
Internet Engineering Task Force Individual Submission
INTERNET-DRAFT J. Lennox, J. Rosenberg, H. Schulzrinne
draft-lennox-sip-cgi-03.ps Columbia U./dynamicsoft

March 1, 2000
Expires: September 2000

Common Gateway Interface for SIP

Status of this Memo

This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its

working groups. Note that other groups may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced,

or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

To view the list Internet-Draft Shadow Directories, seehttp://www.ietf.org/shadow.html.

Copyright Notice

Copyright (c) The Internet Society (2000). All Rights Reserved.

Abstract

In Internet telephony, there must be a means by which new services are created and deployed rapidly.
In the World Wide Web, the Common Gateway Interface (CGI) has served as popular means towards
programming web services. Due to the similarities between the Session Initiation Protocol (SIP) and
the Hyper Text Transfer Protocol (HTTP), CGI seems a good candidate for service creation in a SIP
environment. This draft proposes a SIP CGI interface for providing SIP services on a SIP server.

Contents

1 Introduction 3

2 Motivations 4

3 Differences from HTTP CGI 4
3.1 Basic Model . 5
3.2 Persistence Model . 6
3.3 SIP CGI Triggers . 7
3.4 Naming . 7
3.5 Environment Variables . 7
3.6 Timers . 7

4 Overview of SIP CGI 7

5 SIP CGI Specification 9
5.1 Introduction .. 9

5.1.1 Relationship with HTTP CGI . 9
5.1.2 Conventions Of This Document . 9

INTERNET-DRAFT draft-lennox-sip-cgi-03.ps March 1, 2000

5.1.3 Specifications . 9
5.1.4 Terminology . 9

5.2 Notational Conventions and Generic Grammar . 10
5.3 Invoking the script . 10
5.4 The SIP CGI Script Command Line . 11
5.5 Data Input to the SIP CGI Script .. 11

5.5.1 Message Metadata (Metavariables) . 11
5.5.1.1 AUTHTYPE . 12
5.5.1.2 CONTENTLENGTH . 12
5.5.1.3 CONTENTTYPE . 12
5.5.1.4 GATEWAYINTERFACE . 13
5.5.1.5 Protocol-Specific Metavariables . 13
5.5.1.6 REGISTRATIONS . 14
5.5.1.7 REMOTEADDR . 14
5.5.1.8 REMOTEHOST . 14
5.5.1.9 REMOTEIDENT . 14
5.5.1.10 REMOTEUSER . 15
5.5.1.11 REQUESTMETHOD . 15
5.5.1.12 REQUESTTOKEN . 15
5.5.1.13 REQUESTURI . 15
5.5.1.14 RESPONSESTATUS . 15
5.5.1.15 RESPONSEREASON . 16
5.5.1.16 RESPONSETOKEN . 16
5.5.1.17 SCRIPTCOOKIE . 16
5.5.1.18 SERVERNAME . 16
5.5.1.19 SERVERPORT . 16
5.5.1.20 SERVERPROTOCOL . 16
5.5.1.21 SERVERSOFTWARE . 17

5.5.2 Message Bodies . 17
5.6 Data Output from the SIP CGI Script . 17

5.6.1 CGI Action Lines . 18
5.6.1.1 Status . 18
5.6.1.2 Proxy Request . 18
5.6.1.3 Forward Response. 19
5.6.1.4 Script Cookie .. 19
5.6.1.5 CGI Again . 19
5.6.1.6 Default Action . 19

5.6.2 CGI Header fields . 20
5.6.2.1 Request-Token . 20
5.6.2.2 Remove . 20

5.7 Local expiration handling . 20
5.8 Locally generated responses 21
5.9 SIP CGI and REGISTER . 21
5.10 SIP CGI and CANCEL . 21
5.11 SIP CGI and ACK . 21

J. Lennox, J. Rosenberg, H. Schulzrinne Expires September 2000 [Page 2]

INTERNET-DRAFT draft-lennox-sip-cgi-03.ps March 1, 2000

5.11.1 Receiving ACK’s. 21
5.11.2 Sending ACK’s . 21

6 System Specifications 22
6.1 Unix . 22
6.2 Microsoft Windows . 22

7 Security Considerations 22
7.1 Request initiation. 22
7.2 Authenticated and encrypted messages . 22
7.3 SIP header fields containing sensitive information . 23
7.4 Script Interference with the Server . 23
7.5 Data Length and Buffering Considerations . 23

8 Changes from earier versions 23
8.1 Changes from draft -02 . 23
8.2 Changes from draft -01 . 24
8.3 Changes from draft -00 . 25

9 Acknowledgements 25

10 Full Copyright Statement 25

11 Authors’ Addresses 26

1 Introduction

In Internet telephony, there must be a means by which new services are created and deployed rapidly. In
traditional telephony networks, this was accomplished through IN service creation environments, which
provided an interface for creating new services, often using GUI based tools.

The WWW has evolved with its own set of tools for service creation. Originally, web servers simply
translated URL’s into filenames stored on a local system, and returned the file content. Over time, servers
evolved to provide dynamic content, and forms provided a means for soliciting user input. In essence, what
evolved was a means for service creation in a web environment. There are now many means for creation of
dynamic web content, including server side JavaScript, servlets, and the common gateway interface (CGI)
[1].

Multimedia communications, including Internet telephony, will also require a mechanism for creating
services. This mechanism is strongly tied to the features provided by the signaling protocols. The Session
Initiation Protocol (SIP) [2] has been developed for initiation and termination of multimedia sessions. SIP
borrows heavily from HTTP, inheriting its client-server interaction and much of its syntax and semantics.
For this reason, the web service creation environments, and CGI in particular, seem attractive as starting
points for developing SIP based service creation environments.

J. Lennox, J. Rosenberg, H. Schulzrinne Expires September 2000 [Page 3]

INTERNET-DRAFT draft-lennox-sip-cgi-03.ps March 1, 2000

2 Motivations

CGI has a number of strengths which make it attractive as an environment for creating SIP services:

Language independence:CGI works with perl, C, VisualBasic, tcl, and many other languages, as long as
they support access to environment variables.

Exposes all headers:CGI exposes the content of all the headers in an HTTP request to the CGI application.
An application can make use of these as it sees fit, and ignore those it doesn’t care about. This allows
all aspects of an HTTP request to be considered for creation of content. In a SIP environment, headers
have greater importance than in HTTP. They carry critical information about the transaction, including
caller and callee, subject, contact addresses, organizations, extension names, registration parameters
and expirations, call status, and call routes, to name a few. It is therefore critical for SIP services to
have as much access to these headers as possible. For this reason, CGI is very attractive.

Creation of Responses:CGI is advantageous in that it can create all parts of a response, including headers,
status codes and reason phrases, in addition to message bodies. This is not the case for other mech-
anisms, such as Java servlets, which are focused primarily on the body. In a SIP environment, it is
critical to be able to generate all aspects of a response (and, all aspects of new or proxied requests),
since the body is usually not of central importance in SIP service creation.

Component Reuse:Many of the CGI utilities allow for easy reading of environment variables, parsing of
form data, and often parsing and generation of header fields. Since SIP reuses the basic RFC822 [3]
syntax of HTTP, many of these tools are applicable to SIP CGI.

Familiar Environment: Many web programmers are familiar with CGI.

Ease of extensibility: Since CGI is an interface and not a language, it becomes easy to extend and reapply
to other protocols, such as SIP.

The generality, extensibility, and detailed control andaccess to information provided by CGI, coupled
with the range of tools that exist for it, which can be immediately applied to SIP, make it a good mechanism
for SIP service creation.

