Internet Engineering Task Force J. Elwell
Internet Draft Siemens

draft-elwell-sipping-redirection-reason-00.txt
Expires: November 2004 May 2004

Indicating redirection reasons in SIP
Status of this Memo

By submitting this Internet-Draft, I certify that any applicable
patent or other IPR claims of which I am aware have been disclosed,
and any of which I become aware will be disclosed, in accordance with
RFC 3667.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that other
groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress. "

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/lid-abstracts.txt
The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.
Copyright Notice
Copyright (C) The Internet Society (2004). All Rights Reserved.
Abstract
This examines the need for signalling additional information

concerning the reason for redirection in SIP and proposes two
possible solutions.

Elwell Expires - November 2004 [Page 1]

Indicating redirection reasons in SIP May 2004

Table of Contents

R o} Y 1 e e 0 o 3
2 Candidate sOlULiONS. o ittt ittt it it ettt e e 4
2.1 Solution 1 - add a new "protocol" value to the Reason header. .4
2.2 Solution 2 - add a new redirection-reason parameter to a contact

R . ettt i it e it et et ettt ettt eeeeeeeaeeeeeeeeeeneeeaeeoeeeeeneeaeeas 6
3 CONCLUSION S . i ittt et ettt ettt e et ettt e 8
4 ACKNOWlEdgemMENE S v vt ittt ittt et ettt eennneeeeeeeeeeeeeeeeenenenas 8
D AULNOT S AdAr eSS S e i it i it ittt ettt ettt et ettt e e e 8
6 NOrmative REfEIENCE S . it i ittt ittt ittt ettt ettt e tteettetneeeeenn 8

Elwell Expires - November 2004 [Page 2]

Indicating redirection reasons in SIP May 2004

1 Introduction

Central to SIP [2] is the concept of redirecting or retargeting a
request by a proxy, whereby the Request-URI in the original request
is replaced before forwarding the request on the next hop. Sometimes
this is due to normal rerouting behaviour of the proxy (e.g.,
resolving an address-of-record URI to a contact URI). At other times
it is due to more application-related reasons, e.g., where a user has
made arrangements for calls to that user under certain conditions to
be forwarded to a different destination. Also retargeting can be
performed as a result of a 3xx response from a redirect server.
Different 3xx response codes reflect different reasons for rejecting
the request.

The History-Info header [3] provides a means for conveying
information about a retarget to the final destination UAS and also
back to the UAC. In addition to providing the retargeted-from and
retargeted-to URIs for each recorded retarget, this header also
conveys a reason by means of the Reason header. The Reason header
accompanies the retargeted-from URI and reflects the reason why
attempts to reach that target failed, normally in the form of the SIP
response code concerned.

However, there is nothing in either a 3xx response or the History-
Info header to indicate an explicit reason for the redirection
request or the retarget respectively. At present the reason is
implicit in the reason for failure of the request to the original
target. Sometimes this might give an accurate picture of what is
happening, but not always. Consider the following cases:

1. A device acts as a redirect server because it is busy. None of
the 3xx response codes can reflect that the reason for retargeting
to the URI given in the Contact header of the 3xx response is
because the existing target is busy.

2. A device acts as a redirect server because it alerts the user
but fails to get a reply within a certain time. None of the 3xx
response codes can reflect that the reason for retargeting to the
URI given in the Contact header of the 3xx response is because the
existing target failed to answer.

3. A proxy is scripted to retarget requests without first
attempting to forward them to the original target. Retargeting may
be unconditional or based on certain conditions such as date, time,
the source of the request or caller preferences. Because it does
this without forwarding the request to the original target, no SIP
response code is applicable.

Elwell Expires - November 2004 [Page 3]

Indicating redirection reasons in SIP May 2004

4. A proxy is scripted to perform hunting or distribution of calls
among a number of different targets. When forwarding a request to a
target selected from a list of candidate targets, the reason for
retargeting is because of hunting or distribution, rather than
because of any failure of the existing target.

5. In the hunting or distribution scenario above, forwarding a
request to one target from the list of candidate targets may fail
for a particular reason (e.g., busy), leading to selection of
another target from the list. However, the reason for retargeting
is because of hunting or distribution, not specifically because the
previous target had a certain condition.

This seems to point to a need to convey in a 3xx response or a
History-Info header the reason for selecting the retargeted-to URI.
Candidate reasons are:

CFI, "Call forwarding immediate" - immediate retargeting without
forwarding the request to the retargeted-from URI;

CFB, "Call forwarding busy" - retargeting because the retargeted-from
URI is busy;

CFNR, "Call forwarding no reply" - retargeting because there was no
reply at the retargeted-from URI;

CD, "Call deflection" - retargeting because the user at the
retargeted-from URI made a request in real time for retargeting;

HUNT, "Hunting" - selection of the target by means of hunting or
distribution;

NORMAL "Normal redirection” (default) - normal retargeting of a
request.

Note that selection of the new target may depend on several other
conditions (e.g., relating to date, time, the source of the request
or caller preferences), but the reasons suggested above should be
sufficient to convey the main circumstance leading to the retarget.
Two candidate solutions are discussed below.

2 Candidate solutions

2.1 Solution 1 - add a new "protocol" value to the Reason header
New reasons could be achieved by adding a new "protocol" value in the

Reason header. For example, assume a session was initiated to
sip:+14084953756@foo.com; user=phone.

Elwell Expires - November 2004 [Page 4]

Indicating redirection reasons in SIP May 2004

Assuming the entity sending the INVITE supports the History-Info
header, the INVITE would look like this:

INVITE sip:+14084953756@fo0.com;user=phone SIP/2.0

From: "Mr. Whatever" <whatever@foo.com>;tag=2

To: <sip:+14084953756@foo.com;user=phone>

Call-ID: 12345600Q@foo.com

CSeq: 1 INVITE

History-Info: <sip:+14084953756@foo.com;user=phone>; index=1

The call is then redirected to a contact URI
<sip:+44123456789Q@foo.com;user=phone> in a 302 response. The response
would be as follows:

SIP/2.0 302 Moved temporarily

From: "Mr. Whatever" <whatever@foo.com>;tag=2
To: <sip:+14084953756@foo.com;user=phone>;tag=3
Call-ID: 12345600Q@foo.com

CSeq: 1 INVITE

Contact: <sip:+44123456789@foo.com; user=phone>

Reason: Redirection; cause=CFI
?

The call would be retargeted to the contact URI. The first History-
Info header would be augmented with the two reasons for retargeting
(302 and CFI)). A second History-Info header would be added with the
new retargeted-to Request-URI:

INVITE sip:4+44123456789@foo.com;user=phone SIP/2.0

From: "Mr. Whatever" <whatever@foo.com>;tag=2

To: <sip:+14084953756@foo.com; user=phone>

Call-ID: 12345600Q@foo0.com

CSeq: 1 INVITE

History-Info: <sip:+14084953756@foo.com;user=phone?Reason: SIP;
cause=302; text="Moved temporarily"?Reason: Redirection;
cause=CFI>;index=1, <sip:+t44123456789@foo.com;user=phone>; index=2

The "index 1" entry indicates that the call to +1-408-495-3756 was
retargeted because of SIP response code 302 and redirection reason
CFI.

The "index 2" entry indicates that the call to +44-123456789 has not
yet been further retargeted.

For the case where the proxy initiates retargeting (not as a result
of a 3xx response from a redirect server), the proxy itself would

Elwell Expires - November 2004 [Page 5]

Indicating redirection reasons in SIP May 2004

need to generate the Reason header with Redirection;cause=CFI for
inclusion in the index 2 URI in History-Info.

This solution would require either a new standards track RFC or a
standard published by another organisation to define the new
"protocol" value in the Reason header.

There is an impact on History-Info in that History-Info is required
to capture the Redirection reason in a Reason header (since it’s not
part of the Contact URI in this case). In the current History-Info
draft, only the SIP response code is captured in a Reason header.

2.2 Solution 2 - add a new redirection-reason parameter to a contact
URI

New reasons could be indicated using a new parameter in a URI.

For example, assume a session was initiated to
sip:+14084953756@foo0.com; user=phone.

Assuming the entity sending the INVITE supports the History-Info
header, the INVITE would look like this:

INVITE sip:+14084953756@fo0.com;user=phone SIP/2.0

From: "Mr. Whatever" <whatever@foo.com>;tag=2

To: <sip:+14084953756@foo.com;user=phone>

Call-ID: 12345600@foo.com

CSeqg: 1 INVITE

History-Info: <sip:+14084953756@foo.com; user=phone>; index=1

The call is then redirected to a contact URI
<sip:+44123456789Q@foo.com;user=phone; redirection-reason=CFI> in a 302
response. The response would be as follows:

SIP/2.0 302 Moved temporarily

From: "Mr. Whatever" <whatever@foo.com>;tag=2

To: <sip:+14084953756@fo0.com; user=phone>;tag=3

Call-ID: 12345600@foo.com

CSeqg: 1 INVITE

Contact: <sip:+44123456789@foo.com;user=phone; redirection-

reason=CFI>
2

The call would be retargeted to the contact URI. The first History-
Info header will be augmented with the Redirection reason (302). A
second History-Info header is added with the new retargeted Request-
URI:

Elwell Expires - November 2004 [Page 6]

Indicating redirection reasons in SIP May 2004

INVITE sip:+44123456789Q@foo.com;user=phone;redirection-reason=CFI
SIP/2.0

From: "Mr. Whatever" <whatever@foo.com>;tag=2

To: <sip:+14084953756@foo.com;user=phone>

Call-ID: 12345600Q@foo.com

CSeqg: 1 INVITE

History-Info: <sip:+14084953756Q@f00.com;user=phone?Reason: SIP;
cause=302; text="Moved temporarily">;index=1,
<sip:+44123456789Q@foo.com;user=phone; redirection-

reason=CFI>; index=2

The "index 1" entry indicates that the call to +1-408-495-3756 was
retargeted because of SIP response code 302.

The "index 2" entry indicates that the call to +44-123456789 has not
yet been further retargeted, but that it was made as a result of a
CFI redirection-reason.

For the case where the proxy initiates retargeting (not as a result
of a 3xx response from a redirect server), the proxy itself would
need to generate the redirection-reason parameter for inclusion in
the index 2 URI in History-Info.

This solution has the advantage that the redirection reason is
associated with a particular contact URI and would automatically get
copied as part of the contact URI into the Request-URI of the
retargeted request. It would be backward compatible with existing
implementations of History-Info, since it would automatically be
copied with the URI into the History-Info header.

A possible disadvantage is that URI parameters are intended to
influence a request constructed from the URI. It might be argued that
redirection-reason does not meet this requirement.

Note the difference between this and solution 1, whereby the
additional reason is placed in the index 1 URI for solution 1 but in
the index 2 URI for solution 2. It is arguable which is the more
appropriate. Also solution 1 could be adapted to use the index 2 URI,
if considered more appropriate.

The SIP and SIPS URIs are extensible in that new parameters can be
added and will be ignored by any implementation that does not
understand them. There are plans to create an IANA registry for URI
parameters (draft-ietf-sip-uri-parameter-reg-01), and this will
require that new parameters be defined in an RFC.

There is no impact on the History-Info draft.

Elwell Expires - November 2004 [Page 7]

Indicating redirection reasons in SIP May 2004

3 Conclusions

The SIP community is asked to express its opinions on the two
proposed solutions or suggest other alternatives.

4 Acknowledgements

The author would like to acknowledge considerable assistance from
Francois Audet and Mary Barnes in drafting this contribution.

5 Author’s Addresses

John Elwell

Siemens Communications
Technology Drive

Beeston

Nottingham, UK, NG9 1LA

email: john.elwell@siemens.com

6 Normative References

[1] H. Schulzrinne, D. Oran, G. Camarillo, "The Reason Header for the
Session Initiation Protocol (SIP)", RFC 3326.

[2] J. Rosenberg, H. Schulzrinne, et al., "SIP: Session initiation
protocol”, RFC 3261.

[3] M. Barnes "An Extension to the Session Initiation Protocol for
Request History Information", draft-ietf-sipping-history-info-02
(work in progress)

Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the IETF’s procedures with respect to rights in IETF Documents can
be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.

Elwell Expires - November 2004 [Page 8]

Indicating redirection reasons in SIP May 2004

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at ietf-
ipr@ietf.org.

Disclaimer of Validity

This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement
Copyright (C) The Internet Society (2004). This document is subject
to the rights, licenses and restrictions contained in BCP 78, and

except as set forth therein, the authors retain all their rights.

Acknowledgement

Funding for the RFC Editor function is currently provided by the
Internet Society.

Elwell Expires - November 2004 [Page 9]

AAA Working Group Tom Hiller

Internet Draft Lucent Technologies
draft-hiller-uri-list-index-01.com Adam Roach
Category: Standards Track Dean Willis
dynamicsoft

July 2004

SIP URI List Index

Status of this Memo

This document is an Internet-Draft and is in full conformance with
all provisions of Section 10 of RFC2026 [1].

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that other
groups may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/lid-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

This draft extends the schema of the resource list specified in
draft-ietf-simple-xcap-list-usage-01 by defining an index attribute
(membercode). It also defines two MIME types that refer to subsets
of a resource list. These MIME types can be used to identify subsets
of a resource list for use with SIP requests.

Conventions used in this document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC-2119 [2].

Table of Contents

1. Problem Statement ... ittt ittt ettt teee ettt tenneaeean 2

2. General SOLULLION . ittt ittt ittt ittt ettt ettt ettt e e e 3

R R U114 3

2.2. Membercode Attribute Management.........ooeiienieereneneennn 3

2 3 MIME Ty S e v ettt e e e et e e oaeseeeneseeenesensenesesnnssenanssnns 3
Hiller et al Standards Track - December 2004 1

URI List Index February 2004

3. Definition of Membercode Attribute for Resource List............. 4
4., TANA CONsSiderationS . i e ettt teteeeeeeeneeeeeeeeeeeeennneeeas 5
L R 1 o Y 1= - I = A 5
4.2, Bit Map MIME . &ttt it ittt ettt e eaeteeeaeseeeneseeanesennnesenans 6
5. Security ConsiderationsS . it i ittt ittt neeeeeeeeeeenneenennns 8
B. REL I ENCE S .t it ittt ettt ettt ettt ettt ettt et ettt e eeeeeeeeeeeeennnnnas 8
Yt P o 1 e 8
T ACKNOWlEedgemMENt S . v vttt ittt ettt ettt ettt ettt ettt teeeeeeeeeeens 9
8. AULNhOTrS’ AddreSSE S . ittt it ittt et ettt etneeeeeeneeeeeenneeenas 9

1. Problem Statement

The SIPPING WG is developing mechanisms to by which a SIP request can
target a list of recipient URIs (a URI-list). These URI-lists may be
transported either within the associated request (a request-contained
list) or stored externally and referenced by the request [URI-LIST]
[LIST-CONF]. This specification extends the second case by allowing a
request to reference a subset of the URIs contained in a referenced
URI-1list. This is achieved my extending the schema of the URI-list so
that each list element is associated with a locally-unique index
value, and extending the referencing syntax to allow a request to
carry a list reference and a set of index values indicating elements
to be selected from the referenced list.

For wireless, this avoids the need for a mobile to have to send a SIP
request multiple times over the air, thereby conserving spectrum and
extending battery lifetime, both of which are valuable goals in
wireless. The 3G wireless technology cdma2000 has various transport
mechanisms, some of which only support rather low data rates. The
cdmaz2000 mechanism "1X-RTT", has an effective payload data rate of
8500bps after various physical overhead are deducted from the
absolute physical bit rate. So, for 1X-RTT, a kilobyte long SIP
request causes one second of over-the-air transport latency, which is
a problem for some services, such as push-to-talk conferencing that
have tight latency requirements.

Yet another cdma2000 transport mechanism called "short data burst",
has severe message length restrictions; for example based on radio
engineering considerations, the PPP frames should be under 100 bytes
total including PPP overhead. This mechanism also features low data
rates as the 1X-RTT mechanism mentioned above.

For these cdma2000 transport mechanisms, it is highly desirable to
minimize the length of SIP requests especially for those destinations
that are contacted frequently. Based on this, it is desirable to
minimize the number of bytes required to transport the URI-lists in
the SIP requests, and therefore to define a highly compact means to
convey a URI List in SIP Request bodies. This draft proposes an
index to elements of the resource list schema [RF]. The index
results in shorter SIP requests for SIP applications that require

Hiller Standards Track - Expires June 2004 2

URI List Index February 2004

transport over lower data rate and/or message length restricted
cdma2000 transport mechanisms.

2. General Solution
2.1. Summary

This draft adds an attribute called "membercode" to elements of the
resource list schema of [RL] and defines two MIME [MIME-1] types to
convey (represent) a URI List [URI-LIST] [LIST-CONF] in the body of a
SIP request. The MIME types are based on the identity of the user’s
resource list along with indices (the membercodes) that have been
previously stored in a user’s resource list. Both MIME types require
that the server hosting the list assign membercodes to all URIs of
the user’s Resource List entries. The MIME type conveys identity of
the resource list and the membercodes associated with the URIs on a
URI List. The MIME instance replaces the actual URI elements,
thereby saving many bytes and reducing over-the-air transport
latency.

The membercode is a non-negative integer that is unique within a
given resource list. The maximum value (size) of the membercode
should be on the order of the number of lists and list entries of the
resource list.

2.2. Membercode Attribute Management

The document draft-ietf-simple-xcap-list-usage-01 [RL] states the
requirements on XCAP for a client to manipulate the resource list.

An XCAP client does not include the membercode attribute when it
creates or modifies a resource list element, as the membercode is
optional. 1Instead the server creates a unique membercode when the
resource 1is created. The server leaves the membercode unchanged when
a list or list element is modified. The addition of an index to the
resource list is transparent to XCAP. Having the presence list
server assigns membercodes to resource list elements avoids conflicts
and/or race conditions that could arise due to multiple users
creating or modifying resource list elements.

Users of the resource list may subscribe for updates to receive
presence notifications [RL-NOTIFY] that carry the assigned
membercodes. Also, users may access the resource list directly via
XCAP to learn the membercode attributes created. Otherwise, a means
to synchronize the membercodes in user devices must be provided by
means outside the scope of this document.

In order for a users learn the values of membercode attributes via

presence notifications [RL-NOTIFY] the user has to subscribe for

notifications and the resource list’s "subscribe" flag MUST be set).
2.3. MIME Types

Hiller Standards Track - Expires June 2004 3
URI List Index February 2004

The first MIME, application/resource-lists-indices, is a list of the
membercodes of the elements of a URI list.

The second MIME, application/resource-lists-bitmap, is a bit map of
the membercodes of the elements of the URI list. 1In the latter case,
a bit set at location ’'x’ in the bit map corresponds to a membercode
of value ’2**x".

MIME bodies may be further compressed with procedures that are part
of a general SIGCOMP [SIGCOMP] "program".

3. Definition of Membercode Attribute for Resource List

As explained above, this draft adds an attribute called "membercode"
to elements of the resource list schema of [RL]. , The resulting
schema is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="urn:ietf:params:xml:ns:resource-lists"
xmlns:xcap="urn:ietf:params:xml:ns:xcap-must-understand”
xmlns="urn:ietf:params:xml:ns:resource-lists"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">
<xs:import namespace="urn:ietf:params:xml:ns:xcap-must-
understand"/>
<xs:element name="resource-lists">
<xs:complexType>
<xs:sequence>
<xs:element ref="xcap:mandatory-ns" minOccurs="0"/>
<xs:element name="1list" type="1listType" minOccurs="0"
maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:complexType name="listType">
<xs:sequence maxOccurs="unbounded">
<xs:choice>
<xs:element name="1ist" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:complexContent>
<xs:extension base="listType"/>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="external" type="xs:anyURI" minOccurs="0"
maxOccurs="unbounded" />
<xs:element name="entry" type="entryType" minOccurs="0"
maxOccurs="unbounded" />
<xs:element name="entry-ref" type="xs:anyURI" minOccurs="0"
maxOccurs="unbounded" />
<xs:any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded" />

Hiller Standards Track - Expires June 2004 4

URI List Index February 2004

</xs:choice>
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="uri" type="xs:anyURI" use="optional"/>
<xs:attribute name="subscribeable" type="xs:boolean"
use="optional"/>
<xs:anyAttribute namespace="##other"/>
<xs: attribute name="membercode"
type="unique positivelInteger" use="optional" />
</xs:complexType>
<xs:complexType name="entryType">
<xXs:sequence>
<xs:element name="display-name" type="display-nameType"
minOccurs="0"/>
<xs:any namespace="##other" processContents="lax"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="uri" type="xs:anyURI" use="required"/>
<xs: attribute name="membercode"
type="unique positivelInteger" use="optional" />
</xs:complexType>
<xs:simpleType name="display-nameType">
<xs:restriction base="xs:string"/>
</xs:simpleType>
</xs:schema>

4., IANA Considerations

The document draft-camarillo-uri-1ist-00.txt defines a "list"
parameter for SIP and SIPS URIs that points to an XCAP resource list.
This document defines two MIME types to which the list parameter may
point and is consistent with [MIME-2] and [MIME-4].

4.1. Index List

The MIME Content-Type is "application/resource-lists-indices" and is
a list of membercodes separated by white space. The presence of an
membercode in the list means that the associated URI is to be
included on the URI list. The MIME type includes the resource list
URT.

The URI and membercode are encoded as 1is encoded in UTF-8. The
membercode attributes, which are numbers, are coded as hex digits.
The URI and member codes are separated by a white space. The exact
efficiency of the encoding of membercodes is less important because a
SIGCOMP program can compress these digits, which are represented as
characters, to binary numbers.

The ABNF [ABNF] for this MIME type is as follows.
resource-lists—-indices = (resource-1ist-URI SP * (membercode SP))

Hiller Standards Track - Expires June 2004 5
URI List Index February 2004

resource—-1ist-URI = SIP-URI
; this is an SIP URI to the resource list
; see [SIP]
membercode = *HEXDIG
; the member code is on the list if the
; associated URI is on the URI list
Information per [MIME-4] is as follows:

MIME media type name: application

MIME subtype name: resource-lists-indices

Mandatory parameters: none

Optional parameters: none

Encoding considerations: UTF-8

Security considerations: See the security section of this
specification

Interoperability considerations: none.
Published specification: This document.

Applications which use this media type: SIP Requests with an
EXPLODE method based URI list.

Additional Information:
Magic Number: None
File Extension: tbd
Macintosh file type code: tbd

Personal and email address for further information: Tom Hiller,
tomhiller@lucent.com

Intended usage: COMMON

Author/Change controller: The IETF

4.2. Bit Map MIME
The MIME Content-Type is an "application/resource-lists-bitmap", and

is a binary string whose individual bit positions correspond to the
values of membercodes. A bit set in the bit map means the URI

Hiller Standards Track - Expires June 2004 6

URI List Index February 2004

associated with the membercode whose value matches that bit position
is on the URI list. The MIME type includes the resource list URI.

