requests. Such packages MUST specify or cite detailed
specifications for the syntax and semantics associated with such event body.

Event packages also MUST define which MIME type is to be assumed if
none are specified in the “Accept” header of the SUBSCRIBE request.

5.4.6. Notifier processing of SUBSCRIBE requests

This section describes the processing to be performed by the notifier upon
receipt of a SUBSCRIBE request. Such a section is required.

Information in this section includes details of how to authenticate subscrib-
ers and authorization issues for the package. Such authorization issues may
include, for example, whether all SUBSCRIBE requests for this package are
answered with 202 responses (see section 6.2.).

5.4.7. Notifier generation of NOTIFY requests

This section of an event package describes the process by which the notifier
generates and sends a NOTIFY request. This includes detailed information
about what events cause a NOTIFY to be sent, how to compute the state
information in the NOTIFY, how to generate neutral or fake state informa-
tion to hide authorization delays and decisions from users, and whether state
information is complete or deltas for notifications; see section 5.3. Such a
section is required.

This section may optionally describe the behavior used to process the subse-
quent response.

5.4.8. Subscriber processing of NOTIFY requests

This section of an event package describes the process followed by the sub-
scriber upon receipt of a NOTIFY request, including any logic required to
form a coherent resource state (if applicable).
Roach [Page 22]

Internet Draft SIP-Specific Event Notification February 2002
5.4.9. Handling of forked requests

Each event package SHOULD specify whether forked SUBSCRIBE
requests are allowed to install multiple subscriptions.

If such behavior is not allowed, the first potential dialog-establishing mes-
sage will create a dialog. All subsequent NOTIFY messages which corre-
spond to the SUBSCRIBE message (i.e. match “To”, “From”, “From”
header “tag” parameter, “Call-ID”, “CSeq”, “Event”, and “Event” header
“id” parameter) but which do not match the dialog would be rejected with a
481 response. Note that the 200-class response to the SUBSCRIBE can
arrive after a matching NOTIFY has been received; such responses might
not correlate to the same dialog established by the NOTIFY. Except as
required to complete the SUBSCRIBE transaction, such non-matching 200-
class responses are ignored.

If installing of multiple subscriptions by way of a single forked SUB-
SCRIBE is allowed, the subscriber establishes a new dialog towards each
notifier by returning a 200-class response to each NOTIFY. Each dialog is
then handled as its own entity, and is refreshed independent of the other dia-
logs.

In the case that multiple subscriptions are allowed, the event package MUST
specify whether merging of the notifications to form a single state is
required, and how such merging is to be performed. Note that it is possible
that some event packages may be defined in such a way that each dialog is
tied to a mutually exclusive state which is unaffected by the other dialogs;
this MUST be clearly stated if it is the case.

If the event package does not specify which mode of operation to use, the
subscriber may employ either mode of operation.

5.4.10. Rate of notifications

Each event package is expected to define a requirement (SHOULD or
MUST strength) which defines an absolute maximum on the rate at which
notifications are allowed to be generated by a single notifier.

Such packages MAY further define a throttle mechanism which allows sub-
scribers to further limit the rate of notification.

5.4.11. State Agents

Designers of event packages should consider whether their package can ben-
efit from network aggregation points (state agents) and/or nodes which act
on behalf of other nodes. (For example, nodes which provide state informa-
Roach [Page 23]

Internet Draft SIP-Specific Event Notification February 2002
tion about a resource when such a resource is unable or unwilling to provide
such state information itself). An example of such an application is a node
which tracks the presence and availability of a user in the network.

If state agents are to be used by the package, the package MUST specify how
such state agents aggregate information and how they provide authentication
and authorization.

Event packages MAY also outline specific scenarios under which notifier
migrations take place.

5.4.12. Examples

Event packages SHOULD include several demonstrative message flow dia-
grams paired with several typical, syntactically correct and complete mes-
sages.

It is RECOMMENDED that documents describing event packages clearly
indicate that such examples are informative and not normative, with instruc-
tions that implementors refer to the main text of the draft for exact protocol
details.

5.4.13. URI List handling

Some types of event packages may define state information which is poten-
tially too large to reasonably send in a SIP message. To alleviate this prob-
lem, event packages may include the ability to use a MIME body type of
“application/uri-list” in NOTIFY messages. The URI or URIs contained in
the NOTIFY body will then be used to retrieve the actual state information.

