Data Manipulation

Jonathan Rosenberg

dynamicsoft




XCAP Issue #1

« Should we just instead use actual filesystem
hierarchy for buddy lists?

— I.e., each buddy is a separate file
— Makes 1t easy to modify individual buddies with HTTP

e [ssues with that:

— Want buddy list to exist as a single document, to
facilitate
* Client side storage
* Transfer

* Transformation (I.e., generate an HTML page with my
buddies)

— May still need XCAP to do XML element addressing
anyway




XCAP Issue #2: Batching

» Perceived requirement: The ability to make
multiple changes that are atomic

— Multiple changes may be needed to achieve a
doc that 1s schema compliant

— An intermediate state may represent
undesirable behavior

A user on neither an allow or deny list




Batching Options

 Soln I: Least Common

Parent LCP
— If changes need to be made —
at nodes X and Y, read the
least common parent X /\
(LCP), make the change,
and write Y

— +: easily done in XCAP

— -: wireless efficiency really
bad




Batching Options

e Soln II: Body Commands e Soln III: Webdav

Make XCAP SOAPISH by

. , — Use 1ts versioning
placing the operations as

capabilities along with

XML in the body ,
o . LOCK/COPY /modity/
+: easily does batching,
efficient MOVE/UNLOCK
-: not simple anymore — -: May require webdav
-: may be replicating other ~ changes to deal with partial
work (L.e., webdav) documents
-+ violates rfc3205 — +: reusable for webdav

— -: may take some time




Issue 3: Server awareness

* Currently, the spec says a server needs to
understand the application usage against which
requests are made

— That 1s, server needs an upgrade for a new app

* May be possible to lift this for application usages
which
— Have no computed data
— Have no additional data constraints
— Follow the baseline authorization policy

e Do we want this?




Issue 3.1: XML Extensibility

* Application usage defines the schema, which the
server needs to know

 What 1f schema defines extensibility, and a user
adds data outside of the defined schema, using a
namespace/schema not understood by server?

* Proposal: direct extension of previous issue —
server needs to understand all of the namespaces




Issue 4: Server Authorization

In ACAP, authorization was built into the protocol

In XCAP, I am proposing that there 1s a trivial
default authorization policy

If you want a more complex one, you need an
application usage to represent the authorization
policy

This really stmplifies the protocol a lot
[s this constraint OK?




Issue 5: Insert vs. Modity

e Current document uses POST for insert,
PUT for modify

* Doesn’t seem right
e We need both — how to do 1t?




Some 1mportant observations

* Anything other than an obvious usage of
HTTP will require much broader input

— Design team as suggested by Ted
— Add +1 year of time

* What’s important to us 1s the SCHEMA,
less so how it gets transferred and munged




My Proposal

* Descope XCAP so that 1t 1s nothing more
than an HTTP Usage (more on what that
means later)

* Focus on the schema design

e Work XCAP v2.0 with WebDav to add new
features




Implications of HTTP Usage

No batching
No locking/unlocking

No POST — PUT only

— PUT to a node that exists means modify
— PUT to a node that doesn’t means insert

* Where its inserted 1s up to the server within schema constraints

Partial document modification using Xpath URI

No server computed data or data constraints




How do we get around these
limitations?

» Carefully design the schema so that you can
GET/change/PUT useful subsets 1n one
operation
— For auth policy, its not white lists and black

lists, 1t’s a list of users, and for each, a list of
permissions

» Carefully define schema so that inserts can
be done 1n places where they are needed




Data Manipulation Requirements
Changes

* Added a requirement for » Different watchers get
display name property on different information by
resource lists , C

* Added a requirement on list P ?esentlt}{ publishing
data extensibility different info

* Limited the scope of » Consistency requirement

authorization policy to presence oo oralized — doesnt require

batching

* Acceptance requirements based
on domains and wildcards

* Notification requirements from
MUST to SHOULD

« Can specify tuples a watcher
should get based on attribute




Data Manipulation Requirements
Proposed Approach

* Submit 1n parallel with xcap drafts

* Avoids waterfall requirements process

— We can adapt requirements based on protocol
mechanism




Authorization Usage Structure

Authorization 1s a set of <statement>

Each <statement> has an <applies-to> that specify who the
policy applies to, and then a series of permissions

<applies-to> can specify a URI, a domain, or a list
Each permission grants the ability of a watcher to get or do
something

— Permissions are POSITIVE — you are allowed to do something.
Not NEGATIVE. This makes for easier composition and allows
schema to be edited more easily




Authorization Usage Structure

e Permissions in several classes

— Acceptance: <accept> and <accept-1f>.
<accept> gives permission to subscribe.
<accept-1f> gives permission if the embedded
boolean expression 1s true.

— Boolean expression gives conditions on request
— subscription lifetime, authentication
mechanism, can-encrypt, filters




Authorization Usage Structure

e Rule Permissions

— Specifies event transitions that watcher 1s permitted to
see

— <any-event>: All transitions

— <enter-state>, <exit-state>: entering or leaving specific
state

— <change-1n>: certain attribute changes

— <equals>: send notifications 1f a certain attribute has a
certain value
 I.e., send notifications to Joe 1f my placetype 1s home.




Identifying Presence Data

Some of the permissions are based on presence or
value of an element

— Placetype 1s home

Requires the ability to 1dentify a specific XML
clement

Two ways

— By element name: Refers to any element with that
name, in the document or as input to composition

— By Xpath: Refers to a specific element in post-
composed document




Content Permissions

« What is the watcher allowed to see when
they get a notification?

— <all-content>: everything

— <show-tuple>: show a tuple by name

— <show-namespace>: show elements 1n a
namespace




Transformational Attributes

Modifications to the document that get
made for watchers

<set-document>: send them this document
<set-element>: set this element

<change-element-from>: 1f an element has a
value, change 1t to this value




Open Issues

e Union vs. Most
Specific

— If multiple statements
match a watcher, do
you union the
permissions or take the
most specific

— Proposal: union —
consistent with intra-
statement overlaps

e Eliminate applies-to?
— Can do it with <accept-if>,
and adding conditionals to
other permissions

— Proposal: No. Applies-to
makes schema more
amenable to transaction-less
editing




Open Issues

* Identifying elements

— Is the approach 1n the document right?
— Need to think about it a bit more

» Are people happy with the scope?