3 Differences from HTTP CGI

While SIP and HTTP share a basic syntax and a request-response model, there are important differences.
Proxies play a critical role in services for SIP, while they are less important for HTTP. SIP servers can
fork requests (proxying multiple requests when a single request is received), an important capability absent
from HTTP. SIP supports additional features, such as registrations, which are absent from HTTP. These
differences are reflected in the differences between SIP CGI and HTTP CGI. SIP CGI runs primarily on
proxy, redirect, and registrar servers, rather than user agent servers (which are the equivalent of origin
servers in HTTP). SIP CGI allows the script to perform specific messaging functions not supported in HTTP
CGI (such as proxying requests), and SIP CGI introduces a persistence model that allow a script to maintain
control through multiple message exchanges. HTTP CGI has no persistence for scripts.

J. Lennox, J. Rosenberg, H. Schulzrinne Expires September 2000 [Page 4]

INTERNET-DRAFT draft-lennox-sip-cgi-03.ps March 1, 2000

resp

req

CGI
Program

env/
stdin

stdout

Client Server
HTTP HTTP

Figure 1: HTTP CGI Model

3.1 Basic Model

The basic model for HTTP CGI is depicted in figure 1.
A client issues an HTTP request, which is passed either directly to the origin server (as shown), or is

forwarded through a proxy server. The origin server executes a CGI script, and the CGI script returns a
response, which is passed back to the client. The main job of the script is to generate the body for the
response. Only origin servers execute CGI scripts, not proxy servers.

In a SIP server, the model is different, and is depicted in Figure 2.

CGI
Program

env/
stdin

resp

req

resp

req

Server
SIP

Server
SIP

resp

req

Client
SIP

Client
SIP

stdout

Figure 2: SIP CGI Model

The client generates a request, which is forwarded to a server. The server may generate a response
(such as an error or redirect response). Or, if the server is a proxy server, the request is proxied to another
server, and eventually to a user agent, and the response is passed back upstream, through the server, and
back towards the client. A SIP proxy server may additionally fork requests, generating multiple requests in
response to a received request. Generally, a proxy server will not generate the content in responses. These
contain session descriptions created by user agents. Services, such as call forward and mobility services,
are based on the decisions the server makes about (1) when, to where, and how many requests to proxy
downstream, and (2) when to send a response back upstream. Creation of services such as ad-hoc bridging
(where the server acts as a media mixer in a multiparty call, without being asked to do so by the end users)
will require the server to generate new requests of its own, and for it to modify and generate the body in

J. Lennox, J. Rosenberg, H. Schulzrinne Expires September 2000 [Page 5]

INTERNET-DRAFT draft-lennox-sip-cgi-03.ps March 1, 2000

responses.
An HTTP server is mainly concerned about generation of responses. A SIP server is generally concerned

about performing four basic operations:

Proxying of Requests: Receiving a request, adding or modifying any of the headers, deciding on a set of
servers to forward the request to, and forwarding it to them.

Returning Responses:Receiving a response, adding or modifying any of the headers, and passing the
response towards the client.

Generating Requests:Creating a new request, originating at the server, placing headers and a body into
the message, and sending it to a server.

Generation of Responses:Receiving a request, generating a response to it, and sending it back to the
client.

When a request is received, one or more of the above operations may occur at once. For example, a
SIP server may generate a provisional response, generate a new request, and proxy the original request to
two servers. This implies that SIP CGI must encompass a greater set of functions than HTTP CGI. These
functions are a super-set of the simple end-server request/response model.

3.2 Persistence Model

In HTTP CGI, a script is executed once for each request. It generates the response, and then terminates.
There is no state maintained across requests from the same user, as a general rule (although this can be
done — and is — for more complex services such as database accesses, which essentially encapsulate state
in client-side cookies or dynamically-generated URLs). A transaction is just a single request, and a response.

In SIP CGI, since a request can generate many new and proxied requests, these themselves will generate
responses. A service will often require these responses to be processed, and additional requests or responses
to be generated. As a result, whereas an HTTP CGI script executes once per transaction, a SIP CGI script
must maintain control somehow over numerous events.

In order to enable this, and to stay with the original CGI model, we mandate that a SIP CGI script
executes when a message arrives, and after generating output (in the form of additional messages), terminate.
State is maintained by allowing the CGI to return an opaque token to the server. When the CGI script is
called again for the same transaction, this token is passed back to the CGI script. When called for a new
transaction, no token is passed.

For example, consider a request which arrives at a SIP server. The server calls a CGI script, which
generates a provisional response and a proxied request. It also returns a token to the server, and then
terminates. The response is returned upstream towards the client, and the request is proxied. When the
response to the proxied request arrives, the script is executed again. The environment variables are set based
on the content of the new response. The script is also passed back the token. Using the token as its state, the
script decides to proxy the request to a different location. It therefore returns a proxied request, and another
token. The server forwards this new request, and when the response comes, calls the CGI script once more,
and passes back the token. This time, the script generates a final response, and passes this back to the server.
The server sends the response to the client, destroys the token, and the transaction is complete.

J. Lennox, J. Rosenberg, H. Schulzrinne Expires September 2000 [Page 6]

INTERNET-DRAFT draft-lennox-sip-cgi-03.ps March 1, 2000

3.3 SIP CGI Triggers

In many cases, calling the CGI script on the reception of every message is inefficient. CGI scripts come
at the cost of significant overhead since they generally require creation of a new process. Therefore, it is
important in SIP CGI for a script to indicate, after it is called the first time, under what conditions it will be
called for the remainder of the transaction. If the script is not called, the server will take the “default” action,
as specified in this document. This allows an application designer to trade off flexibility for computational
resources. Making an analogy to the Intelligent Network (IN) - a script is able to define the triggers for its
future execution.

So, in summary, whereas an HTTP CGI script executes once during a transaction, a single SIP CGI
script may execute many times during a transaction, and may specify at which points it would like to have
control for the remainder of the transaction.

3.4 Naming

In HTTP CGI, the CGI script itself is generally the resource named in the request URI of the HTTP request.
This is not so in SIP. In general, the request URI names a user to be called. The mapping to a script to be
executed may depend on other SIP headers, includingTo andFrom fields, the SIP method, status codes,
and reason phrases. As such, the mapping of a message to a CGI script is purely a matter of local policy
administration at a server. A server may have a single script which always executes, or it may have multiple
scripts, and the target is selected by some parts of the header.

3.5 Environment Variables

In HTTP CGI, environment variables are set with the values of the paths and other aspects of the request.
As there is no notion of a path in SIP, some of these environment variables do not make sense.

3.6 Timers

In SIP, certain services require that the script gets called not only when a message arrives, but when some
timer expires. The classic example of this is “call forward no answer.” To be implemented with SIP CGI,
the first time the script is executed, it must generate a proxied request, and also indicate a time at which to be
called again if no response comes. This kind of feature is not present in HTTP CGI, and some rudimentary
support for it is needed in SIP CGI.

4 Overview of SIP CGI

When a request arrives at a SIP server, initiating a new transaction, the server will set a number of environ-
ment variables, and call a CGI script. The script is passed the body of the request through stdin.