If an event package elects to use this mechanism, it MUST define at least
one baseline scheme (e.g. http) which is mandatory to support, as well as one
mandatory baseline data format for the data so retrieved. Event packages
using URIs to retrieve state information also MUST address the duration of
the validity of the URIs passed to a subscriber in this fashion.

6. Security Considerations

6.1. Access Control

The ability to accept subscriptions should be under the direct control of the
user, since many types of events may be considered sensitive for the pur-
poses of privacy. Similarly, the notifier should have the ability to selectively
reject subscriptions based on the subscriber identity (based on access control
lists), using standard SIP authentication mechanisms. The methods for cre-
Roach [Page 24]

Internet Draft SIP-Specific Event Notification February 2002
ation and distribution of such access control lists is outside the scope of this
draft.

6.2. Release of Sensitive Policy Information

The mere act of returning a 200 or certain 4xx and 6xx responses to SUB-
SCRIBE requests may, under certain circumstances, create privacy concerns
by revealing sensitive policy information. In these cases, the notifier
SHOULD always return a 202 response. While the subsequent NOTIFY
message may not convey true state, it MUST appear to contain a potentially
correct piece of data from the point of view of the subscriber, indistinguish-
able from a valid response. Information about whether a user is authorized to
subscribe to the requested state is never conveyed back to the original user
under these circumstances.

6.3. Denial-of-Service attacks

The current model (one SUBSCRIBE request triggers a SUBSCRIBE
response and one or more NOTIFY requests) is a classic setup for an ampli-
fier node to be used in a smurf attack.

Also, the creation of state upon receipt of a SUBSCRIBE request can be
used by attackers to consume resources on a victim’s machine, rendering it
unusable.

To reduce the chances of such an attack, implementations of notifiers
SHOULD require authentication. Authentication issues are discussed in SIP
[1].

6.4. Replay Attacks

Replaying of either SUBSCRIBE or NOTIFY can have detrimental effects.

In the case of SUBSCRIBE messages, attackers may be able to install any
arbitrary subscription which it witnessed being installed at some point in the
past. Replaying of NOTIFY messages may be used to spoof old state infor-
mation (although a good versioning mechanism in the body of the NOTIFY
messages may help mitigate such an attack).

To prevent such attacks, implementations SHOULD require authentication.
Authentication issues are discussed in SIP [1].

6.5. Man-in-the middle attacks

Even with authentication, man-in-the-middle attacks using SUBSCRIBE
may be used to install arbitrary subscriptions, hijack existing subscriptions,
terminate outstanding subscriptions, or modify the resource to which a sub-
Roach [Page 25]

Internet Draft SIP-Specific Event Notification February 2002
scription is being made. To prevent such attacks, implementations SHOULD
provide integrity protection across “Contact”, “Route”, “Expires”, “Event”,
and “To” headers of SUBSCRIBE messages, at a minimum. If SUBSCRIBE
bodies are used to define further information about the state of the call, they
SHOULD be included in the integrity protection scheme.

Man-in-the-middle attacks may also attempt to use NOTIFY messages to
spoof arbitrary state information and/or terminate outstanding subscriptions.
To prevent such attacks, implementations SHOULD provide integrity pro-
tection across the “Call-ID”, “CSeq”, and “Subscription-State” headers and
the bodies of NOTIFY messages.

Integrity protection of message headers and bodies is discussed in SIP [1].

6.6. Confidentiality

The state information contained in a NOTIFY message has the potential to
contain sensitive information. Implementations MAY encrypt such informa-
tion to ensure confidentiality.

While less likely, it is also possible that the information contained in a SUB-
SCRIBE message contains information that users might not want to have
revealed. Implementations MAY encrypt such information to ensure confi-
dentiality.

To allow the remote party to hide information it considers sensitive, all
implementations SHOULD be able to handle encrypted SUBSCRIBE and
NOTIFY messages.

The mechanisms for providing confidentiality are detailed in SIP [1].

7. IANA Considerations

(This section is not applicable until this document is published as an RFC.)

This document defines an event-type namespace which requires a central
coordinating body. The body chosen for this coordination is the Internet
Assigned Numbers Authority (IANA).