If the bit map has fewer bits than the maximum value of the
membercode, then URIs corresponding to "missing" bit positions are
not included in the URI list. If the bit map has bit positions that
do not correspond to membercodes or more bits than the maximum value
possible of the membercode, then the "extra" bits MUST be ignored.

The URI and bitmap are encoded as is encoded in UTF-8. The bit flags
of the membercode are coded as four bits to a hex digit. Any bits in
hex digit for which membercodes do not exist are set to zero, which
occurs if the number of bits in the bit map isn’t a multiple of four.
The bit map positions correspond to the power of two in the resulting
hex number. Therefore, in string of hex digits, the most significant
bit of the most significant hex digit represents the highest value
membercode of the resource list.

The bit map MIME type’s ABNF is as follows:
resource-lists-bitmap = (resource-1list-URI “*membercode-hex)
resource—1ist-URI = SIP-URI
; this is a SIP URI to the resource list
; see [SIP]
membercode—-hex = HEXDIG
; a bit position M of the membercode-hex N
; is set if a URI on the URI list
; has a membercode of value 2** (4*N+M)
; where N starts at 1 (so the first character
; 1s M=1) and M is value of 2**M in the hex
; character (so the least bit is 2**0).
Information per [MIME-4] is as follows:
MIME media type name: application
MIME subtype name: resource-lists-bitmap
Mandatory parameters: none
Optional parameters: none

Encoding considerations: UTF-8

Security considerations: See the security section of this
specification

Interoperability considerations: none.

Published specification: This document.

Hiller Standards Track - Expires June 2004 7

URI List Index February 2004
Applications which use this media type: SIP Requests with an
EXPLODE method based URI list.
Additional Information:
Magic Number: None
File Extension: tbd
Macintosh file type code: thd

Personal and email address for further information: Tom Hiller,
tomhiller@lucent.com

Intended usage: COMMON
Author/Change controller: The IETF
5. Security Considerations

The index proposed herein is a way to access a user on the resource
list, which is used to invite people to calls, etc. However, the
security of the index is no more nor less important than any other
data already contained on the list, and therefore, this document does
not imply additional security concerns or considerations.

6. References
6.1. Normative

[ABNF] Crocker, "Augmented BNF for Syntax Specifications:
ABNF", RFC2234, November 1997

[LIST-CONF] Conference Establishment Using Request-Contained Lists
in the Session Initiation Protocol (SIP),
draft-ietf-sipping-uri-list-conferencing-00.txt,

July 7, 2004

[IANA] Narten, Alvestrand, "Guidelines for Writing an IANA C
Considerations Section in RFCs", BCP 26, RFC 2434,
October 1998

[MIME-1] Freed, Borenstein, "Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet
Message Bodies, RFC2045, November 1996

[MIME-2] Freed, Borenstein, "Multipurpose Internet Mail
Extensions (MIME) Part Two: Media Types"
RFC2046, November 1996

[MIME-4] Freed et al, "Multipurpose Internet Mail

Hiller Standards Track - Expires June 2004 8
URI List Index February 2004

Extensions (MIME) Part Four: Registration
Procedures", RFC2048, November 1996

[RL] Rosenberg, "draft-ietf-simple-xcap-list-usage-02",
October 27, 2003

[RL-NOTIFY] Roach, Rosenberg, Campbell, A Session Initiation
Protocol (SIP) Event Notification Extension for
Resource Lists, draft-ietf-simple-event-1list-04,
June 13, 2003

[SIGCOMP] Price et al, Signaling Compression (SigComp), RFC3320,
January 2003

[SIP] Rosenberg et al, "The Session Initiation Protocol",
RFC3261, June 2002

[URI-LIST] Camarillo, Roach, Providing a Session Initiation
Protocol (SIP) Application Server with a List of URIs,
draft-camarillo-uri-list-02.txt, March 27, 2004

7. Acknowledgements

Chris Bennet of Togabi suggested the use of the MIME type that
conveys a list of indices.

8. Authors’ Addresses
Questions about this memo can be directed to:

Tom Hiller

Lucent Technologies

1960 Lucent Lane

Naperville, IL 60566

USA

Phone: +1 630-979-7673
E-mail: tomhiller@lucent.com

Dean Willis
dynamicsoft Inc.
5100 Tennyson Parkway

Suite 1200
Plano, TX 75028
Us

Phone: +1 972 473 5455
E-mail: dean.willis@softarmor.com

URI: http://www.dynamicsoft.com/
Adam Roach
dynamicsoft
Hiller Standards Track - Expires June 2004 9

URI List Index February 2004

5100 Tennyson Pkwy

Suite 1200
Plano, TX 75024
USA

E-mail: adam@dynamicsoft.com

Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any
intellectual property or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; neither does it represent that it
has made any effort to identify any such rights. Information on the
IETF’s procedures with respect to rights in standards-track and
standards-related documentation can be found in BCP-11. Copies of
claims of rights made available for publication and any assurances of
licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such
proprietary rights by implementers or users of this specification can
be obtained from the IETF Secretariat.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to practice
this standard. Please address the information to the IETF Executive
Director.

Full Copyright Statement

Copyright (C) The Internet Society (2003). All Rights Reserved. This
document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING

Hiller Standards Track - Expires June 2004 10
URI List Index February 2004

TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Hiller Standards Track - Expires June 2004 11

Session Initiation Proposal V. Hilt

Investigation Working Group Bell Labs/Lucent Technologies
Internet-Draft G. Camarillo
Expires: January 8, 2005 Ericsson

July 10, 2004

Evaluating Scenarios for Session-specific Policies
draft-hilt-sipping-policy-scenarios-00

Status of this Memo

By submitting this Internet-Draft, I certify that any applicable
patent or other IPR claims of which I am aware have been disclosed,
and any of which I become aware will be disclosed, in accordance with
RFC 3668.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that other
groups may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://
www.letf.org/ietf/lid-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on January 8, 2005.
Copyright Notice
Copyright (C) The Internet Society (2004). All Rights Reserved.
Abstract
This draft describes detailed call flows for different use cases of
session-specific policies. It compares the two approaches that are

currently being discussed for session-specific policies, namely the
piggyback model and the separate channel model.

Hilt & Camarillo Expires January 8, 2005 [Page 1]

Internet-Draft Session Policy Scenarios

Table of Contents

1. Introduction
2. Terminology
3. Scenario
4. Use Cases

4.1 NAT Traversal .o

4.1.1 Piggyback Model .

4.1.2 Separate Channel Model
Codec Selection

iscussion

Re-Use of Document Formats and Mechanlsms
Asynchronous Policies
Separation of Tasks

Authors’ Addresses

6. References

A. Acknowledgements

Intellectual Property and Copyrlght Statements

2
Di
1
.2 UA Support of Policies
3
4
5

o1 01 01 U1 U1

Hilt & Camarillo Expires January 8, 2005

Disclosure of Se331on Descrlptlons and Pollc1es

July 2004

Do W w W

13
13
13
13
14
14
15
14
15
16

[Page 2]

Internet-Draft Session Policy Scenarios July 2004
1. Introduction

The concept of session-specific SIP session policies [3] has been
around for some time. However, it has proven that the mechanisms for
establishing session-specific policies are non-trivial and most
likely require to sacrifice some of the requirements defined in [5].

In this draft, we compare two approaches that have been proposed for
session-specific policies: the piggyback model and the separate
channel model. We analyze detailed call flows of use cases for both
models and discuss advantages and drawbacks of each model.

The main purpose of this draft is to spark the discussion about the
two models and to come to a conclusion on which if the models is the
most appropriate approach for session-specific policies.

2. Terminology

In this document, the key words "MUST", "MUST NOT", "REQUIRED",
"SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT
RECOMMENDED", "MAY", and "OPTIONAL" are to be interpreted as
described in BCP 14, [1] and indicate requirement levels for
compliant implementations.

3. Scenario

All use cases in the subsequent sections are based on the following
scenario (see Figure 1). The user agent UA A is registered at proxy P
A, which is responsible for domain A. UA B is registered at P B in
domain B. Both domains A and B are separate and they are connected
through a transit network.

It is assumed that user agent and proxy of each domain have a
relationship (e.g. UA A is a customer of provider running domain A).
It is also assumed that the entities in different domains do not
necessarily have a relationship. This corresponds to a scenario where
a customer of one provider is establishing a session with a customer
of another provider. As a consequence, entities in one domain can’t
make any assumptions about the capabilities of entities in the other
domain. In particular, it can’t be assumed that session policies are
supported in the other domain. Additionally, it is assumed that
entities in one domain are not willing to disclose network internals
such as session policies to the other domain.

Hilt & Camarillo Expires January 8, 2005 [Page 3]

Internet-Draft Session Policy Scenarios July 2004

4.

4.

1

1

t———1 Do+t

/=P Al-i————————— :——|P B|-\
-t/ +——F : A==+ A\t
|[UA A| : : |UA B
+———— : : +————

Domain A Transit Domain B
Network
Figure 1

Use Cases

NAT Traversal

In this scenario, each domain is connected to the public Internet
through a NAT. UA A and UA B have local, non-routable addresses. The
proxies P A and P B implement MIDCOM [6] agents an control an
associated NAT that connects their domain to the Internet.

Session policies are needed to accomplish the following tasks for NAT
traversal:

O

.1

Enable proxies to examine the media addresses and ports in the
session description created by its associated UA (can either be an
offer or an answer). This information is needed to configure NAT
rules for incoming media traffic.

Enable proxies to modify the media addresses and ports in the
session description created by its associated UA (offer or
answer) . The modification is needed to replace the local addresses
with globally routable addresses at which the associated UA 1is
reachable from outside.

Enable a proxy to examine the media addresses and ports in the
session description created by the remote UA (offer or answer).
This information is needed to configure NAT rules for outgoing
media traffic.

Piggyback Model

In the piggyback model, session policies are piggybacked on the SIP
messages used for the corresponding SDP offer/answer exchange.

4.1.1.1 Offer in Request - Alternative 1

Hilt & Camarillo

The call flow in Figure 2 describes the piggyback model for INVITE

Expires January 8, 2005 [Page 4]

Internet-Draft Session Policy Scenarios July 2004

requests carrying a session description offer. This alternative is
based on encryption to protect MIOs and MFOs from being inspected by
unauthorized network entities (e.g. in the transit network). It
corresponds to the piggyback model that has been discussed so far
(e.g. in [31])

It is important to note that this alternative still requires that the
UAs on both sides support session-specific policies, even if policies
are only used in one domain. In other words, to enable the use of
policies between UA A and P A in domain A, UA B in domain B also
needs to support policies, even if policies are not used in this
domain. Furthermore, encryption can only protect policies from being
inspected in the transit network. Entities in both domains must be
able to inspect the policies of the other domain.

UA A P A P B UA B

| |
| INVITE offer |

| |

| |
|- > | | [(1)
| 488 | | |
| +DiscloselInfoA | | |
| <=7 | | [(2)
ACK		
———— >		
INVITE offer	INVITE offer	
+[MICAoffer]A	+[MIOCAoffer]A	
	+[MFOAoffer]B	
R — e >		(3)
488	488	
+DiscloseInfoB	+DiscloseInfoB	
<o	<o	
ACK	ACK	
———- > >		
INVITE offer	INVITE offer	INVITE offer
+[MIOAoffer]AB	+[MIOAoffer]AB	+[MIOAoffer]AB
	+[MFOAoffer]B	+[MFOAoffer]B
		+DiscloseInfoB
e e e > (5)		
183 answer	183 answer	183 answer
+[MIOBanswer]B	+[MIOBanswer]B	+[MIOBanswer]B
+[MFOBanswer]A	+[MFOBanswer]A	
<o	<o	<mmmmmm s

Hilt & Camarillo Expires January 8, 2005 [Page 5]

Internet-Draft Session Policy Scenarios July 2004

| +[MIOAanswer]A | +[MIOAanswer]A | +[MIOAanswer]A |

|-~ >|-mmm >|-mmm > (7)
| OK | OK | OK |
[<=7 | <=7 [<mmmmmmmm |
OK	OK	OK
[<—m	< [<mmmmmm—	
ACK		
l--- = >		
Figure 2

Steps (1) and (2) are needed if P A detects that UA A does not
disclose the required aspects of its session description offer in a
Media Interface Object A (MIOAoffer). In this case, P A returns a 488
response that requests the disclosure of these aspects. This steps
could be avoided, for example, by providing information about what to
disclose as part of the device configuration [4].

In step (3) UA A creates Media Interface Object A (MIOAoffer) that
discloses the IP addresses and ports it has used in the offer. UA A
encrypts MIOAoffer with a key known to P A ([MIOAoffer]A). P A can
now perform its MIDCOM functionalities based on the data in MIOAoffer
and creates a Media Filter Object for MIOAoffer (MFOAoffer), which
contains the external addresses and ports UA B must use to reach UA
A. P A encrypts MFOAoffer with a key known to UA B.

In step (4) P B returns a 488 response and asks UA A to disclose the
addresses and ports used in the offer. It also asks P A to disclose
all policies that affect the addresses and ports in the offer, since
these are the addresses and ports that will later be used in the
session.

Step (5) is analogous to step (3) except that MIOAoffer and MFOAoffer
are now encrypted with a keys known to P B and UA B. Finally, P B
asks UA B to disclose the addresses and ports it is going to use in
the answer.

In step (6) UA B has accepted the policies contained in MFOAoffer. It
creates a 183 response with its session description answer and a
MIOBanswer containing the local IP addresses and ports. UA B encrypts
MIOBanswer with a key known to P B. The use of a 183 response instead
of a 200 OK later enables UA A to cancel the INVITE transaction if it
decides not to accept the requested policies before the INVITE
transaction is completed.

Hilt & Camarillo Expires January 8, 2005 [Page 6]

4.1.1.2

Internet-Draft

Session Policy Scenarios

July 2004

P B examines the addresses and ports in MIOBanswer and inserts
MFOBanswer containing the external addresses and ports to be used
with the session description answer.

key known to UA A.

In step
PRACK.

(7)

It inserts

a MIOAanswer,

It encrypts MFOBanswer with a

UA A accepts the policies in MFOBanswer and creates a
which contains the addresses and

ports it is using to send media to UA B. UA A encrypts MIOAanswer

with a key known t
additional MFOs ar

o P A.
e needed.

Offer in Request - Alternative 2

Since P A has no policies for the answer,

no

The call flow in Figure 3 also piggybacks policy information on

messages exchanged within a SIP INVITE transaction.
these messages are used to exchange policies between UA and

flow,

In this call

proxy. The flow ensures that policy information does not leave the
local domain by rejecting messages and removing policy headers.

UA A
|

| 488

| INVITE offer
| +MIOAoffer

| 488
| +MFOAoffer

Hilt & Camarillo

P A P

| INVITE offer

Expires January

B UA

INVITE offer
+DiscloseInfoB

| 183 answer
| +MIOBoffer
| +MIOBanswer
| <mmmm |

8, 2005

B

[Page 7]

Internet-Draft Session Policy Scenarios July 2004

| PRACK | PRACK | PRACK |

| +MIOAanswer | |

| | | +MFOBanswer |
I S R > (7)
| OK | OK | OK |

| <o | <mmmmm e | <= |

| | | |

| UPDATE offer | UPDATE offer | UPDATE offer |
R | <o | < | (8)
| | | |

| OK answer | OK answer | OK answer |

| +MIOAanswer | |

| = e e > (9)
| | I |

| OK | OK | OK |

| <o | <o | <= |

| | | |

| ACK |

Figure 3

The basic idea of exchanging MIOs and MFOs is the same as in the
above flow. Steps (1) - (3) are identical. In step (4) P A returns a
MFOAoffer containing the modified addresses and ports for the offer
to UA A. UA A can now apply these policies and create a new offer in
step (5).

In step (5) P B also requests the disclosure of the addresses used in
the offer and answer and receives them from UA B in step (6). Since
UA B has not received policies from P B yet, the answer in step (6)
is a dummy answer that needs to be updated later.

In step (7) UA A creates a PRACK containing a MIOAanswer which is
still based on the dummy answer. P B uses this PRACK message to
transmit the addresses and ports it wants UA B to use in its session
description to UA B. To make these addresses and ports known to UA A,
UA B creates an new offer and sends an UPDATE in step (8) to which UA
A responds in step (9). UA A also creates a new MIOAanswer for P A
that is now based on the actual session description used in the
session.

4.1.1.3 Offer in Response
The piggyback model call flows for INVITEs that carry the session

description offer in the response are analogous to the above call

Hilt & Camarillo Expires January 8, 2005 [Page 8]

Internet-Draft Session Policy Scenarios July 2004

flows. However, these flow are generally more complex that the flows
described above for the offer in request scenario.

4.1.2 Separate Channel Model

The idea behind the Separate Channel Model is that user agents
retrieve session-specific policies through a separate channel before
they create the session description offer/answer. The channel can be
implemented in different ways, based on SIP or on another protocol.
In this document we simply make the assumption that this channel
enables a UA to send a MIO to the policy server and to retrieve a MFO
as a response.

4.1.2.1 Offer in Request

The call flow in Figure 4 depicts the separate channel model for
INVITE requests carrying a session description offer. PS A and PS B
are the policy servers in the respective domains. They can be
co-located with the proxies P A and P B but do not have to be.

UA A P A P B UA B

| |
| INVITE offer |

+ MIOBoffer
+ MIOBanswer

| |
| |
|—————— > | | [(1)
| 488 | | |
| + DiscloseInfA | | |
[<= | I I (2)
| ACK | I
- >		
	PS A	
Sep.Channel		
+ MIOAoffer		
>		
Sep.Channel		
+ MFOAoffer		
<		
	I	
INVITE offer	INVITE offer	INVITE offer
		+ DiscloseInfB
R e R > (5)		

|
| Sep.Channel
|
|

Hilt & Camarillo Expires January 8, 2005 [Page 9]

Internet-Draft Session Policy Scenarios July 2004

| Sep.Channel |
| + MFOBanswer |

|

|

|

|

| | |

| | |

| OK answer OK answer | OK answer |

[<= |<——=mmmm [<{—=mmmmmm [(8)
| ACK |
N > |

| | | |

| Sep.Channel | | |

| + MIOAanswer | | |
|~ > | | | (9)
| | I |

| | I |

Figure 4

Steps (1) and (2) are needed if P A detects that UA A has not
requested policies for the current session before creating the SDP
offer. In this case, P A returns a 488 response that contains the
address to which UA A should establish a channel to and information
about what should be disclosed in an MIO. These steps can be avoided,
for example, by providing the information about what to disclosure to
where as part of the device configuration.

In step (3) UA A establishes a channel to PS A and submits a
MIOAoffer in which it reveals the addresses and ports it is going to
use in the offer. PS A uses this information in its function as
MIDCOM agent and returns the addresses and ports UA A should include
in its offer in an MFOAoffer in step (4).

In step (5) UA A decides to accept the policies in MFOAoffer and
creates the offer using the given addresses and ports. P B inserts
disclosure information for UA B into this message.

Before creating an answer, UA B retrieves the policies that apply to
this session by establishing a channel to its policy server in step
(6) . It submits the addresses and ports from the offer in MIOBoffer
and the addresses and ports it is going to use in its answer in
MIOBanswer. PS B returns the addresses and ports to be used in the
answer in MFOBanswer in step (7). If UA B decides to accept these
policies, it creates an answer in step (8). If not, UA B can return a
final response rejecting the INVITE.

In step (9), UA A submits MIOAanswer to the local policy server

Hilt & Camarillo Expires January 8, 2005 [Page 10]

Internet-Draft Session Policy Scenarios July 2004
disclosing the addresses and ports received in the answer from UA B.
4.1.2.2 Offer in Response
The call flow for an INVITE carrying the offer in the response is
depicted in Figure 5. In contrast to call flow Figure 4, UA A has to

wait until it receives an offer from UA B before it can retrieve the
policies for the current session.

UA A P/M A P/M B UA B
INVITE	INVITE	INVITE
		+ DiscloseInfB
-~ >	-mmm >	-mmm > (1)
	PS B	
		Sep.Channel
		+ MIOBoffer
		<
		Sep.Chanel
		+ MFOBoffer
		> (3)
183 offer	183 offer	183 offer
+ DiscloseInfA		
B —	<mmmm s e	(4)
PRACK answer		
>	(5)	
OK		
<		
	PS A	
Sep.Channel		
+ MIOAoffer		
+ MIOAanswer		
———— >		
Sep.Channel		
+ MFOAanswer		
<		(D
UPDATE offer’		
>	(8)	
OK answer’		
<		

Hilt & Camarillo Expires January 8, 2005 [Page 11]

Internet-Draft Session Policy Scenarios July 2004

| |
| Sep.Channel |
| + MIOBanswer |
|
|

Figure 5

After receiving the 183 response in step (4), UA A must respond
immediately with a PRACK to avoid the expiration of timer Tl in UA B
and the retransmission of the 183. UA A therefore creates a PRACK
with an answer that does not yet consider session-specific policies.
It then retrieves the policies for the current session in steps (6)
and (7) in which it gets the external addresses and ports from PS A
in MFOAanswer. It creates a new offer and sends it to UA B in the
UPDATE shown in step (7).

ISSUE: If it can be assumed that UA A and the policy server are
located in the same network, there might be enough time for UA A
to retrieve policies before generating the PRACK. The sequence of
steps would then be (1)-(3), (5)-(6), (4) without a need for the
UPDATE in step (7). Is this a reasonable assumption?

4.2 Codec Selection

In this scenario, session-specific policies are used to limit the set
of codecs a UA can use. By using session-specific policies, a network
provider does not need to reveal the list of allowed codecs to the
UA. Instead it can limit the use of certain codecs only if endpoints
announce them in an SDP description.

Session policies are needed to accomplish the following tasks for
codec selection:

o Enable a proxy to examine the codecs listed in the session
description offer (independent of whether the offer was created by
the local or the remote UA).

o Enable proxies to remove codecs from the offer (independent of
whether the offer was created by the local or the remote UA).

The call flows for both models are analogous to the NAT scenario,

Hilt & Camarillo Expires January 8, 2005 [Page 12]

Internet-Draft Session Policy Scenarios July 2004

5.

5.

5.

5.

with the difference that the policy servers do not not provide
policies for the answer. Instead, they both provide policies for the
session description offer. Also, MIOs contain lists of codecs and
MFOs identify those codecs that should not be used.