The script returns, on stdout, a set of SIP action lines, each of which may be modified by CGI and/or
SIP headers. This set is delimited by the same rules which delimit multiple SIP messages in a single UDP
request - generally through the use of two carriage returns. The action lines allow the script to specify any
of the four operations defined above, in addition to the default operation. Generating a response is done by
copying the the status line of the response into an action line of the CGI output. For example, the following
will create a 200 OK to the original request:

J. Lennox, J. Rosenberg, H. Schulzrinne Expires September 2000 [Page 7]

INTERNET-DRAFT draft-lennox-sip-cgi-03.ps March 1, 2000

SIP/2.0 200 OK

The operation of proxying a request is supported by the CGI-PROXY-REQUEST CGI action, which
takes the URL to proxy to as an argument. For example, to proxy a request to dante@inferno.com:

CGI-PROXY-REQUEST sip:dante@inferno.com SIP/2.0
Contact: sip:server1@company.com

In this example, the server will take the original request, and modify any header fields normally changed
during the proxy operation (such as decrementingMaxForwards, and adding aVia field). This message
is then “merged” with the output of the CGI script - SIP headers specified below the action line in the CGI
output will be added to the outbound request. In the above example, theContact header will be added. Note
that the action line looks like the request line of a SIP request message. This is done in order to simplify
parsing.

To delete headers from the outgoing request, the merge process also supports the CGI headerCGI-
Remove. Like SIP headers, CGI headers are written underneath the action line. They are extracted by the
SIP server, and used to provide the server with additional guidance. CGI headers always begin withCGI- to
differentiate them from SIP headers. In this case, the supported values for the CGI-Remove header are the
names of headers in the original message.

Returning of responses is more complex. A server may receive multiple responses as the result of
forking a request. The script should be able to ask the server to return any of the responses it had received
previously. To support this, the server will pass an opaque token to the script through environment variables,
unique for each response received. To return a response, a CGI script needs to indicate which response is
to be returned. For example, to return a response named with the token abcdefghij, the following output is
generated:

CGI-FORWARD-RESPONSE abcdefghij SIP/2.0

Finally, if the script does not output any of the above actions, the server does what it would normally do
upon receiving the message that triggered the script.

A SIP CGI script is normally only executed when the original request arrives. If the script also wants
to be called for subsequent messages in a transaction — due to responses to proxied requests, or (in certain
circumstances) ACK and CANCEL requests, it can perform the CGI-AGAIN action:

CGI-AGAIN yes SIP/2.0

This action applies only to the next invocation of the script; it means to invoke the script one more time.
Outputting “no” is identical to outputting “yes” on this invocation of the script and outputting nothing the
next time the script is called.

When the script is re-executed, it may need access to some state in order to continue processing. A
script can generate a piece of state, called a cookie, for any new request or proxied request. It is passed to
the server through the CGI-SET-COOKIE action. The action contains a token, which is the cookie itself.
The server does not examine or parse the cookie. It is simply stored. When the script is re-executed, the
cookie is passed back to the script through an environment variable.

J. Lennox, J. Rosenberg, H. Schulzrinne Expires September 2000 [Page 8]

INTERNET-DRAFT draft-lennox-sip-cgi-03.ps March 1, 2000

CGI-SET-COOKIE khsihppii8asdl SIP/2.0

Finally, when the script causes the server to proxy a request, responses to these requests will arrive. To
ease matching of responses to requests, the script can place a request token in the CGICGI-Request-Token
header. This header is removed by the server when the request is proxied. Any responses received to this
request will have the token passed in an environment variable.

5 SIP CGI Specification

5.1 Introduction

5.1.1 Relationship with HTTP CGI

This SIP CGI specification is based on work-in-progress revision 1.1 of the HTTP CGI specification [1].
That document is a product of the CGI-WG mailing list, which is not an official IETF working group. CGI-
WG’s homepage is located at the URLhttp://Web.Golux.Com/coar/cgi/ , and the most recent
versions of the CGI specification are available there. This specification incorporates a great deal of text
from the work-in-progress version of that document as of February 23, 2000. A future version of this
specification may be changed to cite parts of that document by reference instead.

5.1.2 Conventions Of This Document

In this document, the key words “MUST”, “ MUST NOT”, “ REQUIRED”, “ SHALL”, “ SHALL NOT”, “ SHOULD”,
“ SHOULD NOT”, “ RECOMMENDED”, “ MAY ”, and “OPTIONAL” are to be interpreted as described in RFC
2119 [4] and indicate requirement levels for compliant SIP CGI implementations.

Some paragraphs are indented, like this; they give motivations of design choices, or questions for future discus-
sion in the development of SIP CGI. They are not normative to the specification of the protocol.

5.1.3 Specifications

Not all of the functions and features of SIP CGI are defined in the main part of this specification. The
following phrases are used to describe the features which are not specified:

system defined:The feature may differ between systems, but must be the same for different implemen-
tations using the same system. A system will usually identify a class of operating systems. Some
systems are defined in section 6 of this document. New systems may be defined by new specifications
without revision of this document.

implementation defined: The behaviour of the feature may vary from implementation to implementation,
but a particular implementation should be consistent in its behaviour.

5.1.4 Terminology

This specification uses many terms defined in the SIP/2.0 specification [2]; however, the following terms are
used here in a sense which may not accord with their definitions in that document, or with their common
meaning.

J. Lennox, J. Rosenberg, H. Schulzrinne Expires September 2000 [Page 9]

INTERNET-DRAFT draft-lennox-sip-cgi-03.ps March 1, 2000

metavariable: A named parameter that carries information from the server to the script. It is not necessarily
a variable in the operating system’s environment, although that is the most common implementation.

script: The software which is invoked by the server via this interface. It need not be a standalone program,
but could be a dynamically-loaded or shared library, or even a subroutine in the server. It may be a
set of statements interpreted at run-time, as the term ‘script’ is frequently understood, but that is not a
requirement and within the context of this specification the term has the broader definition stated.

server: The application program which invokes the script in order to service requests.

message:A SIP request or response, typically either the one that triggered the invocation of the CGI script,
or one that the CGI script caused to be sent.

5.2 Notational Conventions and Generic Grammar

In this specification we use the Augmented Backus-Naur Form notation as described in appendix C of the
SIP/2.0 specification, RFC 2543 [2].

The following grammatical constructs are taken from other documents; this table lists the appropriate
sources.

OCTET SIP/2.0 [2] Appendix C.1
CHAR SIP/2.0 [2] Appendix C.1
digit SIP/2.0 [2] Appendix C.1
alphanum SIP/2.0 [2] Appendix C.1
token SIP/2.0 [2] Appendix C.1
hostname SIP/2.0 [2] Section 2
SIP-URL SIP/2.0 [2] Section 2
SIP-Version SIP/2.0 [2] Section 4.3.1
Status-Code SIP/2.0 [2] Section 5.1.1
Reason-Phrase SIP/2.0 [2] Section 5.1.1
media-type HTTP/1.1 [5] Section 3.7

(via SIP/2.0 [2] Section 6.16)

Other gramatical constructs taken from outside sources are noted in the text.

5.3 Invoking the script

The script is invoked in a system defined manner. Unless specified otherwise, the file containing the script
will be invoked as an executable program.

Only one CGI script at a time may be outstanding for a SIP transaction. If subsequently arriving re-
sponses would cause a CGI script to be invoked, handling of them is deferred, except for ACK, until CGI
scripts for previous messages in the transaction terminate. Messages are processed in the order they are
received.

J. Lennox, J. Rosenberg, H. Schulzrinne Expires September 2000 [Page 10]

INTERNET-DRAFT draft-lennox-sip-cgi-03.ps March 1, 2000

5.4 The SIP CGI Script Command Line

The serverSHOULD NOT provide any command line arguments to the script.

Command line arguments are used for indexed queries in HTTP CGI; HTTP indexed queries do not have an
equivalent in SIP.

5.5 Data Input to the SIP CGI Script

Information about a request comes from two different sources: the request header, and any associated
content-body. ServersMUST make portions of this information available to scripts.