There are two different types of event-types: normal event packages, and
event template-packages; see section 5.2. To avoid confusion, template-
package names and package names share the same namespace; in other
words, an event template-package MUST NOT share a name with a pack-
age.
Roach [Page 26]

Internet Draft SIP-Specific Event Notification February 2002
Following the policies outlined in “Guidelines for Writing an IANA Consid-
erations Section in RFCs”[6], normal event package identification tokens are
allocated as First Come First Served, and event template-package identifica-
tion tokens are allocated on a IETF Consensus basis.

Registrations with the IANA MUST include the token being registered and
whether the token is a package or a template-package. Further, packages
MUST include contact information for the party responsible for the registra-
tion and/or a published document which describes the event package. Event
template-package token registrations MUST include a pointer to the pub-
lished RFC which defines the event template-package.

Registered tokens to designate packages and template-packages MUST
NOT contain the character “.”, which is used to separate template-packages
from packages.

7.1. Registration Information

As this document specifies no package or template-package names, the ini-
tial IANA registration for event types will be empty. The remainder of the
text in this section gives an example of the type of information to be main-
tained by the IANA; it also demonstrates all five possible permutations of
package type, contact, and reference.

The table below lists the event packages and template-packages defined in
“SIP-Specific Event Notification” [RFC xxxx]. Each name is designated as a
package or a template-package under “Type”.

Package Name Type Contact Reference
------------ ---- ------- ---------
example1 package [Roach]
example2 package [Roach] [RFC xxxx]
example3 package [RFC xxxx]
example4 template [Roach] [RFC xxxx]
example5 template [RFC xxxx]

PEOPLE

[Roach] Adam Roach <adam@dynamicsoft.com>

REFERENCES

[RFC xxxx] A. Roach “SIP-Specific Event Notification”, RFC XXXX,

August 2002.

7.2. Registration Template

To: ietf-sip-events@iana.org
Subject: Registration of new SIP event package
Roach [Page 27]

Internet Draft SIP-Specific Event Notification February 2002
Package Name:

(Package names must conform to the syntax described in section
7.5.1.)

Is this registration for a Template Package:

(indicate yes or no)

Published Specification(s):

(Template packages require a published RFC. Other packages may
reference a specification when appropriate).

Person & email address to contact for further information:

7.3. Syntax

This section describes the syntax extensions required for event notification
in SIP. Semantics are described in section 4. Note that the formal syntax def-
initions described in this document are expressed in the ABNF format
defined by [1], and contain references to elements defined therein.

7.4. New Methods

This document describes two new SIP methods: SUBSCRIBE and NOTIFY.

This table expands on tables 2 and 3 in SIP [1].

Header Where SUB NOT
------ ----- --- ---
Accept R o o
Accept 2xx - -
Accept 415 o o
Accept-Encoding R o o
Accept-Encoding 2xx - -
Accept-Encoding 415 o o
Accept-Language R o o
Accept-Language 2xx - -
Accept-Language 415 o o
Alert-Info R - -
Alert-Info 180 - -
Allow R o o
Allow 2xx o o
Allow r o o
Allow 405 m m
Authentication-Info 2xx o o
Authorization R o o
Call-ID c m m
Contact R m m
Contact 1xx o o
Roach [Page 28]

Internet Draft SIP-Specific Event Notification February 2002
Contact 2xx m o
Contact 3xx m m
Contact 485 o o
Content-Disposition o o
Content-Encoding o o
Content-Language o o
Content-Length t t
Content-Type * *
CSeq c m m
Date o o
Error-Info 300-699 o o
Expires o -
Expires 2xx m -
From c m m
In-Reply-To R - -
Max-Forwards R m m
Min-Expires 423 m -
MIME-Version o o
Organization o -
Priority R o -
Proxy-Authenticate 407 m m
Proxy-Authorization R o o
Proxy-Require R o o
RAck R - -
Record-Route R o o
Record-Route 2xx,401,484 o o
Reply-To - -
Require o o
Retry-After 404,413,480,486 o o
Retry-After 500,503 o o
Retry-After 600,603 o o
Route R c c
RSeq 1xx o o
Server r o o
Subject R - -
Supported R o o
Supported 2xx o o
Timestamp o o
To c(1) m m
Unsupported 420 o o
User-Agent o o
Via c m m
Warning R - o
Warning r o o
WWW-Authenticate 401 m m

7.4.1. SUBSCRIBE method

“SUBSCRIBE” is added to the definition of the element “Method” in the
SIP message grammar.
Roach [Page 29]

Internet Draft SIP-Specific Event Notification February 2002
Like all SIP method names, the SUBSCRIBE method name is case sensitive.
The SUBSCRIBE method is used to request asynchronous notification of an
event or set of events at a later time.