Discussion
1 Disclosure of Session Descriptions and Policies

In the piggyback model (alternative 1), all MIOs and MFOs travel
through the network. End-to-middle and middle-to-end encryption can
be used to prevent unauthorized network entities from examining them.
However, even with encryption, UAs need to disclose MIOs to all
policy-enabled proxies even if they are located in remote networks.
Moreover, proxies must disclose their policies to UAs in remote
networks and to other proxies that are interested in examining or
modifying the same aspect of a session description.

In the piggyback model (alternative 2), the MIOs and MFOs are
piggybacked on messaged which are destined at entities outside of the
local network. By rejecting messages and removing headers, the
proxies keep the MIOs and MFOs within the local network.
End-to-middle and middle-to-end encryption can be used to further
protect the MIOs and MFOs so that they can’t be examined by
unauthorized entities even if these packets accidentally leave the
local network.

In the separate channel model, UAs exchange MIOs and MFOs on a
separate channel directly with the policy server. UAs can therefore
disclose different aspects of a session description to each server.
Each server can return policies directly to the UA. End-to-end
encryption can be used to secure these transmissions. If UA and the
policy server are in the same network, the MIOs and MFOs never exit
that network.

2 UA Support of Policies

In the piggyback model (alternative 1) both UAs need to support
policies, even if they are only used in one of the domains.

In the piggyback model (alternative 2) and the separate channel
model, it is sufficient if one of the UAs supports policies.

3 Re-Use of Document Formats and Mechanisms
The piggyback model (both alternatives) requires that proxy servers

insert MFOs into SIP messages. The current standards require the use
of headers for this purpose, since a proxy is not allowed to add body

Hilt & Camarillo Expires January 8, 2005 [Page 13]

Internet-Draft Session Policy Scenarios July 2004

elements to a message. As a consequence, standard document formats
that could be used in MIME bodies can’t be used for MFOs in the
piggyback model. In addition, S/MIME encryption doesn’t apply.

In the separate channel model, MIOs and MFOs are exchanged over a
separate channel which is potentially able to carry arbitrary
documents. This enables the use of existing document formats for MIOs
and MFOs and the use of encryption. In particular, the document
formats that are defined for session-independent policies [2] can be
re-used for session-specific policies. This greatly simplifies UAs
which support both types of policies.

5.4 Asynchronous Policies

Some scenarios require that a policy server can update the session
policies at any time for ongoing sessions.

In the piggyback model (both alternatives), the exchange of policies
is tied to UA initiated offer/answer exchanges of session
descriptions (i.e. INVITE, re-INVITE or UPDATE). For this reason, a
proxy can’t introduce new policies at arbitrary times during a
session.

In the separate channel model, the policy server can send updates for
the current policy at any time, independent of messages exchanged
between the UAs.

5.5 Separation of Tasks

It is generally desirable to develop separate solutions for different
tasks. In the piggyback model (both alternatives), the task of
exchanging MIOs and MFOs between UA and policy server is coupled to
the task of exchanging the offer/answer between UAC and UAS. This
increases the complexity of call flows, in particular if the
transmission of MIO/MFOs is spread across different SIP transactions,
and leads lower re-usability of solutions for each task.

The separate channel model provides a clear separation of tasks.
6 References

[1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997.

[2] Hilt, V., Camarillo, G. and J. Rosenberg, "Session-Independent
Policies for the Session Initiation Protocol (SIP)",
draft-hilt-sipping-session-indep-policy-01 (work in progress),
May 2004.

Hilt & Camarillo Expires January 8, 2005 [Page 14]

Internet-Draft Session Policy Scenarios

July 2004

[3] Hilt, V. and J. Rosenberg, "A Framework for Session-Specific

Intermediary Session Policies in SIP",

draft-hilt-sipping-session-spec-policy-00 (work in progress),

September 2003.

[4] Petrie, D., "A Framework for Session Initiation Protocol User
Agent Profile Delivery", draft-ietf-sipping-config-framework-03

(work in progress), May 2004.

[5] Rosenberg, J., "Requirements for Session Policy for the Session

Initiation Protocol (SIp) ",

draft-ietf-sipping-session-policy-reqg-01 (work in progress),

February 2004.

[6] Srisuresh, P., Kuthan, J., Rosenberg, J., Molitor,

and A.

Rayhan, "Middlebox communication architecture and framework",

RFC 3303, August 2002.

Authors’ Addresses

Volker Hilt

Bell Labs/Lucent Technologies

101 Crawfords Corner Rd

Holmdel, NJ 07733

USA

EMail: volkerh@bell-labs.com

Gonzalo Camarillo

Ericsson

Hirsalantie 11

Jorvas 02420

Finland

EMail: Gonzalo.Camarillo@ericsson.com

Appendix A. Acknowledgements

Many thanks to Jonathan Rosenberg and Allison Mankin.

Hilt & Camarillo Expires January 8, 2005

[Page 15]

Internet-Draft Session Policy Scenarios July 2004
Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the IETF’s procedures with respect to rights in IETF Documents can
be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.

Disclaimer of Validity

This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement
Copyright (C) The Internet Society (2004). This document is subject
to the rights, licenses and restrictions contained in BCP 78, and
except as set forth therein, the authors retain all their rights.
Acknowledgment
Funding for the RFC Editor function is currently provided by the

Internet Society.

Hilt & Camarillo Expires January 8, 2005 [Page 16]

SIPPING J. Rosenberg
Internet-Draft dynamicsoft
Expires: January 17, 2005 July 19, 2004

A Framework for Application Interaction in the Session Initiation
Protocol (SIP)
draft-ietf-sipping-app-interaction-framework-02

Status of this Memo

By submitting this Internet-Draft, I certify that any applicable
patent or other IPR claims of which I am aware have been disclosed,
and any of which I become aware will be disclosed, in accordance with
RFC 3668.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as
Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/lid-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on January 17, 2005.
Copyright Notice

Copyright (C) The Internet Society (2004). All Rights Reserved.
Abstract

This document describes a framework for the interaction between users
and Session Initiation Protocol (SIP) based applications. By
interacting with applications, users can guide the way in which they
operate. The focus of this framework is stimulus signaling, which
allows a user agent to interact with an application without knowledge
of the semantics of that application. Stimulus signaling can occur
to a user interface running locally with the client, or to a remote
user interface, through media streams. Stimulus signaling
encompasses a wide range of mechanisms, ranging from clicking on

Rosenberg Expires January 17, 2005 [Page 1]

Internet-Draft App Interaction Framework

July 2004

hyperlinks, to pressing buttons, to traditional Dual Tone Multi
Frequency (DTMF) input. In all cases, stimulus signaling is

supported through the use of markup languages,
in this framework.

Table of Contents

which play a key role

1. Introduction 4
2. Definitions . 5
3. A Model for Appllcatlon Interactlon 8
3.1 Functional vs. Stimulus 9
3.2 Real-Time vs. Non-Real Time 10
3.3 Client-Local vs. Client-Remote e 10
3.4 Presentation Capable vs. Presentation Free B A
4. Interaction Scenarios on Telephones 13
4.1 Client Remote 13
4.2 Client Local 13
4.3 Flip-Flop 14
5. Framework Overview 16
6. Deployment Topologies 19
6.1 Third Party Appllcatlon 19
6.2 Co-Resident Application S
6.3 Third Party Application and User DeVLCe Proxy . -20
6.4 Proxy Application 22
7. Application Behavior . 23
7.1 Client Local Interfaces 23
7.1.1 Discovering Capabilities . e 23
7.1.2 Pushing an Initial Interface Component e e e o .o .23
7.1.3 Updating an Interface Component 25
7.1.4 Terminating an Interface Component 26

7.2 Client Remote Interfaces . e 26
7.2.1 Originating and Terminating Appllcatlons e e e e e 2T
7.2.2 Intermediary Applications 27

8. User Agent Behavior 28
8.1 Advertising Capabllltles . 28
8.2 Receiving User Interface Components . . 28
8.3 Mapping User Input to User Interface Components30
8.4 Receiving Updates to User Interface Components 30
8.5 Terminating a User Interface Component 31
9. Inter-Application Feature Interaction 32
9.1 Client Local UI 32
9.2 Client-Remote UI . 33
10. Intra Application Feature Interactlon 34
11. Example Call Flow 35
12. Security Considerations 40
13. IANA Considerations 41
13.1 SIP Option Tag . 41
13.2 Header Field Parameter 41

Rosenberg Expires January 17, 2005

[Page 2]

Internet-Draft App Interaction Framework July 2004
14. Contributors L. . . .0 e 42
15. References« 4 o o e e e e e e ... 43
15.1 Normative References « . « « <« « « . . . 43
15.2 Informative References « « < « 43

Author’s Address« .« . 4 v e e e e e e e e e e e ... 4d
Intellectual Property and Copyright Statements 45
Rosenberg Expires January 17, 2005 [Page 3]

Internet-Draft App Interaction Framework July 2004

1. Introduction

The Session Initiation Protocol (SIP) [1l] provides the ability for
users to initiate, manage, and terminate communications sessions.
Frequently, these sessions will involve a SIP application. A SIP
application is defined as a program running on a SIP-based element
(such as a proxy or user agent) that provides some value-added
function to a user or system administrator. Examples of SIP
applications include pre-paid calling card calls, conferencing, and
presence-based [11] call routing.

In order for most applications to properly function, they need input
from the user to guide their operation. As an example, a pre-paid
calling card application requires the user to input their calling
card number, their PIN code, and the destination number they wish to
reach. The process by which a user provides input to an application
is called "application interaction”.

Application interaction can be either functional or stimulus.
Functional interaction requires the user device to understand the
semantics of the application, whereas stimulus interaction does not.
Stimulus signaling allows for applications to be built without
requiring modifications to the user device. Stimulus interaction is
the subject of this framework. The framework provides a model for
how users interact with applications through user interfaces, and how
user interfaces and applications can be distributed throughout a
network. This model is then used to describe how applications can
instantiate and manage user interfaces.

Rosenberg Expires January 17, 2005 [Page 4]

Internet-Draft App Interaction Framework July 2004

2. Definitions

SIP Application: A SIP application is defined as a program running on
a SIP-based element (such as a proxy or user agent) that provides
some value-added function to a user or system administrator.
Examples of SIP applications include pre-paid calling card calls,
conferencing, and presence-based [11] call routing.

Application Interaction: The process by which a user provides input
to an application.

Real-Time Application Interaction: Application interaction that takes
place while an application instance is executing. For example,
when a user enters their PIN number into a pre-paid calling card
application, this is real-time application interaction.

Non-Real Time Application Interaction: Application interaction that
takes place asynchronously with the execution of the application.
Generally, non-real time application interaction is accomplished
through provisioning.

Functional Application Interaction: Application interaction is
functional when the user device has an understanding of the
semantics of the interaction with the application.

Stimulus Application Interaction: Application interaction is
considered to be stimulus when the user device has no
understanding of the semantics of the interaction with the
application.

User Interface (UI): The user interface provides the user with
context in order to make decisions about what they want. The user
enters information into the user interface. The user interface
interprets the information, and passes it to the application.

User Interface Component: A piece of user interface which operates
independently of other pieces of the user interface. For example,
a user might have two separate web interfaces to a pre-paid
calling card application - one for hanging up and making another
call, and another for entering the username and PIN.

User Device: The software or hardware system that the user directly
interacts with in order to communicate with the application. An
example of a user device is a telephone. Another example is a PC
with a web browser.

User Device Proxy: A software or hardware system that a user
indirectly interacts through in order to communicate with the
application. This indirection can be through a network. An
example is a gateway from IP to the Public Switched Telephone
Network (PSTN). It acts a user device proxy, acting on behalf of
the user on the circuit network.

User Input: The "raw" information passed from a user to a user
interface. Examples of user input include a spoken word or a
click on a hyperlink.

Rosenberg Expires January 17, 2005 [Page 5]

Internet-Draft App Interaction Framework July 2004

Client-Local User Interface: A user interface which is co-resident
with the user device.

Client-Remote User Interface: A user interface which executes
remotely from the user device. 1In this case, a standardized
interface is needed between the user device and the user
interface. Typically, this is done through media sessions -
audio, video, or application sharing.

Media Interaction: A means of separating a user and a user interface
by connecting them with media streams.

Interactive Voice Response (IVR): An IVR is a type of user interface
that allows users to speak commands to the application, and hear
responses to those commands prompting for more information.

Prompt-and-Collect: The basic primitive of an IVR user interface.
The user is presented with a voice option, and the user speaks
their choice.

Barge-In: In an IVR user interface, a user is prompted to enter some
information. With some prompts, the user may enter the requested
information before the prompt completes. 1In that case, the prompt
ceases. The act of entering the information before completion of
the prompt is referred to as barge-in.

Focus: A user interface component has focus when user input is
provided fed to it, as opposed to any other user interface
components. This is not to be confused with the term focus within
the SIP conferencing framework, which refers to the center user
agent in a conference [13].

Focus Determination: The process by which the user device determines
which user interface component will receive the user input.

Focusless User Interface: A user interface which has no ability to
perform focus determination. An example of a focusless user
interface is a keypad on a telephone.

Presentation Capable UI: A user interface which can prompt the user
with input, collect results, and then prompt the user with new
information based on those results.

Presentation Free UIl: A user interface which cannot prompt the user
with information.

Feature Interaction: A class of problems which result when multiple
applications or application components are trying to provide
services to a user at the same time.

Inter-Application Feature Interaction: Feature interactions that
occur between applications.

DIMF: Dual-Tone Multi-Frequency. DTMF refer to a class of tones
generated by circuit switched telephony devices when the user
presses a key on the keypad. As a result, DTMF and keypad input
are often used synonymously, when in fact one of them (DTMF) is
merely a means of conveying the other (the keypad input) to a
client-remote user interface (the switch, for example).

Rosenberg Expires January 17, 2005 [Page 6]

Internet-Draft App Interaction Framework July 2004

Application Instance: A single execution path of a SIP application.

Originating Application: A SIP application which acts as a UAC,
making a call on behalf of the user.

Terminating Application: A SIP application which acts as a UAS,
answering a call generated by a user. IVR applications are
terminating applications.

Intermediary Application: A SIP application which is neither the
caller or callee, but rather, a third party involved in a call.

Rosenberg Expires January 17, 2005 [Page 7]

Internet-Draft App Interaction Framework July 2004

3. A Model for Application Interaction

+———+ +——+ +———+ +———+
		U	[U		A	
	Input	s	Input	s	Results	p
	- >	e	——————— >l e	———=m—— >	p	
U		r		r	[1	
s		[1			
e		D	[T		c	
r	Output	e	Output	£	Update	a
	<————————-	v	<————————- [a	<.coooooo..	€t	
.	1	¢	1]			
		c		e		o
		e				n
+-——+ +———+ +-——+ +———+

Figure 1: Model for Real-Time Interactions

Figure 1 presents a general model for how users interact with
applications. Generally, users interact with a user interface
through a user device. A user device can be a telephone, or it can
be a PC with a web browser. Its role is to pass the user input from
the user, to the user interface. The user interface provides the
user with context in order to make decisions about what they want.
The user enters information into the user interface. The user
interface interprets the information, and passes it as a user
interface event to the application. The application may be able to
modify the user interface based on this event. Whether or not this
is possible depends on the type of user interface.

User interfaces are fundamentally about rendering and interpretation.
Rendering refers to the way in which the user is provided context.
This can be through hyperlinks, images, sounds, videos, text, and so
on. Interpretation refers to the way in which the user interface
takes the "raw" data provided by the user, and returns the result to
the application as a meaningful event, abstracted from the
particulars of the user interface. As an example, consider a
pre-paid calling card application. The user interface worries about
details such as what prompt the user is provided, whether the voice
is male or female, and so on. It is concerned with recognizing the
speech that the user provides, in order to obtain the desired
information. In this case, the desired information is the calling
card number, the PIN code, and the destination number. The
application needs that data, and it doesn’t matter to the application
whether it was collected using a male prompt or a female one.

Rosenberg Expires January 17, 2005 [Page 8]

Internet-Draft App Interaction Framework July 2004

User interfaces generally have real-time requirements towards the
user. That is, when a user interacts with the user interface, the
user interface needs to react quickly, and that change needs to be
propagated to the user right away. However, the interface between
the user interface and the application need not be that fast. Faster
is better, but the user interface itself can frequently compensate
for long latencies there. 1In the case of a pre-paid calling card
application, when the user is prompted to enter their PIN, the prompt
should generally stop immediately once the first digit of the PIN is
entered. This is referred to as barge-in. After the user-interface
collects the rest of the PIN, it can tell the user to "please wait
while processing". The PIN can then be gradually transmitted to the
application. In this example, the user interface has compensated for
a slow UI to application interface by asking the user to wait.

The separation between user interface and application is absolutely
fundamental to the entire framework provided in this document. Its
importance cannot be overstated.

With this basic model, we can begin to taxonomize the types of
systems that can be built.

3.1 Functional vs. Stimulus

The first way to taxonomize the system is to consider the interface
between the UI and the application. There are two fundamentally
different models for this interface. 1In a functional interface, the
user interface has detailed knowledge about the application, and is,
in fact, specific to the application. The interface between the two
components is through a functional protocol, capable of representing
the semantics which can be exposed through the user interface.
Because the user interface has knowledge of the application, it can
be optimally designed for that application. As a result, functional
user interfaces are almost always the most user friendly, the fastest
and the most responsive. However, in order to allow interoperability
between user devices and applications, the details of the functional
protocols need to be specified in standards. This slows down
innovation and limits the scope of applications that can be built.

An alternative is a stimulus interface. 1In a stimulus interface, the
user interface is generic; totally ignorant of the details of the
application. Indeed, the application may pass instructions to the
user interface describing how it should operate. The user interface
translates user input into "stimulus" - which are data understood
only by the application, and not by the user interface. Because they
are generic, and because they require communications with the
application in order to change the way in which they render
information to the user, stimulus user interfaces are usually slower,

Rosenberg Expires January 17, 2005 [Page 9]

Internet-Draft App Interaction Framework July 2004

less user friendly, and less responsive than a functional
counterpart. However, they allow for substantial innovation in
applications, since no standardization activity is needed to build a
new application, as long as it can interact with the user within the
confines of the user interface mechanism. The web is an example of a
stimulus user interface to applications.

In SIP systems, functional interfaces are provided by extending the
SIP protocol to provide the needed functionality. For example, the
SIP caller preferences specification [14] provides a functional
interface that allows a user to request applications to route the
call to specific types of user agents. Functional interfaces are
important, but are not the subject of this framework. The primary
goal of this framework is to address the role of stimulus interfaces
to SIP applications.

3.2 Real-Time vs. Non-Real Time

Application interaction systems can also be real-time or
non-real-time. Non-real interaction allows the user to enter
information about application operation asynchronously with its
invocation. Frequently, this is done through provisioning systems.
As an example, a user can set up the forwarding number for a
call-forward on no-answer application using a web page. Real-time
interaction requires the user to interact with the application at the
time of its invocation.

3.3 Client-Local vs. Client-Remote

Another axis in the taxonomization is whether the user interface is
co-resident with the user device (which we refer to as a client-local
user interface), or the user interface runs in a host separated from
the client (which we refer to as a client-remote user interface). 1In
a client-remote user interface, there exists some kind of protocol
between the client device and the UI that allows the client to
interact with the user interface over a network.

The most important way to separate the UI and the client device is
through media interaction. 1In media interaction, the interface
between the user and the user interface is through media - audio,
video, messaging, and so on. This is the classic mode of operation
for VoiceXML [4], where the user interface (also referred to as the
voice browser) runs on a platform in the network. Users communicate
with the voice browser through the telephone network (or using a SIP
session). The voice browser interacts with the application using
HTTP to convey the information collected from the user.

In the case of a client-local user interface, the user interface runs

Rosenberg Expires January 17, 2005 [Page 10]

Internet-Draft App Interaction Framework July 2004

co-located with the user device. The interface between them is
through the software that interprets the users input and passes them
to the user interface. The classic example of this is the web. 1In
the web, the user interface is a web browser, and the interface is
defined by the HTML document that it’s rendering. The user interacts
directly with the user interface running in the browser. The results
of that user interface are sent to the application (running on the
web server) using HTTP.

It is important to note that whether or not the user interface is
local or remote (in the case of media interaction) is not a property
of the modality of the interface, but rather a property of the
system. As an example, it is possible for a web-based user interface
to be provided with a client-remote user interface. In such a
scenario, video and application sharing media sessions can be used
between the user and the user interface. The user interface, still
guided by HTML, now runs "in the network", remote from the client.
Similarly, a VoiceXML document can be interpreted locally by a client
device, with no media streams at all. Indeed, the VoiceXML document
can be rendered using text, rather than media, with no impact on the
interface between the user interface and the application.

It is also important to note that systems can be hybrid. In a hybrid
user interface, some aspects of it (usually those associated with a
particular modality) run locally, and others run remotely.

3.4 Presentation Capable vs. Presentation Free

A user interface can be capable of presenting information to the user
(a presentation capable UI), or it can be capable only of collecting
user input (a presentation free UI). These are very different types
of user interfaces. A presentation capable UI can provide the user
with feedback after every input, providing the context for collecting
the next input. As a result, presentation capable user interfaces
require an update to the information provided to the user after each
input. The web is a classic example of this. After every input
(i.e., a click), the browser provides the input to the application
and fetches the next page to render. 1In a presentation free user
interface, this is not the case. Since the user is not provided with
feedback, these user interfaces tend to merely collect information as
its entered, and pass it to the application.

Another difference is that a presentation-free user interface cannot
support the concept of a focus. As a result, if multiple
applications wish to gather input from the user, there is no way for
the user to select which application the input is destined for. The
input provided to applications through presentation-free user
interfaces is more of a broadcast or notification operation, as a

Rosenberg Expires January 17, 2005 [Page 11]

Internet-Draft App Interaction Framework July 2004

result.

Rosenberg Expires January 17, 2005 [Page 12]

Internet-Draft App Interaction Framework July 2004

4. 1Interaction Scenarios on Telephones
In this section, we applied the model of Section 3 to telephones.

In a traditional telephone, the user interface consists of a 12-key
keypad, a speaker, and a microphone. Indeed, from here forward, the
term "telephone" is used to represent any device that meets, at a
minimum, the characteristics described in the previous sentence.
Circuit-switched telephony applications are almost universally
client-remote user interfaces. In the Public Switched Telephone
Network (PSTN), there is usually a circuit interface between the user
and the user interface. The user input from the keypad is conveyed
used Dual-Tone Multi-Frequency (DTMF), and the microphone input as
Pulse Code Modulated (PCM) encoded voice.

In an IP-based system, there is more variability in how the system
can be instantiated. Both client-remote and client-local user
interfaces to a telephone can be provided.

In this framework, a PSTN gateway can be considered a User Device
Proxy. It is a proxy for the user because it can provide, to a user
interface on an IP network, input taken from a user on a circuit
switched telephone. The gateway may be able to run a client-local
user interface, just as an IP telephone might.