5.5.1 Message Metadata (Metavariables)

Each SIP CGI server implementationMUST define a mechanism to pass data about the message from the
server to the script. The metavariables containing these data are accessed by the script in a system defined
manner. The representation of the characters in the metavariables is system defined.

The representation of metavariablesMUST distinguish between undefined values (which are not present)
and null values (which are present, but have zero length). Null values are only allowed for those metavar-
iables whose grammar permits this.

For historical reasons, HTTP CGI does not distinguish between null values and undefined values. This specifi-
cation eliminates this misfeature; null values and undefined values are semantically different.

Case is not significant in the metavariable names, in that there cannot be two different variables whose
names differ in case only. Here they are shown using a canonical representation of capitals plus underscore
(“ ”). The actual representation of the names is system defined; for a particular system the representation
MAY be defined differently than this.

Metavariable valuesMUST be considered case-sensitive except as noted otherwise.
The canonical metavariables defined by this specification are:

AUTH_TYPE
CONTENT_LENGTH
CONTENT_TYPE
GATEWAY_INTERFACE
REMOTE_ADDR
REMOTE_HOST
REMOTE_IDENT
REMOTE_USER
REGISTRATIONS
REQUEST_METHOD
REQUEST_TOKEN
REQUEST_URI
RESPONSE_STATUS
RESPONSE_REASON
RESPONSE_TOKEN
SCRIPT_COOKIE
SERVER_NAME

J. Lennox, J. Rosenberg, H. Schulzrinne Expires September 2000 [Page 11]

INTERNET-DRAFT draft-lennox-sip-cgi-03.ps March 1, 2000

SERVER_PORT
SERVER_PROTOCOL
SERVER_SOFTWARE

Metavariables with names beginning with the protocol name (e.g., “SIP ACCEPT”) are also canon-
ical in their description of message header fields. The number and meaning of these fields may change
independently of this specification. (See also section 5.5.1.5.)

A serverMAY also specify additional non-canonical metavariables.

5.5.1.1 AUTH TYPE If the Request-URI required access authentication for external access, then the
serverMUST set the value of this variable from theauth-scheme token in the request’sAuthorization
header field. Otherwise it is not defined.

AUTH TYPE = “” j auth-scheme
auth-scheme = “Basic” j “Digest” j “PGP” j token

SIP acccess authentication schemes are described in sections 14 and 15 of the SIP/2.0 specification [2].
The auth-scheme is not case-sensitive.

ServersMUST provide this metavariable to scripts if the request header included anAuthorization field
that was authenticated.

For the complex authentication schemes, the serverSHOULD perform the authentication checking itself.
If the authentication failed, this metavariableSHOULD NOT be set.

If several authentication credentials, with multiple schemes, are present in the message, this variable
SHOULD be set to correspond to the authenticated credentials with the strongest scheme the server supports.
If credentials are present for several domains, the serverSHOULD NOT perform any action on credentials
from domains external to it.

If both Authorization andProxy-Authorization headers are present, the serverSHOULD perform the
authorizations based on the appropriate header for the context in which it is running. For example, a server
which is a proxy server and a registrar would useAuthorization headers forREGISTER messages aimed
at its local domains, andProxy-Authorization headers for all other requests.

5.5.1.2 CONTENT LENGTH This metavariable is set to the size of the message-body entity attached
to the request, if any, in decimal number of octets. If no data are attached, then this metavariable is not de-
fined. The syntax is the same as for the SIPContent-Length header field (section 6.15, SIP/2.0 specification
[2]).

CONTENT LENGTH = “” j 1*digit

ServersMUST provide this metavariable to scripts if the message was a accompanied by a content-body
entity, even if the message did not include aContent-Length header field.

5.5.1.3 CONTENT TYPE If the request includes a message-body,CONTENTTYPEis set to the Inter-
net Media Type [6] of the attached entity if the type was provided via aContent-type field in the request
header, or if the server can determine it in the absence of a suppliedContent-type field. The syntax is the
same as for the SIPContent-Type header field.

J. Lennox, J. Rosenberg, H. Schulzrinne Expires September 2000 [Page 12]

INTERNET-DRAFT draft-lennox-sip-cgi-03.ps March 1, 2000

CONTENT TYPE = “” j media-type

The type, subtype, and parameter attribute names are not case-sensitive. Parameter values MAY be case
sensitive. Media types and their use in SIP are described in section 6.16 of the SIP/2.0 specification [2], and
by reference in section 3.7 of the HTTP/1.1 specification [7].

Since in SIP theContent-Type headerMUST be specified if a body is present, serversMUST provide
this metavariable to scripts if a body was present in the original message.

Question: encrypted SIP payloads don’t have aContent-Type, but they’re handled like bodies. How should this
be handled?

5.5.1.4 GATEWAY INTERFACE This metavariable is set to the dialect of SIP CGI being used by the
server to communicate with the script. Syntax:

GATEWAY INTERFACE = “SIP-CGI” “/” major “.” minor
major = 1*digit
minor = 1*digit

Note that the major and minor numbers are treated as separate integers and hence each may be more
than a single digit. Thus SIP-CGI/2.4 is a lower version than SIP-CGI/2.13 which in turn is lower than SIP-
CGI/12.3. Leading zeros in either the major or the minor numberMUST be ignored by scripts andSHOULD

NOT be generated by servers.
This document defines the 1.1 version of the SIP CGI interface (“SIP-CGI/1.1”).
ServersMUST provide this metavariable to scripts.

For maximal compatibility with existing HTTP CGI libraries, we want to keep this as similar as possible to the
syntax of CGI 1.1. However, wedo want it to be clear that this is indeed SIP CGI. Making HTTP CGI’s version
identifier a substring of the SIP CGI identifier seemed like a reasonable compromise. (The existing CGI libraries we
checked do not seem to check the version.)

5.5.1.5 Protocol-Specific Metavariables These metavariables are specific to the protocolvia which the
method is sent. Interpretation of these variables depends on the value of theSERVERPROTOCOLmetavar-
iable (see section 5.5.1.20).

Metavariables with names beginning with “SIP” contain values from the message header, if the protocol
used was SIP. Each SIP header field name is converted to upper case, has all occurrences of “-” replaced
with “ ”, and has “SIP” prepended to form the metavariable name. Similar transformations are applied for
other protocols. The header dataMAY be presented as sent by the client, orMAY be rewritten in ways which
do not change its semantics. If multiple header fields with the same field-name are received then the server
MUST rewrite them as though they had been received as a single header field having the same semantics
before being represented in a metavariable. Similarly, a header field that is received on more than one line
MUST be merged into a single line. The serverMUST, if necessary, change the representation of the data (for
example, the character set) to be appropriate for a CGI metavariable.

Note: these metavariables’ names were changed fromHTTP * to SIP * since the first draft of this specification.
The intention had been to make it easier to use existing CGI libraries unmodified, but this convenience was felt to
be outweighed by the confusion this introduced.

J. Lennox, J. Rosenberg, H. Schulzrinne Expires September 2000 [Page 13]

INTERNET-DRAFT draft-lennox-sip-cgi-03.ps March 1, 2000

Servers are not required to create metavariables for all the message header fields they receive. However,
because of the relatively high importance of headers in SIP for messages’ semantic content, the server
SHOULD provide all headers which do not contain potentially sensitive authorization information, such as
Authorization. ServersSHOULD provide protocol-specific metavariables even for information which is
available through other SIP CGI metavariables, such asCONTENT LENGTH andCONTENT TYPE.

This allows a SIP CGI script to determine, if necessary, whether the information in the other metavariables was
in the original message, or was synthesized by the server.

