

Data Manipulation

Jonathan Rosenberg

dynamicsoft

XCAP Issue #1
• Should we just instead use actual filesystem

hierarchy for buddy lists?
– I.e., each buddy is a separate file
– Makes it easy to modify individual buddies with HTTP

• Issues with that:
– Want buddy list to exist as a single document, to

facilitate
• Client side storage
• Transfer
• Transformation (I.e., generate an HTML page with my

buddies)

– May still need XCAP to do XML element addressing
anyway

XCAP Issue #2: Batching

• Perceived requirement: The ability to make
multiple changes that are atomic
– Multiple changes may be needed to achieve a

doc that is schema compliant

– An intermediate state may represent
undesirable behavior
• A user on neither an allow or deny list

Batching Options

• Soln I: Least Common
Parent
– If changes need to be made

at nodes X and Y, read the
least common parent
(LCP), make the change,
and write

– +: easily done in XCAP

– -: wireless efficiency really
bad

LCP

X

Y

Batching Options

• Soln II: Body Commands
– Make XCAP SOAPISH by

placing the operations as
XML in the body

– +: easily does batching,
efficient

– -: not simple anymore

– -: may be replicating other
work (I.e., webdav)

– -: violates rfc3205

• Soln III: Webdav
– Use its versioning
capabilities along with
LOCK/COPY/modify/
MOVE/UNLOCK
– -: May require webdav
changes to deal with partial
documents
– +: reusable for webdav
– -: may take some time

Issue 3: Server awareness

• Currently, the spec says a server needs to
understand the application usage against which
requests are made
– That is, server needs an upgrade for a new app

• May be possible to lift this for application usages
which
– Have no computed data
– Have no additional data constraints
– Follow the baseline authorization policy

• Do we want this?

Issue 3.1: XML Extensibility

• Application usage defines the schema, which the
server needs to know

• What if schema defines extensibility, and a user
adds data outside of the defined schema, using a
namespace/schema not understood by server?

• Proposal: direct extension of previous issue –
server needs to understand all of the namespaces

Issue 4: Server Authorization

• In ACAP, authorization was built into the protocol

• In XCAP, I am proposing that there is a trivial
default authorization policy

• If you want a more complex one, you need an
application usage to represent the authorization
policy

• This really simplifies the protocol a lot

• Is this constraint OK?

Issue 5: Insert vs. Modify

• Current document uses POST for insert,
PUT for modify

• Doesn’t seem right

• We need both – how to do it?

Some important observations

• Anything other than an obvious usage of
HTTP will require much broader input
– Design team as suggested by Ted

– Add +1 year of time

• What’s important to us is the SCHEMA,
less so how it gets transferred and munged

My Proposal

• Descope XCAP so that it is nothing more
than an HTTP Usage (more on what that
means later)

• Focus on the schema design

• Work XCAP v2.0 with WebDav to add new
features

Implications of HTTP Usage

• No batching

• No locking/unlocking

• No POST – PUT only
– PUT to a node that exists means modify

– PUT to a node that doesn’t means insert
• Where its inserted is up to the server within schema constraints

• Partial document modification using Xpath URI

• No server computed data or data constraints

How do we get around these
limitations?

• Carefully design the schema so that you can
GET/change/PUT useful subsets in one
operation
– For auth policy, its not white lists and black

lists, it’s a list of users, and for each, a list of
permissions

• Carefully define schema so that inserts can
be done in places where they are needed

Data Manipulation Requirements
Changes

• Added a requirement for
display name property on
resource lists

• Added a requirement on list
data extensibility

• Limited the scope of
authorization policy to presence

• Acceptance requirements based
on domains and wildcards

• Notification requirements from
MUST to SHOULD

• Can specify tuples a watcher
should get based on attribute

• Different watchers get
different information by
presentity publishing
different info
• Consistency requirement
generalized – doesnt require
batching

Data Manipulation Requirements
Proposed Approach

• Submit in parallel with xcap drafts

• Avoids waterfall requirements process
– We can adapt requirements based on protocol

mechanism

Authorization Usage Structure

• Authorization is a set of <statement>

• Each <statement> has an <applies-to> that specify who the
policy applies to, and then a series of permissions

• <applies-to> can specify a URI, a domain, or a list

• Each permission grants the ability of a watcher to get or do
something
– Permissions are POSITIVE – you are allowed to do something.

Not NEGATIVE. This makes for easier composition and allows
schema to be edited more easily

Authorization Usage Structure

• Permissions in several classes
– Acceptance: <accept> and <accept-if>.

<accept> gives permission to subscribe.
<accept-if> gives permission if the embedded
boolean expression is true.

– Boolean expression gives conditions on request
– subscription lifetime, authentication
mechanism, can-encrypt, filters

Authorization Usage Structure

• Rule Permissions
– Specifies event transitions that watcher is permitted to

see
– <any-event>: All transitions
– <enter-state>, <exit-state>: entering or leaving specific

state
– <change-in>: certain attribute changes
– <equals>: send notifications if a certain attribute has a

certain value
• I.e., send notifications to Joe if my placetype is home.

Identifying Presence Data

• Some of the permissions are based on presence or
value of an element
– Placetype is home

• Requires the ability to identify a specific XML
element

• Two ways
– By element name: Refers to any element with that

name, in the document or as input to composition
– By Xpath: Refers to a specific element in post-

composed document

Content Permissions

• What is the watcher allowed to see when
they get a notification?
– <all-content>: everything

– <show-tuple>: show a tuple by name

– <show-namespace>: show elements in a
namespace

Transformational Attributes

• Modifications to the document that get
made for watchers

• <set-document>: send them this document

• <set-element>: set this element

• <change-element-from>: if an element has a
value, change it to this value

Open Issues

• Union vs. Most
Specific
– If multiple statements

match a watcher, do
you union the
permissions or take the
most specific

– Proposal: union –
consistent with intra-
statement overlaps

• Eliminate applies-to?
– Can do it with <accept-if>,
and adding conditionals to
other permissions
– Proposal: No. Applies-to
makes schema more
amenable to transaction-less
editing

Open Issues

• Identifying elements
– Is the approach in the document right?

– Need to think about it a bit more

• Are people happy with the scope?