4.1 Client Remote

The most obvious instantiation is the "classic" circuit-switched
telephony model. 1In that model, the user interface runs remotely
from the client. The interface between the user and the user
interface is through media, set up by SIP and carried over the Real
Time Transport Protocol (RTP) [16]. The microphone input can be
carried using any suitable voice encoding algorithm. The keypad
input can be conveyed in one of two ways. The first is to convert
the keypad input to DTMF, and then convey that DTMF using a suitance
encoding algorithm for it (such as PCMU). An alternative, and
generally the preferred approach, is to transmit the keypad input
using RFC 2833 [17], which provides an encoding mechanism for
carrying keypad input within RTP.

In this classic model, the user interface would run on a server in
the IP network. It would perform speech recognition and DTMF
recognition to derive the user intent, feed them through the user
interface, and provide the result to an application.

4.2 Client Local

An alternative model is for the entire user interface to reside on

Rosenberg Expires January 17, 2005 [Page 13]

Internet-Draft App Interaction Framework July 2004

the telephone. The user interface can be a VoiceXML browser, running
speech recognition on the microphone input, and feeding the keypad
input directly into the script. As discussed above, the VoiceXML
script could be rendered using text instead of voice, if the
telephone had a textual display.

For simpler phones without a display, the user interface can be
described by a Keypad Markup Language request document [7]. As the
user enters digits in the keypad, they are passed to the user
interface, which generates user interface events that can be
transported to the application.

4.3 Flip-Flop

A middle-ground approach is to flip back and forth between a
client-local and client-remote user interface. Many voice
applications are of the type which listen to the media stream and
wait for some specific trigger that kicks off a more complex user
interaction. The long pound in a pre-paid calling card application
is one example. Another example is a conference recording
application, where the user can press a key at some point in the call
to begin recording. When the key is pressed, the user hears a
whisper to inform them that recording has started.

The ideal way to support such an application is to install a
client-local user interface component that waits for the trigger to
kick off the real interaction. Once the trigger is received, the
application connects the user to a client-remote user interface that
can play announements, collect more information, and so on.

The benefit of flip-flopping between a client-local and client-remote
user interface is cost. The client-local user interface will
eliminate the need to send media streams into the network Jjust to
wait for the user to press the pound key on the keypad.

The Keypad Markup Language (KPML) was designed to support exactly
this kind of need [7]. It models the keypad on a phone, and allows
an application to be informed when any sequence of keys have been
pressed. However, KPML has no presentation component. Since user
interfaces generally require a response to user input, the
presentation will need to be done using a client-remote user
interface that gets instantiated as a result of the trigger.

It is tempting to use a hybrid model, where a prompt-and-collect
application is implemented by using a client-remote user interface
that plays the prompts, and a client-local user interface, described
by KPML, that collects digits. However, this only complicates the
application. Firstly, the keypad input will be sent to both the

Rosenberg Expires January 17, 2005 [Page 14]

Internet-Draft App Interaction Framework July 2004

media stream and the KPML user interface. This requires the
application to sort out which user inputs are duplicates, a process
that is very complicated. Secondly, the primary benefit of KPML is
to avoid having a media stream towards a user interface. However,

there is already a media stream for the prompting, so there is no
real savings.

Rosenberg Expires January 17, 2005 [Page 15]

Internet-Draft App Interaction Framework July 2004

5.

Framework Overview

In this framework, we use the term "SIP application” to refer to a
broad set of functionality. A SIP application is a program running
on a SIP-based element (such as a proxy or user agent) that provides
some value-added function to a user or system administrator. SIP
applications can execute on behalf of a caller, a called party, or a
multitude of users at once.

Each application has a number of instances that are executing at any
given time. An instance represents a single execution path for an
application. Each instance has a well defined lifecycle. It is
established as a result of some event. That event can be a SIP
event, such as the reception of a SIP INVITE request, or it can be a
non-SIP event, such as a web form post or even a timer. Application
instances also have a specific end time. Some instances have a
lifetime that is coupled with a SIP transaction or dialog. For
example, a proxy application might begin when an INVITE arrives, and
terminate when the call is answered. Other applications have a
lifetime that spans multiple dialogs or transactions. For example, a
conferencing application instance may exist so long as there are any
dialogs connected to it. When the last dialog terminates, the
application instance terminates. Other applications have a liftime
that is completely decoupled from SIP events.

It is fundamental to the framework described here that multiple
application instances may interact with a user during a single SIP
transaction or dialog. Each instance may be for the same
application, or different applications. Each of the applications may
be completely independent, in that they may be owned by different
providers, and may not be aware of each others existence. Similarly,
there may be application instances interacting with the caller, and
instances interacting with the callee, both within the same
transaction or dialog.

The first step in the interaction with the user is to instantiate one
or more user interface components for the application instance. A
user interface component is a single piece of the user interface that
is defined by a logical flow that is not synchronously coupled with
any other component. In other words, each component runs more or
less independently.

A user interface component can be instantiated in one of the user
agents in a dialog (for a client-local user interface), or within a
network element (for a client-remote user interface). If a
client-local user interface is to be used, the application needs to
determine whether or not the user agent is capable of supporting a
client-local user interface, and in what format. In this framework,

Rosenberg Expires January 17, 2005 [Page 16]

Internet-Draft App Interaction Framework July 2004

all client-local user interface components are described by a markup
language. A markup language describes a logical flow of presentation
of information to the user, collection of information from the user,
and transmission of that information to an application. Examples of
markup languages include HTML, WML, VoiceXML, and the Keypad Markup
Language (KPML) [7].

Unlike an application instance, which has very flexible lifetimes, a
user interface component has a very fixed lifetime. A user interface
component is always associated with a dialog. The user interface
component can be created at any point after the dialog (or early
dialog) is created. However, the user interface component terminates
when the dialog terminates. The user interface component can be
terminated earlier by the user agent, and possibly by the
application, but its lifetime never exceeds that of its associated
dialog.

There are two ways to create a client local interface component. For
interface components that are presentation capable, the application
sends a REFER [6] request to the user agent. The Refer-To header
field contains an HTTP URI that points to the markup for the user
interface. For interface components that are presentation free (such
as those defined by KPML), the application sends a SUBSCRIBE request
to the user agent. The body of the SUBSCRIBE request contains a
filter, which, in this case, is the markup that defines when
information is to be sent to the application in a NOTIFY.

If a user interface component is to be instantiated in the network,
there is no need to determine the capabilities of the device on which
the user interface is instantiated. Presumably, it is on a device on
which the application knows a UI can be created. However, the
application does need to connect the user device to the user
interface. This will require manipulation of media streams in order
to establish that connection.

The interface between the user interface component and the
application depends on the type of user interface. For presentation
capable user interfaces, such as those described by HTML and
VoiceXML, HTTP form POST operations are used. For presentation free
user interfaces, a SIP NOTIFY is used. The differing needs and
capabilities of these two user interfaces, as described in Section
3.4, is what drives the different choices for the interactions.
Since presentation capable user interfaces require an update to the
presentation every time user data is entered, they are a good match
for HITP. Since presentation free user interfaces merely transmit
user input to the application, a NOTIFY is more appropriate.

Indeed, for presentation free user interfaces, there are two

Rosenberg Expires January 17, 2005 [Page 17]

Internet-Draft App Interaction Framework July 2004

different modalities of operation. The first is called "one shot".
In the one-shot role, the markup waits for a user to enter some
information, and when they do, reports this event to the application.
The application then does something, and the markup is no longer
used. In the other modality, called "monitor", the markup stays
permanently resident, and reports information back to an application
until termination of the associated dialog.

Rosenberg Expires January 17, 2005 [Page 18]

Internet-Draft App Interaction Framework July 2004

6.

6.

6.

Deployment Topologies

This section presents some of the network topologies in which this
framework can be instantiated.

1 Third Party Application

SUB/ / REFER/
NOT / HTTP

/
fmmm + SIP (INVITE) e +
| ULl Ao X |
[oovoontn | | SIP |
| User | RTP | UA |
| Device B-——————————————————- Y |
to—— - + +————— +

Figure 2: Third Party Topology

In this topology, the application that is interested in interacting
with the users exists outside of the SIP dialog between the user
agents. In that case, the application learns about the initiation
and termination of the dialog, along with the dialog identifiers,
through some out of band means. One such possibility is the dialog
event package [15]. Dialog information is only revealed to trusted
parties, so the application would need to be trusted by one of the
users in order to obtain this information.

At any point during the dialog, the application can instantiate user

interface components on the user device of the caller or callee. It

can do this either using SUBSCRIBE or REFER, depending on the type of
user interface (presentation capable or presentation free).

2 Co-Resident Application

Rosenberg Expires January 17, 2005 [Page 19]

Internet-Draft App Interaction Framework July 2004

tm——— + SIP (INVITE) e +
| User A-———————————————————— X SIP |
| Device | RTP | UA |
[P B-—————————————— - Y |
| | SUB/NOT | App) |
| UI Al —— X! |
Fo———— + REFER/HTTP fo—— +

Figure 3: Co-Resident Topology

In this deployment topology, the application is co-resident with one
of the user agents (the one on the right in the picture above). This
application can install client-local user interface components on the
other user agent, which is acting as the user device. These
components can be installed using either SUBSCRIBE, for presentation
free user interfaces, or REFER, for presentation capable ones.

If the application resides in the called party, it is called a
terminating application. If it resides in the calling party, it is
called an originating application.

This kind of topology is common in protocol converter and gateway
applications.

.3 Third Party Application and User Device Proxy

SUB/ / REFER/
NOT / HTTP

/

+———— + SIP +——-M-————+ SIP - +
| Vo C A X |
| SIP | | Ul | | SIP |
| UAa | RTP | | RTP | UADb |
| W D B Y |
+-——— + o + o +
User User
Device Device

Proxy

Figure 4: User Device Proxy Topology

In this deployment topology, there is a third party application as in

Rosenberg Expires January 17, 2005 [Page 20]

Internet-Draft App Interaction Framework July 2004

Section 6.1. However, instead of installing a user interface
component on the end user device, the component is installed in an
intermediate device, known as a User Device Proxy. From the
perspective of the actual user device (on the left), the User Device
Proxy is a client remote user interface. As such, media, typically
transported using RTP (including RFC 2833 for carrying user input),
is sent from the user device to the client remote user interface on
the User Device Proxy. As far as the application is concerned, it is
installing what it thinks is a client local user interface on the
user device, but it happens to be on a user device proxy which looks
like the user device to the application.

The user device proxy will need to terminate and re-originate both
signaling (SIP) and media traffic towards the actual peer in the
conversation. The User Device Proxy is a media relay in the
terminology of RFC 3550 [16]. The User Device Proxy will need to
monitor the media streams associated with each dialog, in order to
convert user input received in the media stream to events reported to
the user interface. This can pose a challenge in multi-media
systems, where it may be unclear on which media stream the user input
is being sent. As discussed in RFC 3264 [18], if a user agent has a
single media source and is supporting multiple streams, it is
supposed to send that source to all streams. In cases where there
are multiple sources, the mapping is a matter of local policy. 1In
the absence of a way to explicitly identify or request which sources
map to which streams, the user device proxy will need to do the best
job it can. This specification RECOMMENDS that the User Device Proxy
monitor the first stream (defined in terms of ordering of media
sessions within a session description). As such, user agents SHOULD
send their user input on the first stream, absent a policy to direct
it otherwise.

Rosenberg Expires January 17, 2005 [Page 21]

Internet-Draft App Interaction Framework July 2004

6.4 Proxy Application

to—— +
SUB/NOT | App | SUB/NOT
o > | | <m———— +
REFER/HTTP [oo e e ee e	REFER/HTTP	
	SIP	
	Proxy	
tomm +		
\Y ~	\Y%	
e +		e +
Ul	INVITE	
	-——————- + t-— >	
[P	[oee i i	
SIP S	SIP	
UA		UA
- + RTP o +
User Device User Device

Figure 5: Proxy Application Topology

In this topology, the application is co-resident with a transaction
stateful, record-routing proxy server on the call path between two
user devices. The application uses SUBSCRIBE or REFER to install
user interface components on one or both user devices.

This topology is common in routing applications, such as a
web-assisted call routing application.

Rosenberg Expires January 17, 2005 [Page 22]

Internet-Draft App Interaction Framework July 2004

7. Application Behavior

The behavior of an application within this framework depends on
whether it seeks to use a client-local or client-remote user
interface.

7.1 Client Local Interfaces

One key component of this framework is support for client local user
interfaces.

7.1.1 Discovering Capabilities

A client local user interface can only be instantiated on a user
agent if the user agent supports that type of user interface
component. Support for client local user interface components is
declared by both the UAC and a UAS in its Accept, Allow, Contact and
Allow-Event header fields of dialog-initiating requests and
responses. If the Allow header field indicates support for the SIP
SUBSCRIBE method, and the Allow-Event header field indicates support
for the kpml package [7], and the Supported header field indicates
that its Contact URI is a GRUU [8], it means that the UA can
instantiate presentation free user interface components. In this
case, the application MAY push presentation free user interface
components according to the rules of Section 7.1.2. The specific
markup languages that can be supported are indicated in the Accept
header field.

If the Allow header field indicates support for the SIP REFER method,
the Supported header field indicates support for the "refer-context"
extension described below, and the Contact header field contains UA
capabilities [5] that indicate support for the HTTP URI scheme, it
means that the UA supports presentation capable user interface
components. In this case, the application MAY push presentation
capable user interface components to the client according to the
rules of Section 7.1.2. The specific markups that are supported are
indicated in the Accept header field.

A third party application that is not present on the call path will
not be privy to these headers in the dialog requests that pass by.
As such, it will need to obtain this capability information in other
ways. One way i1s through the registration event package [19], which
can contain user agent capability information provided in REGISTER
requests [5].

7.1.2 Pushing an Initial Interface Component

Generally, we anticipate that interface components will need to be

Rosenberg Expires January 17, 2005 [Page 23]

Internet-Draft App Interaction Framework July 2004

created at various different points in a SIP session. Clearly, they
will need to be pushed during session setup, or after the session is
established. A user interface component is always associated with a
specific dialog, however.

An application MUST NOT attempt to push a user interface component to
a user agent until it has determined that the user agent has the
neccesary capabilities and a dialog has been created. In the case of
a UAC, this means that an application MUST NOT push a user interface
component for an INVITE initiated dialog until the application has
seen a request confirming the receipt of a dialog-creating response.
This could be an ACK for a 200 OK, or a PRACK for a provisional
response [2]. For SUBSCRIBE initiated dialogs, it MUST NOT push a
user interface component until the application has seen a 200 OK to
the NOTIFY request. For a user interface component on a UAS, the
application MUST NOT push a user interface component for an INVITE
initiated dialog until it has seen a dialog-creating response from
the UAS. For a SUBSCRIBE initiated dialog, it MUST NOT push a user
interface component until it has seen a NOTIFY request from the
notifier.

To create a presentation capable UI component on the UA, the
application sends a REFER request to the UA. This REFER MUST be sent
to the Globally Routable UA URI (GRUU) [8] advertised by that UA in
the Contact header field of the dialog initiating request or response
sent by that UA. Note that this REFER request creates a separate
dialog between the application and the UA. The Refer-To header field
of the REFER request MUST contain an HTTP URI that references the
markup document to be fetched.

Furthermore, it is essential for the REFER request to be correlated
with the dialog to which the user interface component will be
associated. This is necessary for authorization and for terminating
the user interface components when the dialog terminates. To provide
this context, this specification defines the "context" header field
parameter as an extension to the Refer-To heder field. The grammar
for this header field parameter is:

"context" EQUAL DQUOTE local-tag "," remote-tag
"," callid DQUOTE ; callid defined in RFC 3261
;7 NOTE: any DQUOTEs inside callid MUST be escaped
;7 using quoted pair

refer-to-ctxt

local-tag = token
remote-tag = token
Refer-To = ("Refer-To" / "r") HCOLON (name-addr / addr-spec) *

(SEMI (generic-param / refer-to-ctxt))

Rosenberg Expires January 17, 2005 [Page 24]

Internet-Draft App Interaction Framework July 2004

The application MUST include the context header field parameter in
the REFER request. The remote-tag MUST be set to the remote tag of
the dialog as seen by the user device. The local-tag MUST be set to
the local tag of the dialog as seen by the user device. The callid
MUST be set to the Call-ID of the dialog as seen by the device.

Since the callid grammar allows it to contain double quotes, any such
double quotes MUST be represented with a quoted pair.

Since the "context" parameter in the Refer-To header field must be
understood by the UA to process the request, this specification
defines a new SIP option tag, "refer-context". A REFER request
generated by an application MUST include a Require header field with
this option tag value. Fortunately, the application will know ahead
of time whether this extension is supported, as discussed in Section
7.1.1.

To create a presentation free user interface component, the
application sends a SUBSCRIBE request to the UA. The SUBSCRIBE MUST
be sent to the GRUU advertised by the UA. This SUBSCRIBE request
creates a separate dialog. The SUBSCRIBE request MUST use the KPML
[7] event package. The Event header field MUST contain parameters
which identify the particular dialog that the interface component is
being instantiated against. The body of the SUBSCRIBE request
contains the markup document that defines the conditions under which
the application wishes to be notified of user input.

In both cases, the REFER or SUBSCRIBE request SHOULD include a
display name in the From header field which identifies the name of
the application. For example, a prepaid calling card might include a
From header field which looks like:

From: "Prepaid Calling Card" <sip:prepaid@example.com>

Any of the SIP identity assertion mechanisms that have been defined,
such as [10] and [12] are applicable to these requests as well.

7.1.3 Updating an Interface Component

Once a user interface component has been created on a client, it can
be updated. The means for updating it depends on the type of UI
component.

Presentation capable UI components are updated using techniques
already in place for those markups. 1In particular, user input will
cause an HTTP POST operation to push the user input to the
application. The result of the POST operation is a new markup that
the UI is supposed to use. This allows the UI to updated in response

Rosenberg Expires January 17, 2005 [Page 25]

Internet-Draft App Interaction Framework July 2004

to user action. Some markups, such as HTML, provide the ability to
force a refresh after a certain period of time, so that the UI can be
updated without user input. Those mechanisms can be used here as
well. However, there is no support for an asynchronous push of an
updated UI component from the appliciation to the user agent. A new
REFER request to the same GRUU would create a new UI component rather
than updating any components already in place.

For presentation free UI, the story is different. The application
MAY update the filter at any time by generating a SUBSCRIBE refresh
with the new filter. The UA will immediately begin using this new
filter.

7.1.4 Terminating an Interface Component

User interface components have a well defined lifetime. They are
created when the component is first pushed to the client. User
interface components are always associated with the SIP dialog on
which they were pushed. As such, their lifetime is bound by the
lifetime of the dialog. When the dialog ends, so does the interface
component.

However, there are some cases where the application would like to
terminate the user interface component before its natural termination
point. For presentation capable user interfaces, this is not
possible. For presentation free user interfaces, the application MAY
terminate the component by sending a SUBSCRIBE with Expires equal to
zero. This terminates the subscription, which removes the UI
component.

A client can remove a UI component at any time. For presentation
capable UI, this is analagous to the user dismissing the web form
window. There is no mechanism provided for reporting this kind of
event to the application. The application MUST be prepared to time
out, and never receive input from a user. For presentation free user
interfaces, the UA can explicitly terminate the subscription. This
will result in the generation of a NOTIFY with a Subscription-State
header field equal to "terminated".

7.2 Client Remote Interfaces

As an alternative to, or in conjunction with client local user
interfaces, an application can make use of client remote user
interfaces. These user interfaces can execute co-resident with the
application itself (in which case no standardized interfaces between
the UI and the application need to be used), or it can run
separately. This framework assumes that the user interface runs on a
host that has a sufficient trust relationship with the application.

Rosenberg Expires January 17, 2005 [Page 26]

Internet-Draft App Interaction Framework July 2004

As such, the means for instantiating the user interface is not
considered here.

The primary issue is to connect the user device to the remote user
interface. Doing so requires the manipulation of media streams
between the client and the user interface. Such manipulation can
only be done by user agents. There are two types of user agent
applications within this framework - originating/terminating
applications, and intermediary applications.

7.2.1 Originating and Terminating Applications

Originating and terminating applications are applications which are
themselves the originator or the final recipient of a SIP invitation.
They are "pure" user agent applications - not back-to-back user
agents. The classic example of such an application is an interactive
voice response (IVR) application, which is typically a terminating
application. It is a terminating application because the user
explicitly calls it; i.e., it is the actual called party. An example
of an originating application is a wakeup call application, which
calls a user at a specified time in order to wake them up.

Because originating and terminating applications are a natural
termination point of the dialog, manipulation of the media session by
the application is trivial. Traditional SIP techniques for adding
and removing media streams, modifying codecs, and changing the
address of the recipient of the media streams, can be applied.
Similarly, the application can directly authenticate itself to the
user through S/MIME, since it is the peer UA in the dialog.

7.2.2 Intermediary Applications

Intermediary applications are, at the same time, more common than
originating/terminating applications, and more complex. Intermediary
applications are applications that are neither the actual caller or
called party. Rather, they represent a "third party" that wishes to
interact with the user. The classic example is the ubiquitous
pre-paid calling card application.

In order for the intermediary application to add a client remote user
interface, it needs to manipulate the media streams of the user agent
to terminate on that user interface. This also introduces a
fundamental feature interaction issue. Since the intermediary
application is not an actual participant in the call, how does the
user interact with the intermediary application, and its actual peer
in the dialog, at the same time? This is discussed in more detail in
Section 9.

Rosenberg Expires January 17, 2005 [Page 27]

Internet-Draft App Interaction Framework July 2004

8. User Agent Behavior
8.1 Advertising Capabilities

In order to participate in applications that make use of stimulus
interfaces, a user agent needs to advertise its interaction
capabilities.

If a user agent supports presentation capable user interfaces, it
MUST support the REFER method, along with the "context" extension
defined here. It MUST include, in all dialog initiating requests and
responses, an Allow header field that includes the REFER method and
and the Supported header field that includes the value
"refer—-context". Furthermore, the UA MUST support the SIP user agent
capabilities specification [5]. The UA MUST be capable of being
REFER’d to an HTTP URI. It MUST include, in the Contact header field
of its dialog initiating requests and responses, a "schemes" Contact
header field parameter include the http URI scheme. The UA MUST
include, in all dialog initiating requests and responses, an Accept
header field listing all of those markups supported by the UA. It is
RECOMMENDED that all user agents that support presentation capable
user interfaces support HTML.