5.5.1.6 REGISTRATIONS This metavariable contains a list the current locations the server has reg-
istered for the user in the Request URI of the initial request of a transaction. It is syntactically identical
to the protocol metavariableSIP CONTACT, and thus is defined by section 5.5.1.5 of this document and
by section 6.13 of the SIP/2.0 specification [2]. It contains all the uris, uri parameters, display names, and
contact parameters for the addresses registered with the server.

The syntax ofREGISTRATIONSis identical to howSIP CONTACTwould appear in a 302 response from a
redirection server. This allows parsing code to be re-used.

If a user’s registrations change in the course of a transaction, the serverSHOULD update this metavariable
accordingly for subsequent script invocations for the transaction.

5.5.1.7 REMOTE ADDR The IP address of the client that sent the message to the server. This is not
necessarily that of the originating user agent client or server.

REMOTE ADDR = hostnumber
hostnumber = IPv4address j IPv6address

The definitions of IPv4address and Ipv6address are provided in Appendix B of RFC 2373 [8].
For locally generated responses (see section 5.8), thisSHOULD be the loopback address (i.e. 127.0.0.1

for IPv4 or ::1 for IPv6).
ServersMUST supply this value to scripts.

5.5.1.8 REMOTE HOST This is the fully qualified domain name of the host sending the message to
this server, if available, otherwise not defined.(See section 5.5.1.7). Domain names are not case sensitive.

REMOTE HOST = hostname

ServersSHOULD provide this information to scripts.

5.5.1.9 REMOTE IDENT The identity information supported about the connection by a RFC 1413 [9]
request, if available.

REMOTE IDENT = *CHAR

The serverMAY choose not to support this feature, and it is anticipated that not many implementations
will, as the information is not particularly useful in the presence of complex proxy paths.

J. Lennox, J. Rosenberg, H. Schulzrinne Expires September 2000 [Page 14]

INTERNET-DRAFT draft-lennox-sip-cgi-03.ps March 1, 2000

5.5.1.10 REMOTE USER If the message requested autentication using the “Basic” mechanism (i.e. the
AUTHTYPEmetavariable is set to “Basic”), then the value of theREMOTEUSERmetavariable is set to the
user-ID supplied. In all other cases the value of this metavariable is undefined.

REMOTE USER = *OCTET

For the “Digest” and “PGP” authentication mechanisms, the validated identity is the identity in theFrom
header, i.e. the value of theSIP FROMmetavariable.

ServersSHOULD provide this metavariable to scripts.

5.5.1.11 REQUESTMETHOD If the message triggering the script was a request, theREQUESTMETHOD
metavariable is set to the method with which the request was made, as described in section 4.2 of the SIP/2.0
specification [2]; otherwise not defined.

REQUEST METHOD = sip-method
sip-method = “INVITE” j “BYE” j “OPTIONS” j “CANCEL”

j “REGISTER” j “ACK”
j extension-method

extension-method = token

Note thatACK is usually not appropriate for the SIP CGI 1.1 environment; however, see section 5.11.
The implications ofREGISTER in the CGI context are discussed in section 5.9, andCANCEL is discussed
in section 5.10. A SIP CGI 1.1 serverMAY choose to process some methods directly rather than passing
them to scripts.

ServersMUST provide this metavariable to scripts if the triggering message was a request.

5.5.1.12 REQUESTTOKEN

REQUEST TOKEN = token

If the script specified a request token in a proxied request, this token is returned to the server in responses
to that request. Note that this token is chosen by the script, not by the server. Each response to a proxied
request contains the same value for this token.

5.5.1.13 REQUESTURI This metavariable is specific to requests made with SIP.

REQUEST URI = SIP-URL

If the message triggering the script was a request, this variable indicates the URI specified with the
request method. This metavariable is only defined ifREQUESTMETHODis defined; in that case, servers
MUST provide it to scripts.

This metavariable fills the roles of HTTP CGI’sSCRIPT NAME, PATHINFO, andQUERYSTRING.

5.5.1.14 RESPONSESTATUS

RESPONSE STATUS = Status-Code

If the message triggering the script was a response, this variable indicates the numeric code specified
in the response; otherwise it is not defined.In the former case, serversMUST provide this metavariable to
scripts.

J. Lennox, J. Rosenberg, H. Schulzrinne Expires September 2000 [Page 15]

INTERNET-DRAFT draft-lennox-sip-cgi-03.ps March 1, 2000

5.5.1.15 RESPONSEREASON

RESPONSE REASON = Reason-Phrase

If the message triggering the script was a response, this variable indicates the textual string specified in
the response.

5.5.1.16 RESPONSETOKEN

RESPONSE TOKEN = token

If the message triggering the script was a response, the serverMUST specify a token which subsequent
invocations of the CGI script can use to identify this response. This string is chosen by the server and is
opaque to the CGI script. See the discussion ofCGI-FORWARD-RESPONSE in section 5.6.1 below.

5.5.1.17 SCRIPTCOOKIE

SCRIPT COOKIE = token

This is the value an earlier invocation of this script for this transaction passed to the server in CGI action
line CGI-SET-COOKIE. See the description of that action in section 5.6.1.4 below.

5.5.1.18 SERVERNAME TheSERVERNAMEmetavariable is set to the name of the server.

SERVER NAME = hostname j hostnumber

ServersMUST provide this metavariable to scripts.

5.5.1.19 SERVERPORT TheSERVERPORTmetavariable is set to the port on which the request was
received.

SERVER PORT = 1*digit

ServersMUST provide this metavariable to scripts.

5.5.1.20 SERVERPROTOCOL The SERVERPROTOCOLmetavaraible is set to the name and revi-
sion of the protocol with which the message arrived. This will usually be “SIP/2.0”. This is not necessarily
the same as the protocol version used by the server in its response to the client.

SERVER PROTOCOL = SIP-Version j extension-version
j extension-token

extension-version = protocol “/” 1*digit “.” 1*digit
protocol = 1*(alphanum j “+” j “-” j “.”)
extension-token = token

ServersMUST provide this metavariable to scripts.

J. Lennox, J. Rosenberg, H. Schulzrinne Expires September 2000 [Page 16]

INTERNET-DRAFT draft-lennox-sip-cgi-03.ps March 1, 2000

5.5.1.21 SERVERSOFTWARE TheSERVERSOFTWAREmetavariable is set to the name and version
of the information server software handling the message (and running the gateway).

SERVER SOFTWARE = 1*product
product = token [“/” product-version]
product-version = token

ServersMUST provide this metavariable to scripts.

5.5.2 Message Bodies

As there may be a data entity attached to the message, thereMUST be a system defined method for the
script to read these data. Unless defined otherwise, this will be via the ‘standard input’ file descriptor.

If the metavariableCONTENTLENGTH(see section 5.5.1.2) is defined,the serverMUST supply at least
that many bytes to scripts on the standard input stream. Scripts are not obliged to read the data. Servers
MAY signal an EOF condition afterCONTENTLENGTHbytes have been read, but are not obligated to do
so. Therefore, scriptsMUST NOT attempt to read more thanCONTENTLENGTHbytes, even if more data
are available.
5.6 Data Output from the SIP CGI Script

ThereMUST be a system-defined method for the script to send data back to the server or client.Unless
defined otherwise, this will bevia the ‘standard output’ file descriptor.