7.4.2. NOTIFY method

“NOTIFY” is added to the definition of the element “Method” in the SIP
message grammar.

The NOTIFY method is used to notify a SIP node that an event which has
been requested by an earlier SUBSCRIBE method has occurred. It may also
provide further details about the event.

7.5. New Headers

This table expands on tables 2 and 3 in SIP [1], as amended by the changes
described in section 7.4.

Header field where proxy ACK BYE CAN INV OPT REG PRA SUB NOT

Allow-Events R o o - o o o o o o
Allow-Events 2xx - o - o o o o o o
Allow-Events 489 - - - - - - - m m
Event R - - - - - - - m m
Subscription-State R - - - - - - - - m

7.5.1. “Event” header

Event is added to the definition of the element “message-header” in the SIP
message grammar.

For the purposes of matching responses and NOTIFY messages with SUB-
SCRIBE messages, the event-type portion of the “Event” header is com-
pared byte-by-byte, and the “id” parameter token (if present) is compared
byte-by-byte. An “Event” header containing an “id” parameter never
matches an “Event” header without an “id” parameter. No other parameters
are considered when performing a comparison.

Note that the forgoing text means that “Event: foo; id=1234” would
match “Event: foo; param=abcd; id=1234”, but not “Event: foo”
(id does not match) or “Event: Foo; id=1234” (event portion does
not match).

This document does not define values for event-types. These values will be
defined by individual event packages, and MUST be registered with the
IANA.
Roach [Page 30]

Internet Draft SIP-Specific Event Notification February 2002
There MUST be exactly one event type listed per event header. Multiple
events per message are disallowed.

7.5.2. “Allow-Events” Header

Allow-Events is added to the definition of the element “general-header” in
the SIP message grammar. Its usage is describe in section 4.3.7.

7.5.3. “Subscription-State” Header

Subscription-State is added to the definition of the element “request-header”
in the SIP message grammar. Its usage is described in section 4.2.4.

7.6. New Response Codes

7.6.1. “202 Accepted” Response Code

The 202 response is added to the “Success” header field definition. “202
Accepted” has the same meaning as that defined in HTTP/1.1 [4].

7.6.2. “489 Bad Event” Response Code

The 489 event response is added to the “Client-Error” header field defini-
tion. “489 Bad Event” is used to indicate that the server did not understand
the event package specified in a “Event” header field.

7.7. Augmented BNF Definitions

The Augmented BNF definitions for the various new and modified syntax
elements follows. The notation is as used in SIP [1], and any elements not
defined in this section are as defined in SIP and the documents to which it
refers.

SUBSCRIBEm = %x53.55.42.53.43.52.49.42.45 ; SUBSCRIBE in caps
NOTIFYm = %x4E.4F.54.49.46.59 ; NOTIFY in caps
extension-method = SUBSCRIBEm / NOTIFYm / token

Event = (“Event” / “o”) HCOLON event-type
*(SEMI event-param)

event-type = event-package *(“.” event-template)
event-package = token-nodot
event-template = token-nodot
token-nodot = 1*(alphanum / "-" / "!" / "%" / "*"

/ "_" / "+" / "‘" / "’" / "~")
event-param = generic-param / (“id” EQUAL token)

Allow-Events = (“Allow-Events” / “u”) HCOLON event-type
*(COMMA event-type)
Roach [Page 31]

Internet Draft SIP-Specific Event Notification February 2002
Subscription-State = “Subscription-State” HCOLON substate-value
*(SEMI subexp-params)

substate-value = “active” / “pending” / “terminated”
/ extension-substate

extension-substate = token
subexp-params = (“reason” EQUAL reason-value)

/ (“expires” EQUAL delta-seconds)
/ (“retry-after” EQUAL delta-seconds)
/ generic-param

reason-value = “deactivated”
/ “probation”
/ “rejected”
/ “timeout”
/ “giveup”
/ reason-extension

reason-extension = token

8. Changes

8.1. Changes from draft-ietf-...-02

- Fixes in section 4.1.1. to align with rest of spec:
missed one reference to notifier being able to increase
subscription interval.

- Changed Record-Routing description in 4.1.5. and
4.2.3. Now mandatory only for 1st SUBSCRIBE and
dialog-establishing NOTIFY messages.