If a user agent supports presentation free user interfaces, it MUST
support the SUBSCRIBE [3] method. It MUST support the KPML [7] event
package. It MUST include, in all dialog initiating requests and
responses, an Allow header field that includes the SUBSCRIBE method.
It MUST include, in all dialog initiating requests and responses, an
Allow-Events header field that lists the KPML event package. The UA
MUST include, in all dialog initiating requests and responses, an
Accept header field listing those event filters it supports. At a
minimum, a UA MUST support the "application/kpml-request+xml" MIME

type.

For either presentation free or presentation capable user interfaces,
the user agent MUST support the GRUU [8] specification. The Contact
header field in all dialog initiating requests and responses MUST
contain a GRUU. The UA MUST include a Supported header field which
contains the "gruu" option tag.

Because these headers are examined by proxies which may be executing
applications, a UA that wishes to support client local user
interfaces should not encrypt them.

8.2 Receiving User Interface Components

Once the UA has created a dialog (in either the early or confirmed
states), it MUST be prepared to receive a SUBSCRIBE or REFER request

Rosenberg Expires January 17, 2005 [Page 28]

Internet-Draft App Interaction Framework July 2004

against its GRUU. If the UA receives such a request prior to the
establishment of a dialog, the UA MUST reject the request.

A user agent SHOULD attempt to authenticate the sender of the
request. The sender will generally be an application, and therefore
the user agent is unlikely to ever have a shared secret with it,
making digest authentication useless. However, authenticated
identities can be obtained through other means, such as [10].

A user agent MAY have pre-defined authorization policies which permit
applications which have authenticated themselves with a particular
identity, to push user interface components. If such a set of
policies are present, it is checked first. If the application is
authorized, processing proceeds.

If the application has authenticated itself, but it is not explicitly
authorized or blocked, this specification RECOMMENDS that the
application be automatically authorized if it can prove that it was
either on the call path, or is trusted by one of the elements on the
call path. An application proves this to the user agent by
presenting it with the dialog identifiers in the SUBSCRIBE or REFER
request. In the case of SUBSCRIBE, those identifiers are present in
the Event header field [7]. 1In the case of REFER, those identifiers
are present in the "context" parameter of the Refer-To header field.

Because of the dialog identifiers serve as a tool for authorization,
a user agent compliant to this framework SHOULD use dialog
identifiers that are cryptographically random, with at least 128 bits
of randomness. It is recommended that this randomness be split
between the Call-ID and From header field tag in the case of a UAC.

Furthermore, to ensure that only applications resident in or trusted
by on-path elements can instantiate a user interface component, a
user agent compliant to this specification SHOULD use the sips URI
scheme for all dialogs it initiates. This will guarantee secure
links between all of the elements on the signaling path.

If the dialog was not established with a sips URI, or the user agent
did not choose cryptographically random dialog identifiers, then the
application MUST NOT automatically be authorized, even if it
presented valid dialog identifiers. A user agent MAY apply any other
policies in addition to (but not instead of) the ones specified here
in order to authorize the creation of the user interface component.
One such mechanism would be to prompt the user, informing them of the
identity of the application and the dialog it is associated with. If
an authorization policy requires user interaction, the user agent
SHOULD respond to the SUBSCRIBE or REFER request with a 202. 1In the
case of SUBSCRIBE, if authorization is not granted, the user agent

Rosenberg Expires January 17, 2005 [Page 29]

Internet-Draft App Interaction Framework July 2004

SHOULD generate a NOTIFY to terminate the subscription. 1In the case
of REFER, the user agent MUST NOT act upon the URI in the Refer-To
header field until user authorization was obtained.

If an application does not present a valid dialog identifier in its
REFER or SUBSCRIBE request, the user agent MUST reject the request
with a 403 response.

If a REFER request to an HTTP URI was authorized, the UA executes the
URI and fetches the content to be rendered to the user. This
instantiates a presentation capable user interface component. If a
SUBSCRIBE was authorized, a presentation free user interface
component was instantiated.

8.3 Mapping User Input to User Interface Components

Once the user interface components are instantiated, the user agent
must direct user input to the appropriate component. In the case of
presentation capable user interfaces, this process is known as focus
selection. It is done by means that are specific to the user
interface on the device. 1In the case of a PC, for example, the
window manager would allow the user to select the appropriate user
interface component that their input is directed to.

For presentation free user interfaces, the situation is more
complicated. In some cases, the device may support a mechanism that
allows the user to select a "line", and thus the associated dialog.
Any user input on the keypad while this line is selected are fed to
the user interface components associated with that dialog.

Otherwise, for client local user interfaces, the user input is
assumed to be associated with all user interface components. For
client remote user interfaces, the user device converts the user
input to media, typically conveyed using RFC 2833, and sends this to
the client remote user interface. This user interface then needs to
map user input from potentially many media streams into user
interface events. The process for doing this is described in Section
6.3.

8.4 Receiving Updates to User Interface Components

For presentation capable user interfaces, updates to the user
interface occur in ways specific to that user interface component.

In the case of HTML, for example, the document can tell the client to
fetch a new document periodically. However, this framework does not
provide any additional machinery to asynchronously push a new user
interface component to the client.

Rosenberg Expires January 17, 2005 [Page 30]

Internet-Draft App Interaction Framework July 2004

For presentation free user interfaces, an application can push an
update to a component by sending a SUBSCRIBE refresh with a new
filter. The user agent will process these according to the rules of
the event package.

8.5 Terminating a User Interface Component

Termination of a presentation capable user interface component is a
trivial procedure. The user agent merely dismisses the window (or

equivalent). The fact that the component is dismissed is not
communicated to the application. As such, it is purely a local
matter.

In the case of a presentation free user interface, if the user wishes
to cease interacting with the application, it SHOULD generate a
NOTIFY request with a Subscription-State equal to "terminated" and a
reason of "rejected". This tells the application that the component
has been removed, and that it should not attempt to re-subscribe.

Rosenberg Expires January 17, 2005 [Page 31]

Internet-Draft App Interaction Framework July 2004

9. Inter-Application Feature Interaction

The inter-application feature interaction problem is inherent to
stimulus signaling. Whenever there are multiple applications, there
are multiple user interfaces. When the user provides an input, to
which user interface is the input destined? That question is the
essence of the inter-application feature interaction problem.

Inter-application feature interaction is not an easy problem to
resolve. For now, we consider separately the issues for client-local
and client-remote user interface components.

9.1 Client Local UI

When the user interface itself resides locally on the client device,
the feature interaction problem is actually much simpler. The end
device knows explicitly about each application, and therefore can
present the user with each one separately. When the user provides
input, the client device can determine to which user interface the
input is destined. The user interface to which input is destined is
referred to as the application in focus, and the means by which the
focused application is selected is called focus determination.

Generally speaking, focus determination is purely a local operation.
In the PC universe, focus determination is provided by window
managers. FEach application does not know about focus, it merely
receives the user input that has been targeted to it when its in
focus. This basic concept applies to SIP-based applications as well.

Focus determination will frequently be trivial, depending on the user
interface type. Consider a user that makes a call from a PC. The
call passes through a pre-paid calling card application, and a call
recording application. Both of these wish to interact with the user.
Both push an HTML-based user interface to the user. On the PC, each
user interface would appear as a separate window. The user interacts
with the call recording application by selecting its window, and with
the pre-paid calling card application by selecting its window. Focus
determination is literally provided by the PC window manager. It is
clear to which application the user input is targeted.

As another example, consider the same two applications, but on a
"smart phone" that has a set of buttons, and next to each button, an
LCD display that can provide the user with an option. This user
interface can be represented using the Wireless Markup Language
(WML) .

The phone would allocate some number of buttons to each application.
The prepaid calling card would get one button for its "hangup"

Rosenberg Expires January 17, 2005 [Page 32]

Internet-Draft App Interaction Framework July 2004

command, and the recording application would get one for its "start/
stop" command. The user can easily determine which application to
interact with by pressing the appropriate button. Pressing a button
determines focus and provides user input, both at the same time.

Unfortunately, not all devices will have these advanced displays. A
PSTN gateway, or a basic IP telephone, may only have a 12-key keypad.
The user interfaces for these devices are provided through the Keypad
Markup Language (KPML). Considering once again the feature
interaction case above, the pre-paid calling card application and the
call recording application would both pass a KPML document to the
device. When the user presses a button on the keypad, to which
document does the input apply? The user interface does not allow the
user to select. A user interface where the user cannot provide focus
is called a focusless user interface. This is quite a hard problem
to solve. This framework does not make any explicit normative
recommendation, but concludes that the best option is to send the
input to both user interfaces unless the markup in one interface has
indicated that it should be suppressed from others. This is a
sensible choice by analogy - its exactly what the existing circuit
switched telephone network will do. It is an explicit non-goal to
provide a better mechanism for feature interaction resolution than
the PSTN on devices which have the same user interface as they do on
the PSTN. Devices with better displays, such as PCs or screen
phones, can benefit from the capabilities of this framework, allowing
the user to determine which application they are interacting with.

Indeed, when a user provides input on a focusless device, the input
must be passed to all client local user interfaces, AND all client
remote user interfaces, unless the markup tells the UI to suppress
the media. In the case of KPML, key events are passed to remote user
interfaces by encoding them in RFC 2833 [17]. Of course, since a
client cannot determine if a media stream terminates in a remote user
interface or not, these key events are passed in all audio media
streams unless the KPML request document is used to suppress.

9.2 Client-Remote UI
When the user interfaces run remotely, the determination of focus can
be much, much harder. There are many architectures that can be

deployed to handle the interaction. None are ideal. However, all
are beyond the scope of this specification.

Rosenberg Expires January 17, 2005 [Page 33]

Internet-Draft App Interaction Framework July 2004

10. 1Intra Application Feature Interaction

An application can instantiate a multiplicity of user interface
components. For example, a single application can instantiate two
separate HTML components and one WML component. Furthermore, an
application can instantiate both client local and client remote user
interfaces.

The feature interaction issues between these components within the
same application are less severe. If an application has multiple
client user interface components, their interaction is resolved
identically to the inter-application case - through focus
determination. However, the problems in focusless user interfaces
(such as a keypad) generally won’t exist, since the application can
generate user interfaces which do not overlap in their usage of an
input.

The real issue is that the optimal user experience frequently
requires some kind of coupling between the differing user interface
components. This is a classic problem in multi-modal user
interfaces, such as those described by Speech Application Language
Tags (SALT). As an example, consider a user interface where a user
can either press a labeled button to make a selection, or listen to a
prompt, and speak the desired selection. Ideally, when the user
presses the button, the prompt should cease immediately, since both
of them were targeted at collecting the same information in parallel.
Such interactions are best handled by markups which natively support
such interactions, such as SALT, and thus require no explicit support
from this framework.

Rosenberg Expires January 17, 2005 [Page 34]

Internet-Draft

11. Example Call Flow

App Interaction Framework

July 2004

This section shows the operation of a call recording application.
This application allows a user to record the media in their call by

clicking on a button in a web form.
presentation capable user
caller.

First,

Rosenberg

A Recording App
| (1) INVITE
| > |
| | (2) INVITE
| | =
| [(3) 200 OK
| | <=mmmm
| (4) 200 OK |
| < |
| (5) ACK |
| > |
| | (6) ACK
| | ————
| (7) REFER |
[<= |
| (8) 200 OK |
R > |
| (9) NOTIFY
R —— > |
| (10) 200 OK |
R |
| (11) HTTP GET |
R > |
| (12) 200 OK |
|[<———mmmmmm |
| (13) NOTIFY |
| > |
| (14) 200 OK |
R — |
| (15) HTTP POST |
R —— > |
| (16) 200 OK |
| < |

Figure 8

the caller,

A, sends an INVITE to setup a call
Since the caller supports the framework,

Expires January 17, 2005

The application uses a
interface component that is pushed to the

(message 1).

and can handle presentation

[Page 35]

Internet-Draft App Interaction Framework July 2004

capable user interface components, it includes the Supported header
field indicating that the GRUU extension and the REFER context
extension are understood, Allow indicating that REFER is understood,
and a Contact header field that includes the "schemes" header field
parameter.

INVITE sips:B@example.com SIP/2.0

Via: SIP/2.0/TLS host.example.com;branch=2z9hG4bK9zz8
From: Caller <sip:A@example.com>;tag=kkaz-

To: Callee <sip:B@example.com>

Call-ID: faif9ahhs9dd8==-sd98ajzz@host.example.com
CSeqg: 1 INVITE

Max-Forwards: 70

Supported: gruu, refer-context

Allow: INVITE, OPTIONS, BYE, CANCEL, ACK, REFER
Contact: <sips:bad998asd8asd0000alexample.com>; schemes="http, sip, sips"
Content-Length: .

Content-Type: application/sdp

——SDP not shown—-

The proxy acts as a recording server, and forwards the INVITE to the
called party (message 2):

INVITE sips:B@pc.example.com SIP/2.0

Record-Route: <sips:app.example.com;lr>

Via: SIP/2.0/TLS app.example.com;branch=z29hG4bK97sh
Via: SIP/2.0/TLS host.example.com;branch=z9nhG4bK9zz8
From: Caller <sip:A@example.com>;tag=kkaz-

To: Callee <sip:B@example.com>

Call-ID: faif9ahhs9dd8==-sd98ajzz@host.example.com
CSeq: 1 INVITE

Max-Forwards: 69

Supported: gruu, refer-context

Allow: INVITE, OPTIONS, BYE, CANCEL, ACK, REFER
Contact: <sips:bad998asd8asd0000alexample.com>; schemes="http,sip, sips"
Content-Length:

Content-Type: application/sdp

——SDP not shown—-

B accepts the call with a 200 OK (message 3). It does not support
the framework, and so the various header fields are not present.

Rosenberg Expires January 17, 2005 [Page 36]

Internet-Draft App Interaction Framework July 2004

SIP/2.0 200 OK

Record-Route: <ssip:app.example.com;lr>

Via: SIP/2.0/TLS app.example.com;branch=z29hG4bK97sh
Via: SIP/2.0/TLS host.example.com;branch=z9nhG4bK9zz8
From: Caller <sip:A@example.com>;tag=kkaz-

To: Callee <sip:B@example.com>;tag=7777

Call-ID: faif9ahhs9dd8==-sd98ajzz@host.example.com
CSeq: 1 INVITE

Contact: <sips:B@pc.example.com>

Content-Length:

Content-Type: application/sdp

-—SDP not shown—--

This 200 OK is passed back to the caller (message 4):

SIP/2.0 200 OK

Record-Route: <sips:app.example.com; lr>

Via: SIP/2.0/TLS host.example.com;branch=z9hG4bK9zz8
From: Caller <sip:AW@example.com>;tag=kkaz-

To: Callee <sip:B@example.com>;tag=7777

Call-ID: faif9ahhs9dd8==-sd98ajzz@host.example.com
CSeq: 1 INVITE

Contact: <sips:B@pc.example.com>

Content-Length: .

Content-Type: application/sdp

—-—SDP not shown—--

The caller generates an ACK (message 5).

ACK sips:B@pc.example.com

Route: <sips:app.example.com;lr>

Via: SIP/2.0/TLS host.example.com;branch=z9hG4bK9zz9
From: Caller <sip:A@example.com>;tag=kkaz-

To: Callee <sip:B@example.com>;tag=7777

Call-ID: faif9ahhs9dd8==-sd98ajzz@host.example.com
CSeq: 1 ACK

The ACK is forwarded to the called party (message 6).
ACK sips:B@pc.example.com
Via: SIP/2.0/TLS app.example.com;branch=z9hG4bKh7s

Via: SIP/2.0/TLS host.example.com;branch=z9hG4bK9zz9
From: Caller <sip:A@example.com>;tag=kkaz-

Rosenberg Expires January 17, 2005 [Page 37]

Internet-Draft App Interaction Framework July 2004

To: Callee <sip:B@example.com>;tag=7777
Call-ID: faif9ahhs9dd8==-sd98ajzz@host.example.com
CSeqg: 1 ACK

Now, the application decides to push a user interface component to
user A. So, it sends it a REFER request (message 7):

REFER sips:bad998asd8asd0000alRexample.com SIP/2.0

Refer-To: https://app.example.com/script.pl
;context="kkaz-, 7777, faif%ahhs9dd8==-sd98ajzz@host.example.com"

Via: SIP/2.0/TLS app.example.com;branch=z9hG4bK9zh6

Max-Forwards: 70

From: Recorder Application <sip:app.example.com>;tag=jhgf

To: Caller <sip:A@example.com>

Call-ID: 66676776767@dapp.example.com

CSeqg: 1 REFER

Event: refer

Contact: <sips:app.example.com>

The REFER is answered by a 200 OK (message 8).

SIP/2.0 200 OK

Via: SIP/2.0/TLS app.example.com;branch=z9hG4bK9zh6

From: Recorder Application <sip:app.example.com>;tag=jhgf

To: Caller <sip:A@example.com>;tag=pgoew

Call-ID: 66676776767@dapp.example.com

Supported: gruu, refer-context

Allow: INVITE, OPTIONS, BYE, CANCEL, ACK, REFER

Contact: <sips:bad998asd8asd0000alexample.com>; schemes="http, sip, sips"
CSeq: 1 REFER

User A sends a NOTIFY (message 9):

NOTIFY sips:app.example.com SIP/2.0

Via: SIP/2.0/TLS host.example.com;branch=z9nG4bK9320394238995
To: Recorder Application <sip:app.example.com>;tag=jhgf

From: Caller <sip:A@example.com>;tag=pgoew

Call-ID: 66676776767@dapp.example.com

CSeqg: 1 NOTIFY

Max-Forwards: 70

Event: refer;1d=93809824

Subscription-State: active;expires=3600

Contact: <sips:bad998asd8asd0000alexample.com>; schemes="http, sip,sips"
Content-Type: message/sipfrag;version=2.0

Content-Length: 20

Rosenberg Expires January 17, 2005 [Page 38]

Internet-Draft App Interaction Framework July 2004

SIP/2.0 100 Trying

And the recording server responds with a 200 OK (message 10)

SIP/2.0 200 OK

Via: SIP/2.0/TLS host.example.com;branch=z9hG4bK9320394238995
To: Recorder Application <sip:app.example.com>;tag=jhgf

From: Caller <sip:A@example.com>;tag=pgoew

Call-ID: 66676776767@app.example.com

CSeq: 1 NOTIFY

The REFER request contained a "context" Refer-To header field
parameter with a valid dialog identifier. Furthermore, all of the
signaling was over TLS and the dialog identifiers contain sufficient
randomness. As such, the caller, A, automatically authorizes the
application. It then acts on the Refer-To URI, fetching the script
from app.example.com (message 11). The response, message 12,
contains a web application that the user can click on to enable
recording. Because the client executed the URL in the Refer-To, it
generates another NOTIFY to the application, informing it of the
successful response (message 13). This is answered with a 200 OK
(message 14). When the user clicks on the link (message 15), the
results are posted to the server, and an updated display is provided
(message 16).

Rosenberg Expires January 17, 2005 [Page 39]

Internet-Draft App Interaction Framework July 2004

12. Security Considerations

There are many security considerations associated with this
framework. It allows applications in the network to instantiate user
interface components on a client device. Such instantiations need to
be from authenticated applications, and also need to be authorized to
place a UI into the client. 1Indeed, the stronger requirement is
authorization. It is not so important to know that name of the
provider of the application, but rather, that the provider is
authorized to instantiate components.

This specification defines specific authorization techniques and
requirements. Automatic authorization is granted if the application
can prove that it is on the call path, or is trusted by an element on
the call path. As documented above, this can be accompished by the
use of cryptographically random dialog identifiers and the usage of
sips for message confidentiality. It is RECOMMENDED that sips be
implemented by user agents compliant to this specification. This
does not represent a change from the requirements in RFC 3261.

Rosenberg Expires January 17, 2005 [Page 40]

Internet-Draft App Interaction Framework July 2004

13. IANA Considerations
13.1 SIP Option Tag

This specification registers a new SIP option tag, as per the

guidelines in Section 27.1 of RFC 3261 [1].

Name: refer-context

Description: This option tag is used to identify the REFER extension
that defines the "context" parameter of the Refer-To header field.

13.2 Header Field Parameter

This specification defines a new header field parameter, as per the

registry created by [9]. The required information is as follows:

Header field in which the parameter can appear: Refer-To

Name of the Parameter context

RFC Reference RFC XXXX [[NOTE TO IANA: Please replace XXXX with the
RFC number of this specification.]]

Rosenberg Expires January 17, 2005 [Page 41]

Internet-Draft App Interaction Framework July 2004

14. Contributors

This document was produced as a result of discussions amongst the
application interaction design team. All members of this team
contributed significantly to the ideas embodied in this document.
The members of this team were:

Eric Burger
Cullen Jennings
Robert Fairlie-Cuninghame

Rosenberg Expires January 17, 2005 [Page 42]

Internet-Draft App Interaction Framework July 2004

15. References
15.1 Normative References

[1] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
Peterson, J., Sparks, R., Handley, M. and E. Schooler, "SIP:
Session Initiation Protocol", RFC 3261, June 2002.

[2] Rosenberg, J. and H. Schulzrinne, "Reliability of Provisional
Responses in Session Initiation Protocol (SIP)", RFC 3262, June
2002.

[3] Roach, A., "Session Initiation Protocol (SIP)-Specific Event
Notification", RFC 3265, June 2002.

[4] McGlashan, S., Lucas, B., Porter, B., Rehor, K., Burnett, D.,
Carter, J., Ferrans, J. and A. Hunt, "Voice Extensible Markup
Language (VoiceXML) Version 2.0", W3C CR CR-voicexml20-20030220,
February 2003.

[5] Rosenberg, J., "Indicating User Agent Capabilities in the
Session Initiation Protocol (SIp) ",
draft-ietf-sip-callee-caps-03 (work in progress), January 2004.

[6] Sparks, R., "The Session Initiation Protocol (SIP) Refer
Method", RFC 3515, April 2003.

[7] Burger, E., "A Session Initiation Protocol (SIP) Event Package
for Key Press Stimulus (KPML)", draft-ietf-sipping-kpml-03
(work in progress), May 2004.

[8] Rosenberg, J., "Obtaining and Using Globally Routable User Agent
(UA) URIs (GRUU) in the Session Initiation Protocol (SIP)",
draft-ietf-sip-gruu-01 (work in progress), February 2004.

[9] Camarillo, G., "The Internet Assigned Number Authority (IANA)
Header Field Parameter Registry for the Session Initiation
Protocol (SIP)", draft-ietf-sip-parameter-registry-02 (work in
progress), June 2004.

15.2 Informative References
[10] Peterson, J., "Enhancements for Authenticated Identity
Management in the Session Initiation Protocol (SIP)",

draft-ietf-sip-identity-02 (work in progress), May 2004.