ServersMAY implement a timeout period within which data must be received from scripts, a maximum
number of requests or responses that a particular CGI script can initiate, a maximum total number of requests
or responses that can be sent by scripts over the lifetime of a transaction, or any other resource limitations it
desires. If a script exceeds one of these limitations, the serverMAY terminate the script process andSHOULD

abort the transaction with either a ‘504 Gateway Timed Out’ or a ‘500 Internal Server Error’ response.
A SIP CGI script’s output consists of any number of messages, each corresponding to actions which the

script is requesting that the server perform. Messages consist of an action line, whose syntax is specific to
the type of action, followed by CGI header fields and SIP header fields. Action lines determine the nature
of the action performed, and are described in section 5.6.1. CGI header fields pass additional instructions or
information to the server, and are described in section 5.6.2.

A messageMUST contain exactly one action line,MAY also contain any number of CGI header fields
and SIP header fields, andMAY contain a SIP body.

All header fields (both SIP and CGI) occurring in an output messageMUST be specified one per line;
SIP CGI 1.1 makes no provision for continuation lines.

The generic syntax of CGI header fields is specified in section 5.6.2.
A serverMAY choose to honor only some of the requests or responses; in particular, itSHOULD NOT

accept any responses following a Status message which sends a definitive non-success response.
The messages sent by a script are delimited as follows:

1. A message begins with an action line.

2. If the message does not contain aContent-Type header field, or if it contains the header field
"Content-Length: 0" , then it is terminated by a blank line.

3. If the message contains bothContent-Type and Content-Length header fields, the message has
a body consisting of theContent-Length octets following the blank line below the set. The next

J. Lennox, J. Rosenberg, H. Schulzrinne Expires September 2000 [Page 17]

INTERNET-DRAFT draft-lennox-sip-cgi-03.ps March 1, 2000

message begins after the body (and optionally some number of blank lines). If the script closes its
output prematurely, the serverSHOULD report a 500-class server error.

4. If the message containsContent-Type but notContent-Length, the message’s body similarly begins
with the blank line following the set; this body extends until the script closes its output. In this case,
this is necessarily the last message the script can send. The serverSHOULD insert aContent-Length
header containing the amount of data read before the script closed its output.

5. If a message contains a non-zeroContent-Length but does not contain aContent-Type, it is an error.
The serverSHOULD report a 500-class server error.

The output of a SIP CGI script is intended to be syntactically identical to that of a UDP packet in which multiple
requests or responses are sent, so that the same message parser may be used.

5.6.1 CGI Action Lines

5.6.1.1 Status

Status = SIP-Version 3*digit SP reason-phrase NL

This action line causes the server to generate a SIP response and relay it upstream towards the client.
The serverMUST copy theTo, From, Call-ID, andCSeq headers from the original request into the response
if these headers are not specified in the script output. The serverSHOULD copy any other headers from the
request which would normally be copied in the response if these are not specified in the script output.

For compatibility with HTTP CGI, a serverMAY interpret a message containing aContent-Type header
field and no action line as though it contained “SIP/2.0 200 OK ”. This usage is deprecated.

5.6.1.2 Proxy Request

Proxy-Request = “CGI-PROXY-REQUEST” SIP-URL SIP-Version

This action line causes the server to forward the given request to the specified SIP URI. It may be sent
either by a script triggered by a request, or by a script triggered by a response on a server which is running
statefully and remembers the original request.

Any SIP header fieldMAY be specified below the action line. Specified SIP headers replace all those in
the original message in their entirety; if a script wants to preserve header elements from the original message
as well as adding new ones, it can concatenate them by the usual rules of header concatenation, and place
the result in the script output. New header fields are added to the message after anyVia headers but before
any other headers.

Any headers from the original request which are not generated by the CGI script are copied into the
proxied request, after modifications normally performed by a proxy server. In particular, the serverMUST

append aVia field and decrementMaxForwards. A serverMAY perform additional modifications as it
sees fit, such as adding aRecord-Route header. A serverSHOULD NOT append these headers if they are
specified in the script output.

A script MAY specify that a SIP header is to be deleted from the message by using theCGI-Remove
CGI header; see section 5.6.2.

If the message does not specify a body, the body from the initial request is used. A message with
“Content-Length: 0 ” is specifying an empty body; this causes the body to be deleted from the
message.

J. Lennox, J. Rosenberg, H. Schulzrinne Expires September 2000 [Page 18]

INTERNET-DRAFT draft-lennox-sip-cgi-03.ps March 1, 2000

If the initial request was authenticated by any means other than ‘basic,’ the scriptSHOULD NOT add,
change, or remove any end-to-end headers, as this would break the authentication.

5.6.1.3 Forward Response

Forward-Response = “CGI-FORWARD-RESPONSE” Response-Name SIP-Version
Response-Name = response-token j “this”

This action line causes the server to forward a response on to its appropriate final destination. The same
rules apply for accompanying SIP headers and message bodies as forCGI-PROXY-REQUEST.

The specified response name may either be a response token the server previously submitted in aRE-
SPONSETOKENmetavariable, or the string “this.” The string “this” may only be sent if the message which
triggered this CGI script was a response; it indicates that this triggering response should be forwarded.

5.6.1.4 Script Cookie

Script-Cookie = “CGI-SET-COOKIE” token SIP-Version

This action line causes the server to store a script cookie, passed as a token in the action line. Subsequent
messages received by the server which cause script execution carry the token in a meta-header. This includes
responses to proxied requests and new requests initiated by the script. The script can alter the value of
the cookie by subsequent script cookie actions. This alteration will take affect for all subsequent script
invocations.

5.6.1.5 CGI Again

CGI-Again = “CGI-AGAIN” “yes” j “no” SIP-Version

This action line determines whether the script will be invoked for subsequent requests and responses for
this transaction. If the parameter “yes” is given to this action, the script will be executed again when the
next message arrives. If the parameter is “no,” or this action is not specified, the script will not be executed
again, and the server will perform its default action for all subsequent messages.

5.6.1.6 Default Action

If none of the actionsCGI-PROXY-REQUEST, CGI-FORWARD-RESPONSE, or a new response
are performed — that is to say, the script outputs onlyCGI-AGAIN, CGI-SET-COOKIE, or nothing — the
script performs its default action. The default action to take depends on the event which triggered the script:

Request received:When the request is first received, the default action of the server is to check whether
the domain of the server matches the domain of the Request-URI. If it does not, the request is proxied
to the request in the Request-URI. Otherwise,the server checks its registration database against the
request, and either proxies or redirects the request based on the action specified by the user agent in
the registration.

Proxied response received:If a response is received to a proxied request, the server forwards the response
towards the caller if the response was a 200 or 600 class response, and sends a CANCEL on all

J. Lennox, J. Rosenberg, H. Schulzrinne Expires September 2000 [Page 19]

INTERNET-DRAFT draft-lennox-sip-cgi-03.ps March 1, 2000

pending branches. If the response was 100 class, the state machinery for that branch is updated, and
the response is proxied upstream towards the caller unless the it was a 100 response, not some other
1xx. For 300, 400, and 500 class responses, an ACK is sent, and the response is forwarded upstream
towards the caller if all other branches have terminated, and the response is the best received so far.
If not all branches have terminated, the server does nothing. If all branches have terminated, but this
response is not the best, the best is forwarded upstream. This is the basic algorithm outlined in the
SIP specification.

5.6.2 CGI Header fields

CGI header fields syntactially resemble SIP header fields, but their names all begin with the string “CGI-”.
The SIP serverMUST strip all CGI header fields from any message before sending it, including those it does
not recognize.

CGI header fields have the generic syntax specified in section 6.6 of the SIP/2.0 specification [2]. The
field-name is not case sensitive; the field valueMUST conform to the grammar of that specific field in the
specification where it is defined.