- Added language to 4.2.4. requiring an immediate
NOTIFY response.

- Added clarifying text to 4.3.3. to explain that
the forking behavior comes from the SIP spec.

- Fixed ABNF to use “/” instead of “|”. Other minor
ABNF updates to make consistent and correct.

- Grouped ABNF into a single section.

- Pointed to correct version of HTTP/1.1 spec.

- Added generation of 423 error response to
notifier handling of SUBSCRIBE requests.

- Update to allow “Warning” headers in NOTIFY
requests

- Several small editorial changes.

- Adjusted usage of quotation marks next to periods and
commas to match that used by the American Mathematical
Society; although contrary to traditional American
English convention, this usage lends clarity to certain
passages.
Roach [Page 32]

Internet Draft SIP-Specific Event Notification February 2002
8.2. Changes from draft-ietf-...-01

- Changed dependency from RFC2543 to new sip bis draft.
This allowed removal of certain sections of text.

- Renamed “sub-packages” to “template-packages” in an
attempt to mitigate exploding rampant misinterpretation.

- Changed “Subscription-Expires” to “Subscription-State”,
and added clearer semantics for “reason” codes.

- Aligned “Subscription-State” “reason” codes with
watcherinfo draft.

- Made “Subscription-State” mandatory in NOTIFY
requests, since it is integral to defining the
creation and destruction of subscriptions (and,
consequently, dialogs)

- Heavily revised section on dialog creation and
termination.

- Expanded migration section.

- Added “id” parameter to Event header, to allow
demultiplexing of NOTIFY requests when more than
one subscription is associated with a single dialog.

- Synchronized SUBSCRIBE “Expires” handling with REGISTER
(again)

- Added definitions section.

- Restructuring for clarity.

- Added statement explicitly allowing event
packages to define additional parameters
for the “Event” header.

- Added motivational text in several places.

- Synced up header table modifications with bis draft.

8.3. Changes from draft-ietf-...-00

- Fixed confusing typo in section describing correlation
of SUBSCRIBE requests

- Added explanatory text to clarify tag handling when
generating re-subscriptions

- Expanded general handling section to include specific
discussion of Route/Record-Route handling.

- Included use of “methods” parameter on Contact as
a means for detecting support for SUBSCRIBE and NOTIFY.
Roach [Page 33]

Internet Draft SIP-Specific Event Notification February 2002
- Added definition of term “dialog”; changed “leg” to
“dialog” everywhere.

- Added syntax for “Subscription-Expires” header.

- Changed NOTIFY messages to refer to “Subscription-Expires”
everywhere (instead of “Expires”.)

- Added information about generation and handling of
481 responses to SUBSCRIBE requests

- Changed having Expires header in SUBSCRIBE from
MUST to SHOULD; this aligns more closely with
REGISTER behavior

- Removed experimental/private event package names,
per list consensus

- Cleaned up some legacy text left over from very early
drafts that allowed multiple contacts per subscription

- Strengthened language requiring the removal of subscriptions
if a NOTIFY request fails with a 481. Clarified that such
removal is required for all subscriptions, including
administrative ones.

- Removed description of delaying NOTIFY requests until
authorization is granted. Such behavior was inconsistent
with other parts of this document.

- Moved description of event packages to later in document,
to reduce the number of forward references.

- Minor editorial and nits changes

- Added new open issues to open issues section. All
previous open issues have been resolved.

9. References

[1] J. Rosenberg et. al., “SIP: Session Initiation Protocol”, <draft-ietf-sip-
rfc2543bis-07>, IETF; February 2002. Work in progress.

[2] J. Rosenberg, H. Schulzrinne, “Guidelines for Authors of SIP Extensions”,
<draft-ietf-sip-guidelines-03.txt>, IETF; November 2001. Work in progress.

[3] S. Petrack, L. Conroy, “The PINT Service Protocol”, RFC 2848, IETF; June
2000.

[4] R. Fielding et. al., “Hypertext Transfer Protocol -- HTTP/1.1”, RFC 2616,
IETF, June 1999.
Roach [Page 34]

Internet Draft SIP-Specific Event Notification February 2002
[5] J. Postel, J. Reynolds, “Instructions to RFC Authors”, RFC 2223, IETF, Octo-
ber 1997.