[11] Day, M., Rosenberg, J. and H. Sugano, "A Model for Presence and
Instant Messaging", RFC 2778, February 2000.

Rosenberg Expires January 17, 2005 [Page 43]

Internet-Draft App Interaction Framework July 2004

[12] Jennings, C., Peterson, J. and M. Watson, "Private Extensions
to the Session Initiation Protocol (SIP) for Asserted Identity
within Trusted Networks", RFC 3325, November 2002.

[13] Rosenberg, J., "A Framework for Conferencing with the Session
Initiation Protocol",
draft-ietf-sipping-conferencing-framework-01 (work in
progress), October 2003.

[14] Rosenberg, J., Schulzrinne, H. and P. Kyzivat, "Caller
Preferences for the Session Initiation Protocol (SIP)",
draft-ietf-sip-callerprefs-10 (work in progress), October 2003.

[15] Rosenberg, J. and H. Schulzrinne, "An INVITE Inititiated Dialog
Event Package for the Session Initiation Protocol (SIP)",
draft-ietf-sipping-dialog-package-04 (work in progress),
February 2004.

[16] Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobson,
"RTP: A Transport Protocol for Real-Time Applications", RFC
3550, July 2003.

[17] Schulzrinne, H. and S. Petrack, "RTP Payload for DTMF Digits,
Telephony Tones and Telephony Signals", RFC 2833, May 2000.

[18] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with
Session Description Protocol (SDP)", RFC 3264, June 2002.

[19] Rosenberg, J., "A Session Initiation Protocol (SIP) Event
Package for Registrations", RFC 3680, March 2004.

Author’s Address

Jonathan Rosenberg
dynamicsoft

600 Lanidex Plaza
Parsippany, NJ 07054
Us

Phone: +1 973 952-5000

EMail: jdrosen@dynamicsoft.com
URI: http://www. jdrosen.net

Rosenberg Expires January 17, 2005 [Page 44]

Internet-Draft App Interaction Framework July 2004

Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
letf-ipr@ietf.org.

Disclaimer of Validity

This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement
Copyright (C) The Internet Society (2004). This document is subject
to the rights, licenses and restrictions contained in BCP 78, and
except as set forth therein, the authors retain all their rights.

Acknowledgment

Funding for the RFC Editor function is currently provided by the
Internet Society.

Rosenberg Expires January 17, 2005 [Page 45]

SIPPING Working Group A. Johnston

Internet-Draft MCI
Expires: January 16, 2005 0. Levin
Microsoft

July 18, 2004

Session Initiation Protocol Call Control - Conferencing for User
Agents
draft-ietf-sipping-cc-conferencing-04

Status of this Memo

This document is an Internet-Draft and is subject to all provisions
of section 3 of RFC 3667. By submitting this Internet-Draft, each
author represents that any applicable patent or other IPR claims of
which he or she is aware have been or will be disclosed, and any of
which he or she become aware will be disclosed, in accordance with
RFC 3668.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as
Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://
www.letf.org/ietf/lid-abstracts.txt.

The 1list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on January 16, 2005.
Copyright Notice
Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

This specification defines conferencing call control features for the

Session Initiation Protocol (SIP). This document builds on the

Conferencing Requirements and Framework documents to define how a
tightly coupled SIP conference works. The approach is explored from
different user agent (UA) types perspective: conference-unaware,

Johnston & Levin Expires January 16, 2005 [Page 1]

Internet-Draft SIP CC Conferencing for UAs July 2004

conference-aware and focus UAs. The use of URIs in conferencing,

OPTIONS for capabilities discovery,
covered in detail with example call flow diagrams.

isfocus feature tag is defined. A SIP option tag for
conference-aware UAs is defined.

Table of Contents

IS

[N > T S NTANERT ST AN

NS

5.

6.
6.

10.
11.
12.
13.
13.1
13.2

w N -

Introduction e e e e e e e e e
Usage of the ’'isfocus’ Feature Parameter
General .
Session Establlshment
OPTIONS

SIP User Agent Conferenclng Capablllty Types
Focus UA . e e e e e e
Conference Factory URI

1

2
.3 Conference-Unaware UA
4

Conference-Aware UA

SIP Conferencing Primitives . .
Joining a Conference using the Conference URI - Dlal In
Adding a Participant by the Focus - Dial Out
Manually Creating a Conference by Dialing into a
Conferencing Application
Creating a Conference using Ad- Hoc SIP Methods .
Requesting the Focus Add a New Resource to a Conference
Adding a 3rd Party Using Conference URI
Requesting Focus Refer a Participant into the Conference
Adding a 3rd Party Using a Dialog Identifier
Changing User Agents within a Conference .

0 Bringing a Point-to-Point Session into a Conference

1 Requesting the Focus Remove a Participant from a

Conference

w N =

= W 0 J o U

.12 Deleting a conference
.13 Discovery of Conferencing Capabllltles using OPTIONS

Appendix - Creating a Conference by a Conference-Unaware
UA . .
TANA Consrderatlons
1 SIP Option Tag
Security Considerations
Contributors
Changes since -03
Changes since -02
Changes since -01
Changes since -00
References
Normative References
Informative References
Authors’ Addresses

and call control using REFER are
The usage of the

= 00 00 ~J ~J Oy O O Ul U1 U1 > D>

Y

15
17
19
21
23
25
26

28
30
31

33
35
35
35
35
36
36
36
36
37
37
37
38

Johnston & Levin Expires January 16, 2005 [Page 2]

Internet-Draft SIP CC Conferencing for UAs July 2004

Intellectual Property and Copyright Statements 39

Johnston & Levin Expires January 16, 2005 [Page 3]

Internet-Draft SIP CC Conferencing for UAs July 2004

1.

2.

Introduction

This specification uses the concepts and definitions from the high
level requirements [10] and the SIP conferencing framework [11]
documents.

The approach described in this document implements key functions in
the conferencing framework using SIP primitives only. This allows
for conducting simple conferences with defined functionalities using
SIP mechanisms and conventions. Many other advanced functions can be
implemented using additional means but they are not in the scope of
this document.

This document presents the basic call control (dial-in and dial-out)
conferencing building blocks from the UA perspective. Possible
applications include ad-hoc conferences and scheduled conferences.

Note that a single conference can bridge participants having
different capabilities and who potentially have joined the conference
by different means (i.e. dial-in, dial-out, scheduled, and ad-hoc).

The call control and dialog manipulation approach is based on the
multiparty framework [12] document. That document defines the basic
approach of service design adopted for SIP which includes:

— Definition of primitives, not services

— Signaling model independent

- Invoker oriented

- Primitives make full use of URIs

— Include authentication, authorization, logging, etc. policies
- Define graceful fallback to baseline SIP.

The use of opaque URIs and the ability to communicate call control
context information within a URI (as opposed to service-related
header fields), as discussed in RFC 3087 [13], is fundamental to this
approach.

Capabilities discovery is an important feature of SIP systems, and
conferencing systems can make use of such features. For a UA acting
as a focus in a conference, this specification defines the usage of
the "isfocus’ feature parameter. For a UA which supports the
extensions and scenarios described in this document, the ’conf’
option tag is defined.

Usage of the ’'isfocus’ Feature Parameter

Johnston & Levin Expires January 16, 2005 [Page 4]

Internet-Draft SIP CC Conferencing for UAs July 2004

2.1 General

The main design guidelines for the development of SIP extensions and
conventions for conferencing are to define the minimum number of
extensions and to have seamless backwards compatibility with
conference-unaware SIP UAs. The minimal requirement for SIP is being
able to express that a dialog is a part of a certain conference
referenced to by a URI. As a result of these extensions, it is
possible to do the following using SIP:

- Create a conference

- Join a conference

- Invite a user to a conference

- Expel a user by third party

- Discover if a URI is a conference URI
— Delete a conference

The approach taken is to use the feature parameter "isfocus" to
express that a SIP dialog belongs to a conference. The use of
feature parameters in Contact header fields to describe the
characteristics and capabilities of a UA is described in the User
Agent Capabilities [7] document which includes the definition of the
"isfocus" feature parameter.

2.2 Session Establishment

In session establishment, a focus MUST include the "isfocus" feature
parameter in the Contact header field unless the focus wishes to hide
the fact that it is a focus. To a participant, the feature parameter
will be associated with the remote target URI of the dialog. It is
an indication to a conference-aware UA that the resulting dialog
belongs to a conference identified by the URI in the Contact header
field and that the call control conventions defined in this document
can be applied.

The Conference URI MUST meet the requirements to be a GRUU (Globally
Routable User Agent URI) as detailed in [9]

2.3 OPTIONS

Currently the only met requirement is: given an opaque URI, being
able to recognize whether it belongs to a certain conference (i.e.
meaning that it is a conference URI) or not. As with any other
OPTIONS request, it can be done either inside an active dialog or
outside a dialog. A focus MUST include the "isfocus" feature
parameter in a 200 OK response to an OPTIONS unless the focus wishes
to hide the fact that it is a focus.

Johnston & Levin Expires January 16, 2005 [Page 5]

Internet-Draft SIP CC Conferencing for UAs July 2004

3. SIP User Agent Conferencing Capability Types

From a conferencing perspective, the framework document outlines a
number of possible different SIP components such as
conference-unaware participant, conference-aware participant, and
focus.

This document applies the concepts above to the SIP call control part

of the conferencing components. It defines normative behavior of the
SIP UAs in various conferencing situations (referred later as
"scenarios").

3.1 Focus UA

A focus, as defined in the framework, hosts a SIP conference and
maintains a SIP signaling relationship with each participant in the
conference. A focus contains a conference-aware user agent that
supports the conferencing call control conventions as defined in this
document.

A focus SHOULD support the conference package [5] and indicate so in
Allow-Events header fields in requests and responses. A focus MAY
include information about the conference in SDP message bodies sent.

A focus SHOULD support the Replaces [8] header field.

A user agent with focus capabilities could be implemented in end user
equipment and would be used for the creation of ad-hoc conferences.

A dedicated conferencing server, whose primary task is to
simultaneously host conferences of arbitrary type and size, may
allocate and publish a conference factory URI (as defined in the next
section) for creating an arbitrary number of ad-hoc conferences (and
subsequently their focuses) using SIP call control means.

3.2 Conference Factory URI

According to the framework, there are many ways in which a conference
can be created. These are open to the conferencing server
implementation policy and include non-automated means (such as IVR),
SIP, and a conference policy control protocol.

In order to automatically create an arbitrary number of ad-hoc
conferences (and subsequently their focuses) using SIP call control
means, a globally routable Conference Factory URI can be allocated
and published.

Johnston & Levin Expires January 16, 2005 [Page 6]

Internet-Draft SIP CC Conferencing for UAs July 2004

A successful attempt to establish a call to this URI would result in
the automatic creation a new conference and its focus. As a result,
note that the Conference Factory URI and the newly created focus URI
MAY resolve to different physical devices.

A scenario showing the use of the conference factory URI is shown in
Section 4.5.

3.3 Conference-Unaware UA

The simplest user agent can participate in a conference ignoring all
SIP conferencing-related information. The simplest user agent is
able to dial into a conference and to be invited to a conference.

Any conferencing information is optionally conveyed to/from it using
non-SIP means. Such a user agent would not usually host a conference
(at least, not using SIP explicitly). A conference-unaware UA needs
only to support RFC 3261 [2]. Call flows for conference-unaware UAs
are not shown in general in this document as they would be identical
to those in the SIP call flows [15] document.

3.4 Conference-Aware UA

A conference-aware user agent supports SIP conferencing call control
conventions defined in this document as a conference participant, in
addition to support of RFC 3261.

A conference-aware UA MUST recognize the "isfocus" feature parameter.
A conference-aware UA SHOULD support REFER [3], SIP events [4], and
the conferencing package [5].

A conference-aware UA SHOULD subscribe to the conference package if
the "isfocus" parameter is in the remote target URI of a dialog and
if the conference package is listed by a focus in an Allow-Events
header field. The SUBSCRIBE to the conference package should be sent
outside any INVITE-initiated dialog. A termination of the INVITE
dialog with a BYE does not necessarily terminate the SUBSCRIBE
dialog.

A conference-aware UA MAY render to the user any information about
the conference obtained from the SIP header fields and SDP fields
from the focus.

This specification defines a new SIP option tag, "conf" for use by
UAs. A conference-aware UA SHOULD include the "conf" option tag in a
Supported header field in requests and responses. A conference-aware
UA discovering support for the "conf" option tag MAY make use the
scenarios described in this specification. ©Note that a UA which is
only acting as a focus (i.e. 1is not acting as a combined focus/

Johnston & Levin Expires January 16, 2005 [Page 7]

Internet-Draft SIP CC Conferencing for UAs July 2004

participant) in a dialog SHOULD NOT indicates support for this
specification using the "conf" option tag. 1Instead, the "isfocus"
feature tag should be used.

4. SIP Conferencing Primitives

The SIP conferencing call control flows presented in this section are
the call control building blocks for various SIP tight conferencing
applications as described in the conferencing requirements [10] and
framework [11] documents. The major design goal is that the same SIP
conferencing primitives would be used by user agents having different
conferencing capabilities and comprising different applications.

4.1 Joining a Conference using the Conference URI - Dial In

In this section a user knows the conference URI and "dials in" to
join this conference.

If the UA is the first participant of the conference to dial in, it
is likely that this INVITE will create the focus and hence the
conference. However, the conference URI must have been reserved
prior to its use.

If the conference is up and running already, the dialing-in
participant is joined to the conference by its focus.

To join an existing specific conference a UA SHOULD send an INVITE
with the Request-URI set to the conference URI. The focus MUST
include the "isfocus" feature parameter in the Contact header field
of the 200 OK response to the INVITE.

An example call flow for joining a conference is shown in Figure 1.

Johnston & Levin Expires January 16, 2005 [Page 8]

Internet-Draft SIP CC Conferencing for UAs July 2004

Alice Focus Bob Carol
| Carol joins the conference |

| INVITE sip:Conf-ID F1 |

I

|

|

	<
	180 Ringing F2
	>
	200 OK Contact:Conf-ID;isfocus F3
	l--—— >
	ACK F4
	o
	RTP
	<==m==mmmmmmmmmmmmmmmmmmmmmomomomoooo
	SUBSCRIBE sip:Conf-ID F5
R	
	200 OK F6
	>
	NOTIFY F7
	>
	200 OK F8

| | <" |

Figure 1. A Participant Joins a Conference using the Conference URI.

Fl INVITE sip:3402934234Q@example.com SIP/2.0

Via: SIP/2.0/UDP client.chicago.example.com
;branch=z9hG4bKhjhs8ass83

Max-Forwards: 70

To: <sip:3402934234@example.com>

From: Carol <sip:carol@chicago.example.com>;tag=32331

Call-ID: d432fa84b4c76e66710

CSeq: 45 INVITE

Contact: <sip:carol@client.chicago.example.com>

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER,
SUBSCRIBE, NOTIFY

Allow-Events: dialog

Accept: application/sdp, message/sipfrag
Supported: conf, replaces

Content-Type: application/sdp

Content-Length: 274

(SDP not shown)

F3 SIP/2.0 200 OK

Johnston & Levin Expires January 16, 2005 [Page 9]

Internet-Draft SIP CC Conferencing for UAs July

F5

F7

Via: SIP/2.0/UDP client.chicago.example.com
;branch=z9hG4bKhjhs8ass83; received=192.0.2.4

To: <sip:3402934234@dexample.com>;tag=733413

From: Carol <sip:carol@chicago.example.com>;tag=32331

Call-ID: d432fa84b4c76e66710

CSeq: 45 INVITE

Contact: <sip:3402934234@example.com>;isfocus

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER,
SUBSCRIBE, NOTIFY

Allow-Events: dialog, conference

Accept: application/sdp, application/conference-info+xml,
message/sipfrag

Supported: replaces, join, gruu

Content-Type: application/sdp

Content-Length: 274

v=0

2004

o=focus431 2890844526 2890842807 IN IP4 ms5.conf.example.com

s=Example Subject

i=Example Conference Hosted by Example.com
u=http://conf.example.com/3402934234
e=3402934234@conf-help.example.com
p=+1-888-2934234

c=IN IP4 ms5.conf.example.com

t=0 0

m=audio 49170 RTP/AVP 0

m=video 51372 RTP/AVP 31

SUBSCRIBE sip:3402934234@example.com SIP/2.0

Via: SIP/2.0/UDP client.chicago.example.com
;branch=z9nG4bKdf334

Max-Forwards: 70

To: <sip:3402934234@example.com>

From: Carol <sip:carol@chicago.example.com>;tag=43524545

Call-ID: k3143id034ksereree

CSeq: 22 SUBSCRIBE

Contact: <sip:carol@chicago.example.com>

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER,
SUBSCRIBE, NOTIFY

Event: conference

Accept: application/sdp, message/sipfrag
Supported: conf, replaces

Content-Length: 0

NOTIFY sip:carol@chicago.example.com SIP/2.0

Johnston & Levin Expires January 16, 2005 [Page 10]

Internet-Draft SIP CC Conferencing for UAs July 2004

Via: SIP/2.0/UDP ms5.conf.example.com;branch=z9hG4bK3343d1

Max-Forwards: 70

To: Carol <sip:carol@chicago.example.com>;tag=43524545

From: <sip:3402934234@example.com>;tag=a3343df32

Call-ID: k3143id034ksereree

CSeq: 34321 NOTIFY

Contact: <sip:3402934234@example.com>;isfocus

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER,
SUBSCRIBE, NOTIFY

Event: conference

Accept: application/sdp, message/sipfrag
Subscription-State: active;expires=3600

Supported: replaces, join, gruu

Content-Type: application/conference-info+xml

Content-Length:

<conference-info version="0" state="full"
entity="sip:3402934234@example.com">
<user uri="sip:carol@chicago.example.com"
display-name="Carol">
<status>connected</status>
<joining-mode>dialed-in</joining-mode>
<media-stream media-type="audio">
<proto>RTP/AVP</proto>
<ssrc>583398</ssrc>
</media-stream>
<media-stream media-type="video">
<proto>RTP/AVP</proto>
<ssrc>345212</ssrc>
</media-stream>
</user>
<conf-uri>tel:+18882934234</conf-uri>
</conference-info>

4.2 Adding a Participant by the Focus - Dial Out

To directly add a participant to a conference, a focus SHOULD send an
INVITE to the participant containing a Contact header field with the
conference URI and the "isfocus" feature parameter.

Note that a conference-unaware UA would simply ignore the
conferencing information and treat the session (from a SIP

perspective) as a point to point session.

An example call flow is shown in Figure 2. It is assumed that Alice
is already a participant of the conference. The focus invites Carol

Johnston & Levin Expires January 16, 2005 [Page 11]

Internet-Draft SIP CC Conferencing for UAs July 2004

to the conference by sending an INVITE. After the session is

established, Carol subscribes to the conference URI.

It is important

to note that there is no dependency on Carol’s SUBSCRIBE (F5) and the

NOTIFY to Alice (F9) - they occur asynchronously and independently.
Alice Focus Bob Carol
| | | |

Focus "dials out" to add Carol to the conference

| INVITE Contact:Conf-ID;isfocus F1

| €= mm e
| 200 OK F3
| €m—— e
| ACK F4
| _______________________________________
| RTP
| < = = = = = = = = =
| SUBSCRIBE sip:Conf-ID F5
| e
| 200 OK F6
| _______________________________________
| NOTIFY F7
| _______________________________________
| 200 OK F8
| €m—— e
NOTIFY F9 |
D |
200 OK F10 |

Figure 2. A Focus "dials out" to Add a Participant to the Conference.

F7

NOTIFY sip:carol@chicago.example.com SIP/2.0

Via: SIP/2.0/UDP ms5.conf.example.com;branch=z9hG4bK3343d1

Max-Forwards: 70

To: Carol <sip:carol@chicago.example.com>;tag=43524545

From: <sip:3402934234@example.com>;tag=a3343df32

Call-ID: k3143id034ksereree

CSeq: 34321 NOTIFY

Contact: <sip:3402934234@example.com>; isfocus

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER,
SUBSCRIBE, NOTIFY

Johnston & Levin Expires January 16, 2005 [Page 12]

Internet-Draft SIP CC Conferencing for UAs July 2004

Event: conference

Accept: application/sdp, message/sipfrag
Subscription-State: active;expires=3600
Supported: replaces, gruu

Content-Type: application/conference-info+xml
Content-Length:

<conference-info version="0" state="full"
entity="sip:3402934234@example.com">
<user uri="sip:alice@atlanta.example.com"
display-name="Alice">
<status>connected</status>
<joining-mode>dialed-in</joining-mode>
<media-stream media-type="audio">
<proto>RTP/AVP</proto>
<ssrc>674231</ssrc>
</media-stream>
<media-stream media-type="video">
<proto>RTP/AVP</proto>
<ssrc>213563</ssrc>
</media-stream>
</user>
<user uri="sip:carol@chicago.example.com"
display-name="Carol">
<status>connected</status>
<joining-mode>dialed-out</joining-mode>
<media-stream media-type="audio">
<proto>RTP/AVP</proto>
<ssrc>583398</ssrc>
</media-stream>
<media-stream media-type="video">
<proto>RTP/AVP</proto>
<ssrc>345212</ssrc>
</media-stream>
</user>
<conf-uri>tel:+18882934234</conf-uri>
</conference-info>

F9 NOTIFY sip:alice@atlanta.example.com SIP/2.0
Via: SIP/2.0/UDP msb5.conf.example.com;branch=z9hG4bK3432
Max-Forwards: 70
To: Alice <sip:alice@atlanta.example.com>;tag=43524545
From: <sip:3402934234@example.com>;tag=a3343d£f32
Call-ID: 8820450524545
CSeqg: 998 NOTIFY
Contact: <sip:3402934234@example.com>;isfocus
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER,

Johnston & Levin Expires January 16, 2005 [Page 13]

Internet-Draft SIP CC Conferencing for UAs July 2004

SUBSCRIBE, NOTIFY
Event: conference
Accept: application/sdp, message/sipfrag
Subscription-State: active;expires=2450
Supported: replaces, gruu

Content-Type: application/conference-info+xml
Content-Length:

<conference-info version="0" state="partial"
entity="sip:3402934234@example.com">
<user uri="sip:caroll@chicago.example.com"
display-name="Carol">
<status>connected</status>
<joining-mode>dialed-out</joining-mode>
<media-stream media-type="audio">
<proto>RTP/AVP</proto>
<ssrc>583398</ssrc>
</media-stream>
<media-stream media-type="video">
<proto>RTP/AVP</proto>
<ssrc>345212</ssrc>
</media-stream>
</user>
<conf-uri>tel:+18882934234</conf-uri>
</conference-info>

4.3 Manually Creating a Conference by Dialing into a Conferencing
Application

In this section, a user sends an INVITE to a conference server
application. The application (such as an IVR system or a web page)
is implemented because the system requires additional input from the
user before it is able to create a conference. After a normal dialog
is established, additional information is received and the conference
together with its focus are created. At this point the conference
server MUST re-INVITE the user with the conference URI in Contact
with the "isfocus" feature parameter.