5.6.2.1 Request-Token

Request-Token = “CGI-Request-Token” “:” token

To assist in matching responses to proxiedrequests, the script can place aCGI-Request-Token CGI
header in aCGI-PROXY-REQUEST or new request. This header contains a token, opaque to the server.
When a response to this request arrives, the token is passed back to the script as a meta-header.

This allows scripts to “fork” a proxy request, and correlate which response corresponds to which branch of the
request.

5.6.2.2 Remove

Remove = “CGI-Remove” “:” 1#field-name

TheCGI-Remove header allows the script to remove SIP headers from the outgoing request or response.
The value of this header is a comma-separated list of SIP headers which should be removed before sending
out the message.

A script MAY specify headers which are not in the request; the serverSHOULD silently ignore these.
A script SHOULD NOT both specify a SIP header in its output and also list that header in aCGI-Remove
header; the result of doing this is undefined.

5.7 Local expiration handling

If a CGI script specifies anExpires header field along withCGI-PROXY-REQUEST, the SIP server
SHOULD track the expiration timeout locally as well as sending the message to the remote server. When
the timeout expires, the serverSHOULD generate a “408 Request Timeout” response. The timeout response
SHOULD be handled as specified in section 5.8. At the time the request is timed out, the serverSHOULD also
transmitCANCEL messages for the request.

This allows a SIP CGI script in a proxy server to implement services like “Call Forward No Answer” to trigger
after a user-determined time, even if the remote user-agent server is not responding or does not properly handle the
Expires header field.

J. Lennox, J. Rosenberg, H. Schulzrinne Expires September 2000 [Page 20]

INTERNET-DRAFT draft-lennox-sip-cgi-03.ps March 1, 2000

It might be better to separate this functionality with aCGI-Expires or CGI-Timeout CGI header field.

5.8 Locally generated responses

In a proxy environment, locally generated responses such as “408 Request Timeout”SHOULD be sent to the
CGI script in the same manner as received messages are. However, messages which merely report a problem
with a message, such as “400 Bad Request”,SHOULD NOT be.

This is the other half of the requirements for the implementation of the “Call Forward No Answer” service, along
with the local handling of theExpires header.

5.9 SIP CGI and REGISTER

The specific semantics of a SIP CGI script which is triggered by aREGISTER request are somewhat
different than that of those triggered by call-related requests; however, allowing user control of registration
may in some cases be useful. The two specific actions forREGISTER that need to be discussed are
the response “200” and the default action. In the former case, the serverSHOULD assume that the CGI
script is handling the registration internally, andSHOULD NOT add the registration to its internal registration
database; in the latter case, the serverSHOULD add the registration to its own database. The server also
SHOULD NOT add the registration if a 3xx, 4xx, 5xx, or 6xx status was returned, or if the registration request
was proxied to another location.

5.10 SIP CGI and CANCEL

SIP CGI serversSHOULD execute scripts when aCANCEL message is received. The scriptSHOULD clean
up any state it has for the transaction as quickly as possible.

When aCANCEL is received at a server for an existing transaction, the serverSHOULD send a200 OK
response to the canceland cancel all currently outstanding branches. The transmission of the script on a
CANCEL message is purely advisory, and the scriptSHOULD NOT perform any actions in response to it.

Question: should aCANCEL also terminate currently-executing scripts?

5.11 SIP CGI and ACK

5.11.1 Receiving ACK’s

Under normal circumstances, if the server receives anACK, the script is not re-executed. If theACK
is destined for the proxy (acknowledging a 300, 400, 500, or 600 response), theACK causes response
retransmissions to cease. If theACK is for a 200 response forwarded from a downstream server, theACK is
proxied downstream.

However, if the script generated its own 200 response to anINVITE request, the scriptSHOULD be re-
executed with theACK message. This is necessary in cases where the script is causing the proxy to act as a
UAS. ACK messages can contain bodies, and would therefore be useful to the script.

5.11.2 Sending ACK’s

When the server receives a non-200 final response to anINVITE request, itSHOULD generate anACK on
its own, and not depend on the script to do so. There is no way in SIP CGI 1.1 to override this behavior.

J. Lennox, J. Rosenberg, H. Schulzrinne Expires September 2000 [Page 21]

INTERNET-DRAFT draft-lennox-sip-cgi-03.ps March 1, 2000

However, since the server will not generate anACK for 200 responses toINVITE, a script causing the server
to act as a UACMUST generateACK’s for them.

6 System Specifications

6.1 Unix

The implementation of SIP CGI on a Unix operating system platformSHOULD use environment variables
as the mechanism of providing request metadata to CGI scripts.

For Unix compatible operating systems, the following are defined:

Environment variables: These are accessed by the C library routinegetenv .

The current working directory: The current working directory for the scriptSHOULD be set to the direc-
tory containing the script.

Character set: The US-ASCII character set is used for the definition of environment variable names and
header field names; the newline (NL) sequence is LF; serversSHOULD also accept CR LF as a newline.

6.2 Microsoft Windows

The implementation of SIP CGI on 32-bit Microsoft Windows system platforms (Windows 95, 98, NT, and
2000)SHOULD use environment variables as the mechanism of providing request metadata to CGI scripts.

For Microsoft Windows, the following are defined:

Environment variables: These are accessed by the C library routinegetenv .

The current working directory: The current working directory for the scriptSHOULD be set to the direc-
tory containing the script.

Character set: The US-ASCII character set is used for the definition of environment variable names and
header field names; the newline (NL) sequence is CR LF; serversSHOULD also accept LF as a newline.

7 Security Considerations

7.1 Request initiation

CGI scripts are able to initiate arbitrary SIP transactions, or to produce spoofed responses of any sort. This
protocol does not attempt to restrict the actions CGI scripts can take. Server administratorsMUST consider
CGI scripts to be as security-sensitive as their SIP server itself, and perform equivalent levels of security
review before installing them.

7.2 Authenticated and encrypted messages

CGI scripts must be careful not to interfere with authentication. In particular, adding or removing header
fields that are below theAuthorization header will cause the message to fail authentication at the user agent.

J. Lennox, J. Rosenberg, H. Schulzrinne Expires September 2000 [Page 22]

INTERNET-DRAFT draft-lennox-sip-cgi-03.ps March 1, 2000

When a SIP request is encrypted, the headers which are in the clear are passed to the server according to
this specification. The encrypted portion of the request is passed to the script as a body.Any SIP headers
output by the script will be added to the message. However, scripts should be aware that these may be
discarded if they also exist within the encrypted portion.

7.3 SIP header fields containing sensitive information

Some SIP header fields may carry sensitive information which the serverSHOULD NOT pass on to the
script unless explicitly configured to do so. For example, if the server protects the script using the Basic
authentication scheme, then the client will send anAuthorization header field containing a username and
password. If the server, rather than the script, validates this information then the passwordSHOULD NOT be
passed on to the script via theHTTP AUTHORIZATIONmetavariable.

7.4 Script Interference with the Server

The most common implementation of CGI invokes the script as a child process using the same user and
group as the server process. ItSHOULD therefore be ensured that the script cannot interfere with the server
process, its configuration, or documents.

If the script is executed by calling a function linked in to the server software (either at compile-time
or run-time) then precautionsSHOULD be taken to protect the core memory of the server, or to ensure that
untrusted code cannot be executed.

7.5 Data Length and Buffering Considerations

This specification places no limits on the length of entity bodies presented to the script. ScriptsSHOULD NOT

assume that statically allocated buffers of any size are sufficient to contain the entire submission at one time.
Use of a fixed length buffer without careful overflow checking may result in an attacker exploiting ‘stack-
smashing’ or ‘stack-overflow’ vulnerabilities of the operating system. Scripts may spool large submissions
to disk or other buffering media, but a rapid succession of large submissions may result in denial of service
conditions. If theCONTENT LENGTH of an entity-body is larger than resource considerations allow,
scriptsSHOULD respond with ‘413 Request Entity Too Large.’