[6] T. Narten, H. Alvestrand, “Guidelines for Writing an IANA Considerations
Section in RFCs”, BCP 26, IETF, October 1998.

[7] Schulzrinne/Rosenberg, “SIP Caller Preferences and Callee Capabilities”,
<draft-ietf-sip-callerprefs-05.txt>, IETF; November 2001. Work in progress.

[8] S. Bradner, “Key words for use in RFCs to indicate requirement levels”, RFC
2119, IETF, March 1997

10. Acknowledgements

Thanks to the participants in the Events BOF at the 48th IETF meeting in
Pittsburgh, as well as those who gave ideas and suggestions on the SIP
Events mailing list. In particular, I wish to thank Henning Schulzrinne of
Columbia University for coming up with the final three-tiered event identifi-
cation scheme, Sean Olson for miscellaneous guidance, Jonathan Rosenberg
for a thorough scrubbing of the -00 draft, and the authors of the “SIP Exten-
sions for Presence” draft for their input to SUBSCRIBE and NOTIFY
request semantics.

11. Author’s Address

Adam Roach
dynamicsoft
5100 Tennyson Parkway
Suite 1200
Plano, TX 75024
USA
E-Mail: <adam@dynamicsoft.com>
Voice: <sip:adam@dynamicsoft.com>
Roach [Page 35]

	Status of this Memo
	Abstract
	1. Table of Contents
	2. Introduction
	2.1. Overview of Operation
	2.2. Documentation Conventions

	3. Definitions
	4. Node Behavior
	4.1. Description of SUBSCRIBE Behavior
	4.1.1. Subscription Duration
	4.1.2. Identification of Subscribed Events and Event Classes
	4.1.3. Additional SUBSCRIBE Header Values
	4.1.4. Subscriber SUBSCRIBE Behavior
	4.1.5. Proxy SUBSCRIBE Behavior
	4.1.6. Notifier SUBSCRIBE Behavior

	4.2. Description of NOTIFY Behavior
	4.2.1. Identification of Reported Events, Event Classes, and Current State
	4.2.2. Notifier NOTIFY Behavior
	4.2.3. Proxy NOTIFY Behavior
	4.2.4. Subscriber NOTIFY Behavior

	4.3. General
	4.3.1. Detecting support for SUBSCRIBE and NOTIFY
	4.3.2. CANCEL requests
	4.3.3. Forking
	4.3.4. Dialog creation and termination
	4.3.5. State Agents and Notifier Migration
	4.3.6. Polling Resource State
	4.3.7. Allow-Events header usage
	4.3.8. PINT Compatibility

	5. Event Packages
	5.1. Appropriateness of Usage
	5.2. Event Template-packages
	5.3. Amount of State to be Conveyed
	5.3.1. Complete State Information
	5.3.2. State Deltas

	5.4. Event Package Responsibilities
	5.4.1. Event Package Name
	5.4.2. Event Package Parameters
	5.4.3. SUBSCRIBE Bodies
	5.4.4. Subscription Duration
	5.4.5. NOTIFY Bodies
	5.4.6. Notifier processing of SUBSCRIBE requests
	5.4.7. Notifier generation of NOTIFY requests
	5.4.8. Subscriber processing of NOTIFY requests
	5.4.9. Handling of forked requests
	5.4.10. Rate of notifications
	5.4.11. State Agents
	5.4.12. Examples
	5.4.13. URI List handling

	6. Security Considerations
	6.1. Access Control
	6.2. Release of Sensitive Policy Information
	6.3. Denial-of-Service attacks
	6.4. Replay Attacks
	6.5. Man-in-the middle attacks
	6.6. Confidentiality

	7. IANA Considerations
	7.1. Registration Information
	7.2. Registration Template
	7.3. Syntax
	7.4. New Methods
	7.4.1. SUBSCRIBE method
	7.4.2. NOTIFY method

	7.5. New Headers
	7.5.1. “Event” header
	7.5.2. “Allow-Events” Header
	7.5.3. “Subscription-State” Header

	7.6. New Response Codes
	7.6.1. “202 Accepted” Response Code
	7.6.2. “489 Bad Event” Response Code

	7.7. Augmented BNF Definitions

	8. Changes
	8.1. Changes from draft-ietf-...-02
	8.2. Changes from draft-ietf-...-01
	8.3. Changes from draft-ietf-...-00

	9. References
	10. Acknowledgements
	11. Author’s Address