Alternatively, the additional information MAY be provided by the user
during an early dialog established. This could be accomplished by a
183 Session Progress response sent by the conferencing application.
After the conference is created, the conference URI MUST then be
returned in a Contact in the 200 OK.

An example call flow is shown in Figure 3. In this example, Alice

Johnston & Levin Expires January 16, 2005 [Page 14]

Internet-Draft SIP CC Conferencing for UAs July 2004

uses a conference application which is triggered when Alice sends an
INVITE to the conference application. 1In this example, Conf-App is
used to represent the conference application URI. Alice’s
conference-aware UA learns of the existence of the conference from
the "isfocus" feature parameter and subscribes to the conference
package to receive notifications of the conference state.

Alice Focus Bob Carol

| Alice establishes session with conference application.

| | |
| INVITE sip:Conf-App F1

|

|—————— > | |
| 180 Ringing F2 |

[<m——————— | |

| 200 OK F3 | |

[<=——————— | |

| ACK F4 | |

| ————————— - > | |

RTP | |

|

Alice uses the application to create the conference.

e |
200 OK Fo
T >|
| ACK F7 |
S — |
| RTP |
|
|
|

R — >|
| 200 OK F9 |
R |
| NOTIFY F10 |
T —— |
| 200 OK Fl11 |
| >|

Figure 3. A Participant Creates a Conference using an Application.

4.4 Creating a Conference using Ad-Hoc SIP Methods

This section addresses creating a conference by using ad-hoc SIP

Johnston & Levin Expires January 16, 2005 [Page 15]

Internet-Draft SIP CC Conferencing for UAs July 2004

means. The conference factory URI (as defined in Section 2.4) is
used to automatically create the conference in this example.

The benefit of this approach is that the conference URI need not be
known to the user - instead it is created by a focus and used by the
participants’ UAs. The main difference between this scenario and
Section 4.3 is that no user intervention (IVR, web page form, etc.)
is required to create the conference.

The SIP URI of the conference factory can be provisioned in the UA
(as in a "create new conference" button on a SIP phone) or can be
discovered using other means.

A STIP entity (such as conferencing server) can distinguish this
INVITE request as a request to create a new ad-hoc conference from a
request to join an existing conference by the Request-URI.

Assuming that all security and policy requirements have been met, a
new conference will be created with the Contact URI returned in the
200 OK being the conference URI. The Contact header field MUST
contain the "isfocus" feature parameter to indicate that this URI is
for a conference.

An example call flow is shown in Figure 4. Note that Conf-Factory is
shorthand for the conference factory URI and Conf-ID Is short for the
conference URI. In this flow, Alice has a conference-aware UA and
creates a conference by sending an INVITE to the conference factory
URI. The conference factory application creates the conference and
redirects using a 302 Moved Temporarily response to the focus. Note
that with proxy recursion, Alice may never see the redirect but may
just receive the responses from the focus starting with message F5.
Once the media session is established, Alice subscribes to the
conference URI obtained through the Contact in the 200 OK response
from the focus.

Johnston & Levin Expires January 16, 2005 [Page 16]

Internet-Draft SIP CC Conferencing for UAs

4.

5

conference,
Refer-To containing the URI of the new resource.
sent to the conference URI and not the conference factory URI, the
semantics to the focus are to bring the resource into the conference
and make it visible to the conference participants. The resultant

Alice Conf-Factory App Focus

| Alice creates the conference.

| |
| INVITE sip:Conf-Factory F1l

July 2004

| ACK F3

|- >

| INVITE sip:Conf-ID F4

[>

| 180 Ringing F5

| < |

| 200 OK Contact:Conf-ID;isfocus F6 |

| < |

| ACK F7

| > |

| RTP |

| <= = = = = = = = = ===> |

| |

| Alice subscribes to the conference URI. |

I |

| SUBSCRIBE sip:Conf-ID F8 |

| == > |

| 200 OK F9

| < |

| NOTIFY F10

| < |

| 200 OK F11

| > |
Creation of a Conference using SIP Ad-Hoc Methods.

Johnston & Levin Expires January 16, 2005

Requesting the Focus Add a New Resource to a Conference

A STIP conference URI can be used to inject different kinds of
information into the conference. Examples include new participants,
new real-time media sources, new IM messages, and pointers to passive

information references (such as HTTP URIS).

To request the focus add a new information resource to the specified
any SIP UA can send a REFER to the conference URI with a

Since this REFER 1is

[Page 17]

Internet-Draft SIP CC Conferencing for UAs July 2004

focus procedures are dependant both on the nature of the new resource
(as expressed by its URI) and the own focus policies regarding IM,
central vs. distributed real time media processing, etc.

The scenario for adding a new UA participant is important to support
because it works even if the new participant does not support REFER
and transfer call control - only the requesting participant and the
focus need to support the REFER and transfer call control.

Upon receipt of the REFER containing a Refer-To header with a SIP
URI, the focus SHOULD send an INVITE to the new participant
identified by the Refer-To SIP URI containing a Contact header field
with the conference URI and the "isfocus" feature parameter.

A conference-unaware UA would simply ignore the conferencing
information and treat the session (from a SIP perspective) as a point
to point session.

An example call flow is shown in Figure 5. It is assumed that Alice
is already a participant of the conference. Alice sends a REFER to
the conference URI. The focus invites Carol to the conference by
sending an INVITE. After the session is established, Carol

subscribes to the conference URI. It is important to note that there
is no dependency on Carol’s SUBSCRIBE (F11l) and the NOTIFY to Alice
(F15) - they occur asynchronously and independently.
Alice Focus Bob Carol
| | | |
| <============m=====>| |
| REFER sip:Conf-ID Refer-To:Carol F1 |
| >
| 202 Accepted F2 |
. |
| NOTIFY (Trying) F3
| <= |

|

|

|

|

| |- >
| | 180 Ringing F6

| | <7777 |
| | 200 OK F7

	<7777
	ACK F8
	—=——m >

Johnston & Levin Expires January 16, 2005 [Page 18]

Internet-Draft SIP CC Conferencing for UAs July 2004

| | RTP |
| | <====================s===================)> |
| NOTIFY (OK) F9 |

|[<m—mmmmmm | |
| 200 OK F10 |

- >	
	SUBSCRIBE sip:Conf-ID F11
	<77
	200 OK F12

	- >
	NOTIFY F13
	—=——m >
	200 OK F14

	<=
NOTIFY F15	
[<——mmmmm	
200 OK F1l6	

|- > | |

Figure 5. Participant Requests Focus add a Participant to the Conference.

Fl REFER sip:3402934234@example.com SIP/2.0
Via: SIP/2.0/UDP client.atlanta.example.com;branch=z9hG4bKg45344
Max-Forwards: 70
To: <sip:3402934234@example.com>
From: Alice <sip:alice@atlanta.example.com>;tag=5534562
Call-ID: 849392fklgl4s3
CSeqg: 476 REFER
Contact: <sip:alice@alice.example.com>
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER,
SUBSCRIBE, NOTIFY
Accept: application/sdp, message/sipfrag
Refer-To: <sip:carol@chicago.example.com>
Supported: conf, replaces
Content-Length: 0

4.6 Adding a 3rd Party Using Conference URI
A participant wishing to add a new participant will request this
participant to send an INVITE to the conference URI. This can be
done using a non-SIP means (such as passing or publishing the
conference URI in an email, IM, or web page). If a non-SIP means is

used, then the flow and requirements are identical to Section 4.1.

The SIP mechanism to do this utilizes the REFER method.

Johnston & Levin Expires January 16, 2005 [Page 19]

Internet-Draft SIP CC Conferencing for UAs July 2004

A UA wishing to add a new participant SHOULD send a REFER request to
the participant with a Refer-To header containing the conference URI.

The requirements are then identical to the "dial in" case of Section
4.1. The inviting participant MAY receive notification through the

REFER action that the new participant has been added in addition to

the notification received through the conference package.

An example is shown in Figure 7. 1In this call flow, it is assumed
that Alice is already a participant of the conference. Alice sends
Bob an "out of band" REFER - that is, a REFER outside of an
established dialog. Should Bob reject the REFER, Alice might try
sending an INVITE to Bob to establish a session first, then send a
REFER within the dialog, effectively transferring Bob into the
conference [17].

Alice Focus Bob Carol
| | | |
|
|
|
|
|
|
|

| <= = = = ==> |

| Alice adds Bob into conference

| |
| REFER Refer-To:Conf-ID F1

|
|
|
|
|
| == > |
| 202 Accepted F2 |
<	
NOTIFY (Trying) F3	
<	
200 OK F4	
>	
	INVITE sip:Conf-ID F5
	<
	180 Ringing F6
	- >
	200 OK Contact:Conf-ID;isfocus F7
R >	
	ACK F38
R	
	RTP
	<=======m====m=====>
NOTIFY (OK) F9	
<	
200 OK F10	
>	
NOTIFY F11	
[<—m7m—	
200 OK F12	

Johnston & Levin Expires January 16, 2005 [Page 20]

Internet-Draft SIP CC Conferencing for UAs July 2004

| SUBSCRIBE sip:Conf-ID F13

| |
| R | |
| | 200 OK F14 | |
| I > |
| | NOTIFY F15 | |
| D > |
| | 200 OK F1l6 | |
| | <= | |

Figure 6. Adding a Participant to an Existing Conference.

4.7 Requesting Focus Refer a Participant into the Conference

A participant may request the focus refer a participant into the
conference by sending a REFER method. The Refer-To header field will
have the method set to REFER and an escaped Refer-To header field
containing the conference URI.

Note that in Message F1 below, the Refer-To header field is shown as
continuing across two lines - this would not be the case in an actual
message, the URI would have continued beyond the formatting
limitations of this document.

This scenario is shown in Figure 7.

Alice Focus Bob Carol

| | | |
| <=========————————u> | |

| Alice asks focus to REFER Bob into conference

| | | |
| REFER sip:Conf-ID Refer-To:Bob?method=REFER&Refer-To=Conf-ID F1
R > | | |

|
|
|
| <m—mmmmmmmmm e | |
|
|

Focus REFERs Bob to the conference

|

|

| | |

| | REFER Refer-To:Conf-ID F5
|
|
|
|

NOTIFY (202) F7 |<-————————————m————m |

|
|
|
|
|
|
| | |
|
|
|
|
|
|
e —— | NOTIFY (Trying) F8 |

Johnston & Levin Expires January 16, 2005 [Page 21]

Internet-Draft SIP CC Conferencing for UAs July 2004

| 200 OK F9 [<= | |
|- > | 200 OK F10 |

| R > | |
| | INVITE sip:Conf-ID F11

| | < | |
| | 180 Ringing F12 |

	>	
	200 OK Contact:Conf-ID;isfocus F13	
	>	
	ACK F14	
NOTIFY F15 [<=		
[<= | RTP |

| 200 OK F16 | < = = = ===>|

|- >|] NOTIFY (200) F17 |

	<	
	200 OK F18	
	>	
	SUBSCRIBE sip:Conf-ID F17	

	<	
	200 OK F19	
	>	
	NOTIFY F20	
	-———— >	
	200 OK F21	
	<mmmmmmm s	

Figure 7. Requesting a Focus Refer a Participant to a Conference.

F1 REFER sip:3402934234Q@example.com SIP/2.0
Via: SIP/2.0/UDP client.atlanta.example.com;branch=z9hG4bKg45344
Max-Forwards: 70
To: <sip:3402934234@example.com>
From: Alice <sip:alice@atlanta.example.com>;tag=5534562
Call-ID: 849392fkl1lgl43
CSeq: 476 REFER
Contact: <sip:alice@alice.example.com>
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER,
SUBSCRIBE, NOTIFY
Accept: application/sdp, message/sipfrag
Refer-To: <sip:bob@biloxi.example.com?method=REFER
&Refer-To=s1p:3402934234%40example.com>
Supported: conf, replaces
Content-Length: 0

F5 REFER sip:3402934234@example.com SIP/2.0
Via: SIP/2.0/UDP ms5.conf.example.com;branch=z9hG4bK33445243

Johnston & Levin Expires January 16, 2005 [Page 22]

Internet-Draft SIP CC Conferencing for UAs July 2004

Max-Forwards: 70

To: <sip:bob@biloxi.example.com>

From: <sip:3402934234@example.com>;tag=345621412
Call-ID: 5494204

CSeq: 4524323 REFER

Contact: <sip:3402934234@example.com>;isfocus

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER,
SUBSCRIBE, NOTIFY

Accept: application/sdp, message/sipfrag

Refer-To: <sip:3402934234@example.com>
Supported: join, gruu, replaces

Content-Length: 0

Fl1 INVITE sip:3402934234Qexample.com SIP/2.0
Via: SIP/2.0/UDP client.biloxi.com;branch=z9hG4bKh3887
Max-Forwards: 70
To: <sip:3402934234@example.com>
From: Bob <sip:bob@biloxi.example.com>;tag=32411
Call-ID: 5d4324fa84b4c76e66710
CSeq: 764 INVITE
Contact: <sip:bob@client.biloxi.example.com>
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER,

SUBSCRIBE, NOTIFY

Allow-Events: dialog
Accept: application/sdp, message/sipfrag
Supported: conf, replaces, join
Content-Type: application/sdp
Content-Length: 274

(SDP not shown)

4.8 Adding a 3rd Party Using a Dialog Identifier

Under some circumstances, a participant wanting to join a conference
may only know a dialog identifier of one of the legs of the
conference. The information may have been learned using the dialog
package [18] or some non-SIP means to retrieve this information from
a conference participant.

A UA can request to be added to a conference by sending a request to
the focus containing a Join [6] header field containing a dialog ID
of one leg of the conference (a dialog between a participant and the
focus) .

There are other scenarios in which a UA can use the Join header for

Johnston & Levin Expires January 16, 2005 [Page 23]

Internet-Draft SIP CC Conferencing for UAs July 2004

certain conferencing call control scenarios. See [6] for further
examples and details.

An example is shown in Figure 8. It is assumed that Alice is a
participant of the conference. The dialog identifier between Alice
and the focus is abbreviated as A-F and is known by Bob. Bob
requests to be added to the conference by sending an INVITE message
F1 to the focus containing a Join header which contains the dialog
identifier A-F. Bob is added into the conference by the focus.

Alice Focus Bob Carol

| <= = = = ==>|

Bob requests to be added to the conference.

| |
| INVITE Join:A-F F1|

|

|
| |
| |
| |
	<	
	180 Ringing F2	
	>	
	200 OK Contact:Conf-ID;isfocus F3	
	- >	
	ACK F4	
e		
	RTP	
NOTIFY F5	< = = = ===>	
[<==——mmmm	SUBSCRIBE sip:Conf-ID F6	
200 OK F7 [<———————		
[>	200 OK F8	
	- >	
	NOTIFY FO9	
	- >	
	200 OK F10	
	<	

Figure 8. Adding a Participant to an Existing Conference using Join.

Johnston & Levin Expires January 16, 2005 [Page 24]

Internet-Draft SIP CC Conferencing for UAs July 2004

Fl INVITE sip:3402934234Q@example.com SIP/2.0
Via: SIP/2.0/UDP client.biloxi.com;branch=z9hG4bKh3832
Max-Forwards: 70
To: <sip:3402934234@example.com>
From: Bob <sip:bob@biloxi.example.com>;tag=32411
Call-ID: d432fa84b4c76e66710
CSeqg: 8 INVITE
Contact: <sip:bob@client.biloxi.example.com>
Join: 3434034-293553453;to-tag=fdj3134; from-tag=12£331
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER,
SUBSCRIBE, NOTIFY
Allow-Events: dialog
Accept: application/sdp, message/sipfrag
Supported: conf, replaces, join
Content-Type: application/sdp
Content-Length: 274

(SDP not shown)

4.9 Changing User Agents within a Conference

A participant in a conference may want to change the user agent with
which they participate in the conference. While this could be done

by simply sending a BYE from one user agent to leave the conference

and an INVITE from the other user agent to rejoin. However, the SIP
Replaces [6] primitive is perfectly suited to this operation.

An example is shown in Figure 9. It is assumed that Alice is a
participant of the conference using user agent #1. The dialog
identifier between Alice’s user agent #1 and the focus is abbreviated
as A-F. Alice switches to user agent #2 and sends an INVITE message
F1 to the focus containing a Replaces header which contains the
dialog identifier A-F. ©Note that this dialog identifier could be
learned through some non-SIP mechanism, or by use of SUBSCRIBE/NOTIFY
and the dialog event package [18]. Alice’s user agent #2 is added
into the conference by the focus. The focus sends a BYE to user
agent #1. User agent #1 then automatically terminates the
subscription by sending a SUBSCRIBE with Expires:0 to terminate the
subscription. ©Note that as the participant list (roster) has not
changed during this scenario, no NOTIFYs are sent by the focus to
subscribers to the participant list.

Johnston & Levin Expires January 16, 2005 [Page 25]

Internet-Draft

Alice UA#1

SIP CC Conferencing for UAs

Alice UA#2

BYE F4
< ___________________
200 OK Fb5
| mm >
| SUBSCRIBE Expires:0
| ——m e >
| 200 OK F7
| <mm e

Alice switches user agents during the conference.

| INVITE sip:Conf-ID Replaces:A-F F1

< |
| 200 OK Contact:Conf-ID;isfocus F2
|- > |
| ACK F3 |
|[<——————— |
| RTP |
| < = = = —==>|
| |
|

|

|

Fo6

| 200 OK Fl11 |
T — >
| NOTIFY F12 |
| == >
| 200 OK F13 |

July 2004

Figure 9. Adding a Participant to an Existing Conference using Join.

4.10

Bringing a Point-to-Point Session into a Conference

This call flow shows how a point to point call can be switched to a

conference call involving

an external focus.

Alice and Bob have an established session with a dialog identifier

A-B.
to the Conference URI.

Alice joins the conference with the focus by sending an INVITE
Alice then sends a REFER to the focus and

includes an escaped Replaces header field in the Refer-To header

field.

Johnston & Levin

Bob receives the INVITE from the focus,

Expires January 16,

matches the

2005

dialog in

[Page 26]

Internet-Draft SIP C

the Replaces header field with the dialog with Alice.

Bob accepts the INVITE,
Alice to tear down their

C Conferencing for UAs

July 2004

As a result,

joins the conference, and sends a BYE to

point to point dialog.

Alice Focus Bob Carol
| | | |
| Alice is in a session with Bob | |
| <=========================—===m—=m==m==o> |
| | | |
| Alice joins the conference |
| | | |
| INVITE sip:Conf-ID F1 |
R —— > | |
| 200 OK Contact:sip:Conf-ID F2 |
R | | |
ACK F3		
>		
<=======m====m=====>		
Alice asks focus to REFER Bob into conference		
REFER sip:Conf-ID Refer-To:Bob?Replaces=A-B F4		
- >		
202 Accepted F5		
R ——		
NOTIFY (Trying) F6		
R		
200 OK F7		
>		
Focus invites Bob to the conference		
	INVITE sip:Conf-ID Replaces:A-B F8	
	- >	
	200 OK F9	
R		
	ACK F10	
R >		
	RTP	
	<=======m====m=====>	
BYE F11		
<		
200 OK F12		
>		
NOTIFY (200) F13		
[<—m7m—		
200 OK F14		
=== >		

Johnston & Levin Expires January 16, 2005 [Page 27]

Internet-Draft SIP CC Conferencing for UAs July 2004

NOTIFY F15		
[<m—mmmmmm		
200 OK F16		

| === > | | |
| | SUBSCRIBE sip:Conf-ID F17

	<mmmmmmmm	
	200 OK F18	
	= >	
	NOTIFY F19	
	=== >	
	200 OK F20	
	<mmmmmmmm	

Figure 10. Transitioning a Point to Point Session into a Conference.

4.11 Requesting the Focus Remove a Participant from a Conference

To request the focus remove a participant from the specified
conference, a properly authorized SIP UA (typically the conference
owner) can send a REFER to the conference URI with a Refer-To
containing the URI of the participant and with the method set to BYE.
The requestor does not need to know the dialog information about the
dialog between the focus and the participant who will be removed -
the focus knows this information and fills it when it generates the
BYE request.

An example call flow is shown in Figure 11. It is assumed that Alice
and Carol are already participants of the conference and that Alice
is authorized to remove members from the conference. Alice sends a
REFER to the conference URI with a Refer-To header containing a URI
of the form <sip:carol@chicago.example.com?method=BYE>.

Johnston & Levin Expires January 16, 2005 [Page 28]

Internet-Draft SIP CC Conferencing for UAs July 2004

Alice Focus Bob Carol
I | | |
| <======m==m=mmmmaos> |
| REFER sip:Conf-ID Refer-To:Carol?method=BYE F1
| == > | |
| 202 Accepted F2 |
| <= | |
| NOTIFY (Trying) F3
R | |
| 200 OK F4 |
|- > | |
I | |
| Focus removes Carol from the conference
I | |
	BYE sip:Carol F5
	= >
	200 OK F6
	< e
	NOTIFY Subscription-State:terminated F7
	= >
	200 OK F8
	<"
NOTIFY (200) F9	
R —	
200 OK F10	
R >	
NOTIFY F11	
<mmmmmmmmm oo	
200 OK F12	
== >	

Figure 11. Participant Requests Focus Remove a Participant from the Conference.

Johnston & Levin Expires January 16, 2005 [Page 29]

Internet-Draft SIP CC Conferencing for UAs July 2004

Fl REFER sip:3402934234@example.com SIP/2.0
Via: SIP/2.0/UDP client.atlanta.example.com;branch=z9hG4bKg45344
Max-Forwards: 70
To: <sip:3402934234@example.com>
From: Alice <sip:alice@atlanta.example.com>;tag=5534562
Call-ID: 849392fklgl4s3
CSeqg: 476 REFER
Contact: <sip:alice@alice.example.com>
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER,
SUBSCRIBE, NOTIFY
Accept: application/sdp, message/sipfrag
Refer-To: <sip:carol@chicago.example.com?method=BYE>
Supported: conf, replaces
Content-Length: 0

F5 BYE sip:carol@client.chicago.example.com SIP/2.0
Via: SIP/2.0/UDP ms5.conf.example.com;branch=z9hG4bK343gf4
Max-Forwards: 70
From: <sip:3402934234@example.com>;tag=5393k2312
To: Carol <sip:carol@chicago.example.com>;tag=32331
Call-ID: d432fa84b4c76e66710
CSeq: 78654 BYE
Content-Length: 0

4.12 Deleting a conference

A conference created using the Conference Factory URI is
automatically deleted when the creator of the conference leaves the
conference by sending a BYE.