8 Changes from earier versions

8.1 Changes from draft -02

The changebars in the Postscript and PDF versions of this document indicate significant changes from this
version.

� The relevant text of the HTTP CGI 1.1 specification [1] was incorporated verbatim into the specifi-
cation, rather than including references to the other document. Some text listing detailed differences
between this specification and HTTP CGI was dropped.

� Added an explanation of what the motivation sections are, and that they are non-normative.

� Noted that the form of BNF we are using is that of RFC 2543, not RFC 2234 (2234 does alternation
differently, among other things).

J. Lennox, J. Rosenberg, H. Schulzrinne Expires September 2000 [Page 23]

INTERNET-DRAFT draft-lennox-sip-cgi-03.ps March 1, 2000

� Listed externally-referenced grammar symbols, and where they can be found.

� Made undefined metavariables (those not defined) and null metavariables (with zero-length values)
semantically different. Updated metavariable definitions to specify that they are “not defined” (as
opposed to “null” or “not present”) when they are inapplicable.

� Explained what shouldhappen when bothAuthorization andProxy-Authorization headers are present,
or when multiple authorization headers for several different domains or with several different autho-
rization schemes are present.

� Made providing the metavariableSIP CONTENTLENGTHaSHOULD even thoughCONTENTLENGTH
is also available, and so forth.

� Added a comment about the IPv6 loopback address toREMOTEADDR.

� Established that the metavariableREMOTEUSERis only useful for Basic authentication.

� Made supplying theRESPONSETOKENmetavariableMUST.

� Removed text that stated that zero-length server output was illegal; this conflicted with other text
elsewhere in the specification.

� Corrected the default behaviors in a few cases: handling requests going to locations outside the
server’s domain (i.e. for outgoing proxies), and forwarding non-100 1xx responses upstream.

� Eliminated some references to script-generated new requests that had persisted in various parts of the
specification despite that ability having been removed in the previous version.

� Removed a reference toCGI-DEFAULT-ACTION that had persisted in the section “SIP CGI and
REGISTER” despite that action having been removed in the previous version.

� Encrypted payloads in SIP are effectively bodies; changed the specification to ensure that they would
be handled as such.

� Added the “System Specifications” section from HTTP CGI.

� Consistently named the protocol “SIP CGI” rather than “SIP-CGI.”

� Consistently named the mechanism by which header information is passed “metavariables” rather
than “meta-variables.”

� Updated Jonathan Rosenberg’s contact information.

8.2 Changes from draft -01

� Initiation of new requests from a CGI script was deleted; synchronization of state across requests was
deemed too hard.

� TheREGISTRATIONSmetavariable was added.

� The headerCGI-ReExecute-On has been eliminated in favor of the actionCGI-AGAIN, and re-
execution state is global to the transaction.

J. Lennox, J. Rosenberg, H. Schulzrinne Expires September 2000 [Page 24]

INTERNET-DRAFT draft-lennox-sip-cgi-03.ps March 1, 2000

� The actionCGI-DEFAULT-ACTION has been removed; the default action is now indicated by the
absence of any action which causes messages to be sent. This eliminates the complexities ofCGI-
DEFAULT-ACTION accompanying some other action in the same message.

� Header removal is now indicated explicitly through the newCGI-Remove header.

� Transaction cancellation is now handled automatically by the server; script invocation onCANCEL
messages is only advisory.

8.3 Changes from draft -00

� All HTTP CGI references were updated to refer to the current version of that specification (draft-
coar-cgi-v11-03). Also, some sections were reorganized to mirror the ordering of that draft, and some
wording which had been taken largely verbatim from that draft was updated to reflect updates to it.

� The protocol-specific metavariables were renamed fromHTTP * to SIP *.

� MUST stipulations were added to some required meta-variables.

� The grammar ofRESPONSE TOKEN andSCRIPT COOKIE was simplified to just “token”, rather
than “*qchar”.

� Script cookies were changed from a CGI header to an action. There can only be one script cookie
outstanding for a script at any time.

� Request tokens were added to let scripts track script branching.

� Discussions of CGI handling ofACK andCANCEL requests were added.

� All references to draft-ietf-mmusic-sip were changed to references to RFC 2543.

� More security considerations were added.

9 Acknowledgements

This work draws extremely heavily upon the HTTP CGI specification [1]; approximately half the text of the
specification section is taken from that document.

10 Full Copyright Statement

Copyright (C) The Internet Society (2000). All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that

comment on or otherwise explain it or assist in its implmentation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and
this paragraph are included on all such copies and derivative works.

However, this document itself may not be modified in any way, such as by removing the copyright notice
or references to the Internet Society or other Internet organizations, except as needed for the purpose of

J. Lennox, J. Rosenberg, H. Schulzrinne Expires September 2000 [Page 25]

INTERNET-DRAFT draft-lennox-sip-cgi-03.ps March 1, 2000

developing Internet standards in which case the procedures for copyrights defined in the Internet Standards
process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or
its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and THE IN-
TERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WAR-
RANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

11 Authors’ Addresses

Jonathan Lennox
Dept. of Computer Science
Columbia University
1214 Amsterdam Avenue
New York, NY 10027
USA
electronic mail:lennox@cs.columbia.edu

Jonathan Rosenberg
dynamicsoft
200 Executive Drive
Suite 120
West Orange, NJ 07046
electronic mail:jdrosen@dynamicsoft.com

Henning Schulzrinne
Dept. of Computer Science
Columbia University
1214 Amsterdam Avenue
New York, NY 10027
USA
electronic mail:schulzrinne@cs.columbia.edu

References

[1] K. Coar and D. Robinson, “The WWW common gateway interface version 1.1,” Internet Draft, Internet
Engineering Task Force, Apr. 1999. Work in progress.

[2] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, “SIP: session initiation protocol,” Request
for Comments (Proposed Standard) 2543, Internet Engineering Task Force, Mar. 1999.

[3] D. Crocker, “Standard for the format of ARPA internet text messages,” Request for Comments (Stan-
dard) 822, Internet Engineering Task Force, Aug. 1982.

J. Lennox, J. Rosenberg, H. Schulzrinne Expires September 2000 [Page 26]

INTERNET-DRAFT draft-lennox-sip-cgi-03.ps March 1, 2000

[4] S. Bradner, “Key words for use in RFCs to indicate requirement levels,” Request for Comments (Best
Current Practice) 2119, Internet Engineering Task Force, Mar. 1997.

[5] R. Denenberg, J. Kunze, and D. Lynch, “Uniform resource locators for Z39.50,” Request for Comments
(Proposed Standard) 2056, Internet Engineering Task Force, Nov. 1996.

[6] N. Freed and N. Borenstein, “Multipurpose internet mail extensions (MIME) part two: Media types,”
Request for Comments (Draft Standard) 2046, Internet Engineering Task Force, Nov. 1996.

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee, “Hypertext transfer protocol –
HTTP/1.1,” Request for Comments (Proposed Standard) 2068, Internet Engineering Task Force, Jan.
1997.

[8] R. Hinden and S. Deering, “IP version 6 addressing architecture,” Request for Comments (Proposed
Standard) 2373, Internet Engineering Task Force, July 1998.

[9] M. StJohns, “Identification protocol,” Request for Comments (Proposed Standard) 1413, Internet Engi-
neering Task Force, Jan. 1993.

J. Lennox, J. Rosenberg, H. Schulzrinne Expires September 2000 [Page 27]