If the focus allows the conference policy to be manipulated, it is
possible for the conference to continue after the creator departs if
the policy is changed. However, the default conference policy for
conferences created using the Conference Factory URI is that the
conference is deleted when the creator departs.

Figure 12 shows this call flow in which the creator Alice departs

causing the conference to be deleted. Note that the order of sending
BYEs and final NOTIFYs is not important.

Johnston & Levin Expires January 16, 2005 [Page 30]

Internet-Draft

SIP CC Conferencing for UAs

Alice Focus Bob
I | |
| <============ ======) | <==================)|
| BYE F1 | <=========================
e > | |
| 200 OK F2 |
<mmmmmm e	
	BYE F3
	- >
	200 OK F4
	-———— >
	BYE F5
	e
	200 OK F6
	<=
NOTIFY Subscription-State:terminated F7	
<mmmmmmmmm oo	

|

|

200 OK F8 | | |
NOTIFY Subscription-State:terminated F9

|

|

|

Figure 12. Deleting a Conference

4.13

July 2004

Discovery of Conferencing Capabilities using OPTIONS

A UA MAY send an OPTIONS request to discover if an opaque URI is a

conference URI

(resolves to a focus). In addition,

the reply to the

OPTIONS request can also indicate support for various SIP call
control extensions used in this document.

Note that the Allow,

Accept, Allow-Events,

and Supported header

fields should be present in an INVITE from a focus or a 200 OK answer
from the focus to an INVITE as a part of a normal dialog
establishment process.

An example is shown in Figure 13 where Alice sends an OPTIONS to a
URI which resolves to a focus.

Johnston & Levin

Expires January 16, 2005

[Page 31]

Internet-Draft SIP CC Conferencing for UAs July 2004

Alice Focus Bob Carol
|
| OPTIONS sip:Conf-ID F1
|
|
|

Figure 13. Participant Queries Capabilities of URI which resolves to a Focus.

Following is an example message detail of message F2 in Figure 13.
Based on the response, Alice’s UA learns that the URI is a conference
URI and that the responding UA is focus that supports a number of SIP
call control extensions.

The response details are as follows:

F2 SIP/2.0 200 OK

Via: SIP/2.0/UDP pc33.atlanta.example.com;branch=z9hG4bKhjhs8ass877
;received=192.0.2.4

To: <sip:3402934234@example.com>;tag=93810874

From: Alice <sip:alice@atlanta.example.com>;tag=1928301774

Call-ID: a84b4dc76e66710

CSeqg: 63104 OPTIONS

Contact: <sip:3402934234Q@example.com>; isfocus

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER,
SUBSCRIBE, NOTIFY

Allow-Events: refer, conference

Accept: application/sdp, application/conference-info+xml,
message/sipfrag

Accept-Language: en

Supported: replaces, join, gruu

Content-Type: application/sdp

Content-Length:

v=0

o=focus431 2890844563 2890842835 IN IP4 ms5.conf.example.com
s=Example Subject

i=Example Conference Hosted by Example.com
u=http://conf.example.com/3402934234
e=3402934234Q@conf-help.example.com
p=+18882934234

c=IN IP4 ms5.conf.example.com

t=0 0

m=audio 49170 RTP/AVP 0 1 3 5 7

m=video 51372 RTP/AVP 31 32

Useful information from each of these headers is detailed in the next

Johnston & Levin Expires January 16, 2005 [Page 32]

Internet-Draft SIP CC Conferencing for UAs July 2004

sections.

Allow. The support of methods such as REFER, SUBSCRIBE, and NOTIFY
indicate that the user agent supports call control and SIP Events.

Accept. The support of bodies such as message/sipfrag [14],
application/conference-info+xml [5] also indicates support of call
control and conferencing.

Allow-Events. The support of event packages such as refer [3],
conference [5].

Supported. The support of extensions such as replaces, join, and
gruu.

Contact. The presence of the "isfocus" feature parameter in the
Contact header indicates that the URI is a conference URI and that
the UA is a focus.

5. Appendix - Creating a Conference by a Conference-Unaware UA

This section discussed how a human user operating a
conference-unaware UA can create and add participants to a
conference. This method is described as an appendix since it is NOT
RECOMMENDED. The scenarios involving creating a conference using
ad-hoc or manual means are recommended over this scenario. This
scenario is included, however, for completeness.

A user (human) would choose a conference URI according to system
rules and insert it into the Request-URI of the INVITE. This same
URI is echoed by a focus adhering to certain addressing conventions
(discussed below) in the Contact header by the focus. Additional
participants could be added by non-SIP means (publication of the
chosen conference URI using web pages, email, IM, etc.).
Alternatively, the conference-unaware UA could then add other
participants to the conference using SIP call control by establishing
a session with them, then transferring [17] them to the conference
URI. Note that in this scenario only the user (human) is aware of
the conferencing application, and the conference-unaware UA only need
support RFC 3261 and optionally call transfer.

Making this work does impose certain addressing conventions on a
system. As a service/implementation choice, a system could allow the
creator of the conference to choose the user portion of the
conference URI. However, this requires the URI format to be agreed
upon between a user and the system.

For example, a service provider might reserve the domain

Johnston & Levin Expires January 16, 2005 [Page 33]

Internet-Draft SIP CC Conferencing for UAs July 2004

conf.example.com for all conference URIs. Any URI in the domain of
conf.example.com would resolve to the focus. The focus could be
configured to interpret an unknown user part in the conf.example.com
domain as a request for a conference to be created with the
conference URI as the Request-URI. For example, an INVITE sent with
a Request-URI of sip:k32934208ds72@conf.example.com could be routed
to the focus that would then create the conference. This conference
URI should be registered by the newly created focus to become
routable as a conference URI within the conf.example.com domain. The
returned Contact would look as follows:

Contact: <sip:k32934208ds72@conf.example.com>; isfocus

Note, however, that this approach relies on conventions adopted
between the user (human) and the focus. Also, the approach is not
robust against collisions in the conference names. If a second user
wishing to create a new conference happened to choose the same user
part as an existing conference, the result would be that the second
user would be added into the existing conference instead of creating
a new one.

As a result, methods of conference creation in which the conference
URI is an opaque URI generated by the focus are preferred.

An example call flow is shown in Figure 14. The participant Alice
creates the conference URI (using some convention agreed to with the
focus domain) and sends an INVITE to that URI which creates the
focus. The focus creates the conference and returns the same
conference URI in the 200 OK answer to the INVITE (which is ignored
by the conference-unaware UA).

Alice Focus Bob Carol

| Alice creates the conference and chooses the conference URI.

| |
| INVITE sip:Conf-ID F1

|

| |

| |

|———— > | | |
| 180 Ringing F2 | |

[<mmmmmm— | | |
| 200 OK Contact:Conf-ID;isfocus F3 |

[<mmmmmm— | | |
| ACK F4 | |

|—— > | | |

| RTP | | |
| <= = = = ==> | |

Figure 14. A Conferencing Unaware Participant Creates a Conference

Johnston & Levin Expires January 16, 2005 [Page 34]

Internet-Draft SIP CC Conferencing for UAs July 2004

6. IANA Considerations
This specification registers a single SIP option tag, conf.
6.1 SIP Option Tag

The required information for this registration, as specified in REFC
3261 [2], is:

Name: conf

Description: This option tag is used in a Supported header field of a
request or response to indicate that the User Agent is
conference-aware and supports the extensions and scenarios
described in this specification.

7. Security Considerations

This document discusses call control for SIP conferencing. Both call
control and conferencing have specific security requirements which
will be summarized here. Conferences generally have authorization
rules about who may or may not join a conference, what type of media
may or may not be used, etc. This information is used by the focus
to admit or deny participation in a conference. It is recommended
that these types of authorization rules be used to provide security
for a SIP conference. For this authorization information to be used,
the focus needs to be able to authenticate potential participants.
Normal SIP mechanisms including Digest authentication and
certificates can be used. These conference specific security
requirements are discussed further in the requirements and framework
documents.

For call control security, a user agent must maintain local policy on
who is permitted to perform call control operations, initiate REFERs,
and replace dialogs. Normal SIP authentication mechanisms are also
appropriate here. The specific authentication and authorization
schemes are described in the multiparty call control framework
document.

8. Contributors
We would like to thank Rohan Mahy, Jonathan Rosenberg, Roni Even,

Petri Koskelainen, Brian Rosen, Paul Kyzivat, Eric Burger, and others
in list discussions.

Johnston & Levin Expires January 16, 2005 [Page 35]

Internet-Draft SIP CC Conferencing for UAs July 2004

9.

10.

11.

12.

Changes since -03
— Added definition and IANA registration for conf option tag for UAs
- Added requirement and flow for deletion of conference

- Added scenario of participant requesting focus refer a participant
to the conference

— Added scenario of moving a point to point call to a conference with
a separate focus
Changes since -02
— Added reference and text about use of GRUUs.
- Updated for latest version of conference package.

Clarified that conference package subscription should use a
separate dialog from INVITE dialog.

Changes since -01

— Added messages details of selected INVITE, 200 OK, SUBSCRIBE,
REFER, and NOTIFY messages.

Changes since -00

- Showed separation between conference factory application and focus
by having the application redirect to the newly created focus in the
ad-hoc creation scenario.

- Removed inclusion of "isfocus" parameter in Refer-To header field -
this may be a useful extension to the REFER mechanism in the future,
however.

— Updated reference from Caller Prefs document to the new
Capabilities of User Agents document.

— Added scenario of participant changing user agents during a
conference.

- Added requirement on focus to support Replaces header field.
— Added discussion about termination of dialog using BYE and

subscription using SUBSCRIBE/NOTIFY to flows involving termination of
session with the focus.

Johnston & Levin Expires January 16, 2005 [Page 36]

Internet-Draft SIP CC Conferencing for UAs July 2004

13.

13.

13.

References

1 Normative References

(1]

Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997.

Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
Peterson, J., Sparks, R., Handley, M. and E. Schooler, "SIP:
Session Initiation Protocol", RFC 3261, June 2002.

Sparks, R., "The Session Initiation Protocol (SIP) Refer
Method", RFC 3515, April 2003.

Roach, A., "Session Initiation Protocol (SIP)-Specific Event
Notification", RFC 3265, June 2002.

Rosenberg, J. and H. Schulzrinne, "A Session Initiation Protocol
(SIP) Event Package for Conference State",
draft-ietf-sipping-conference-package-04 (work in progress), May
2004.

Mahy, R. and D. Petrie, "The Session Inititation Protocol (SIP)
"Join’ Header", draft-ietf-sip-join-03 (work in progress),
February 2004.

Rosenberqg, J., "Indicating User Agent Capabilities in the
Session Initiation Protocol (SIP)™",
draft-ietf-sip-callee-caps-03 (work in progress), January 2004.

Biggs, B., Dean, R. and R. Mahy, "The Session Inititation
Protocol (SIP) ’Replaces’ Header", draft-ietf-sip-replaces-05
(work in progress), February 2004.

Rosenberg, J., "Obtaining and Using Globally Routable User Agent
(UA) URIs (GRUU) in the Session Initiation Protocol (SIP)",
draft-ietf-sip-gruu-02 (work in progress), July 2004.

2 Informative References

[10]

Levin, O. and R. Even, "High Level Requirements for Tightly
Coupled SIP Conferencing",
draft-ietf-sipping-conferencing-requirements-00 (work in
progress), April 2003.

Rosenberg, J., "A Framework for Conferencing with the Session
Initiation Protocol",
draft-ietf-sipping-conferencing-framework-02 (work in

Johnston & Levin Expires January 16, 2005 [Page 37]

Internet-Draft SIP CC Conferencing for UAs July 2004

[17]

Authors’

progress), June 2004.

Mahy, R., "A Call Control and Multi-party usage framework for
the Session Initiation Protocol (SIP)",
draft-ietf-sipping-cc-framework-03 (work in progress), October
2003.

Campbell, B. and R. Sparks, "Control of Service Context using
SIP Request-URI", RFC 3087, April 2001.

Sparks, R., "Internet Media Type message/sipfrag", RFC 3420,
November 2002.

Johnston, A., Donovan, S., Sparks, R., Cunningham, C. and K.
Summers, "Session Initiation Protocol (SIP) Basic Call Flow
Examples", BCP 75, RFC 3665, December 2003.

Johnston, A. and R. Sparks, "Session Initiation Protocol
Service Examples", draft-ietf-sipping-service-examples-06 (work
in progress), February 2004.

Sparks, R. and A. Johnston, "Session Initiation Protocol Call
Control - Transfer", draft-ietf-sipping-cc-transfer-02 (work in
progress), February 2004.

Rosenberg, J. and H. Schulzrinne, "An INVITE Inititiated Dialog
Event Package for the Session Initiation Protocol (SIP)",
draft-ietf-sipping-dialog-package-04 (work in progress),
February 2004.

Addresses

Alan Johnston

MCI

100 South 4th Street
St. Louis, MO 63102

EMail: alan. johnston@mci.com

Orit Levin
Microsoft

One Microsoft Way
Redmond, WA 75024

EMail:

oritl@microsoft.com

Johnston & Levin Expires January 16, 2005 [Page 38]

Internet-Draft SIP CC Conferencing for UAs July 2004

Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
letf-ipr@ietf.org.

Disclaimer of Validity

This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement
Copyright (C) The Internet Society (2004). This document is subject
to the rights, licenses and restrictions contained in BCP 78, and
except as set forth therein, the authors retain all their rights.

Acknowledgment

Funding for the RFC Editor function is currently provided by the
Internet Society.

Johnston & Levin Expires January 16, 2005 [Page 39]

SIPPING J. Rosenberg
Internet-Draft dynamicsoft
Expires: January 16, 2005 H. Schulzrinne
Columbia University

0. Levin, Ed.

Microsoft Corporation

July 18, 2004

A Session Initiation Protocol (SIP) Event Package for Conference
State
draft-ietf-sipping-conference-package-05

Status of this Memo

This document is an Internet-Draft and is subject to all provisions
of section 3 of RFC 3667. By submitting this Internet-Draft, each
author represents that any applicable patent or other IPR claims of
which he or she is aware have been or will be disclosed, and any of
which he or she become aware will be disclosed, in accordance with
RFC 3668.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as
Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://
www.letf.org/ietf/lid-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on January 16, 2005.
Copyright Notice

Copyright (C) The Internet Society (2004). All Rights Reserved.
Abstract

This document defines a conference event package for the Session

Initiation Protocol (SIP) Events framework, along with a data format
used in notifications for this package. The conference package

Rosenberg, et al. Expires January 16, 2005 [Page 1]

Internet-Draft Conference Package

allows users to subscribe to a conference URI.
sent about changes in the membership of this conference and

July 2004

Notifications are

optionally about changes in the state of additional conference
components.

Table of Contents

1. Introduction

N

Terminology

3. Conference Event Package

L1

Wwwwwwwwww

0

SR Q0o Jdo 0w

W NS DD

I N N

e S

Event Package Name

SUBSCRIBE Bodies

Subscription Duration

NOTIFY Bodies

Notifier Proce851ng of SUBSCRIBE Requests
Notifier Generation of NOTIFY Requests
Subscriber Processing of NOTIFY Requests
Handling of Forked Requests

Rate of Notifications

State Agents

onference Data Format

Conference Information

.1 User Element .

1.1.1 User Attrlbutes

1.1.2 User Status Elements

1.1.3 Media Information

4.1.1.3.1 Media Attributes
4.1.1.3.2 Media Elements

.1.1.4 User Role

.2 Sidebar Element . .
.3 Additional Conference Identlflers
.4 Policy URIs

.5 Recording

6 Streaming

Constructing Coherent State

.1 The Algorithm

Schema
Example

5. Security Con31deratlons
6. IANA Considerations

6.1
6.2
6.3

6.4

conference Event Package Reglstratlon

application/conference-info+xml MIME Reglstratlon

URN Sub-Namespace Registration for
urn:ietf:params:xml:ns:conference-info
XML Schema Registration

7. Acknowledgements
8. Changes History

8.1

Rosenberg,

Changes since -04

et al. Expires January 16, 2005

QO OO O 1 ~J ~J O O O O Ul

NI NI N R T R e B T = T o S S o e
B SWR O JO UG s DdWWwWNhDEREOOO®

24
25
26
27
27

[Page 2]

Internet-Draft Conference Package July 2004

8.2 Changes since -03 o271
8.3 Changes since -02 021
8.4 Changes since -01 . 28
9. References00 e e e e e e e e e e e e e 29
9.1 Normative References « « « « « « « « < . .29
9.2 Informative References « « « « « v « « < . .29
Authors’ Addresses « « . ¢ v 4 e e 4 e e o .. . o.o.30
Intellectual Property and Copyright Statements 32

Rosenberg, et al. Expires January 16, 2005 [Page 3]

Internet-Draft Conference Package July 2004
1. Introduction

The Session Initiation Protocol (SIP) [6] Events framework Events
Framework [7] defines general mechanisms for subscribing to, and
receiving notifications of, events within SIP networks. It
introduces the notion of a package, which is a specific
"instantiation" of the events framework for a well-defined set of
events. Here, we define an event package for SIP conferences. This
package provides the conference notification service as outlined in

the SIP conferencing framework [14]. As described there,
subscriptions to a conference URI are routed to the focus that is
handling the conference. It acts as the notifier, and provides

clients with updates on conference state.

The information provided by this package is comprised of conference
identifier(s), conference participants (optionally with their
statuses and media description), conference sidebars, conference
policy URIs, etc.

Rosenberg, et al. Expires January 16, 2005 [Page 4]

Internet-Draft Conference Package July 2004

2.

Terminology

In this document, the key words "MUST", "MUST NOT", "REQUIRED",
"SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
and "OPTIONAL" are to be interpreted as described in RFC 2119 [2] and
indicate requirement levels for compliant implementations.

Rosenberg, et al. Expires January 16, 2005 [Page 5]

Internet-Draft Conference Package July 2004
3. Conference Event Package

The conference event package allows a user to subscribe to a
conference. In SIP, conferences are represented by URIs. These URIs
route to a SIP user agent, called a focus, that is responsible for
ensuring that all users in the conference can communicate with each
other, as described in Conferencing Framework [14]. The focus has
sufficient information about the state of the conference to inform
subscribers about it.

It is possible a participant in the conference may in fact be another
focus. In order to provide a more complete participant list, the
focus MAY subscribe to the conference package of the other focus to
discover the participant list in the cascaded conference. This
information can then be included in notifications by using of the
"cascaded-focus" attribute as specified by this package.

This section provides the details for defining a SIP Events package,
as specified by RFC 3265 [7].

3.1 Event Package Name

The name of this event package is "conference". This package name is
carried in the Event and Allow-Events header, as defined in RFC 3265
[(7].

3.2 SUBSCRIBE Bodies

A SUBSCRIBE for a conference package MAY contain a body. This body
defines a filter to apply to the subscription. Filter documents are
not specified in this document, and at the time of writing, are
expected to be the subject of future standardization activity.

A SUBSCRIBE for a conference package MAY be sent without a body.

This implies the default subscription filtering policy. The default

policy is:

o Notifications are generated every time there is any change in the
state of the conference.

o Notifications do not normally contain full state; rather, they
only indicate the state that has changed. The exception is a
NOTIFY sent in response to a SUBSCRIBE. These NOTIFYs contain the
full state of the information requested by the subscriber.

3.3 Subscription Duration
The default expiration time for a subscription to a conference is one

hour. Once the conference ends, all subscriptions to that particular
conference are terminated, with a reason of "noresource" RFC 3265

Rosenberg, et al. Expires January 16, 2005 [Page 6]

Internet-Draft Conference Package July 2004
[71.
3.4 NOTIFY Bodies

As described in RFC 3265 [7], the NOTIFY message will contain bodies
that describe the state of the subscribed resource. This body is in
a format listed in the Accept header field of the SUBSCRIBE, or a
package-specific default if the Accept header field was omitted from
the SUBSCRIBE.

In this event package, the body of the notification contains a
conference information document. This document describes the state
of a conference. All subscribers and notifiers MUST support the
"application/conference-info+xml" data format described in Section 4.
The subscribe request MAY contain an Accept header field. If no such
header field is present, it has a default value of "application/
conference-info+xml". If the header field is present, it MUST
include "application/conference-info+xml", and MAY include any other
types capable of representing dialog state.

Of course, the notifications generated by the server MUST be in one
of the formats specified in the Accept header field in the SUBSCRIBE
request.

3.5 Notifier Processing of SUBSCRIBE Requests

The conference information contains very sensitive information.
Therefore, all subscriptions SHOULD be authenticated and then
authorized before approval. Authorization policy is at the
discretion of the administrator, as always. However, a few
recommendations can be made.

It is RECOMMENDED that all users in the conference be allowed to
subscribe to the conference.

3.6 Notifier Generation of NOTIFY Requests

Notifications SHOULD be generated for the conference whenever there
is a change in the state in any of the information delivered to the
subscriber.

The changes generally occur when a new participant Jjoins (i.e. gets
"connected" to) or a participant leaves (i.e. gets "disconnected"
from) the conference.

Subject to a local focus policy, additional changes in participant’s

status, changes in its media types, and other optional media
attributes MAY be reported by the focus.

Rosenberg, et al. Expires January 16, 2005 [Page 7]

Internet-Draft Conference Package July 2004

Changes in sidebar rosters SHOULD be reported by the focus to their
participants and MAY be reported to others, subject to local policy.

Changes in conference identifiers and policy URIs SHOULD be reported
by the focus to the conference participants.

3.7 Subscriber Processing of NOTIFY Requests

The SIP Events framework expects packages to specify how a subscriber
processes NOTIFY requests in any package specific ways, and in
particular, how it uses the NOTIFY requests to construct a coherent
view of the state of the subscribed resource.

Typically, the NOTIFY for the conference package will only contain
information about those users whose state in the conference has
changed. To construct a coherent view of the total state of all
users, a subscriber to the conference package will need to combine
NOTIFYs received over time.

Notifications within this package can convey partial information;
that is, they can indicate information about a subset of the state
associated with the subscription. This means that an explicit
algorithm needs to be defined in order to construct coherent and
consistent state. The details of this mechanism are specific to the
particular document type. See Section 4.2 for information on
constructing coherent information from an application/
conference-info+xml document.

3.8 Handling of Forked Requests

By their nature, the conferences supported by this package are
centralized. Therefore, SUBSCRIBE requests for a conference should
not generally fork. Users of this package MUST NOT install more than
a single subscription as a result of a single SUBSCRIBE request.

3.9 Rate of Notifications

For reasons of congestion control, it is important that the rate of
notifications not become excessive. As a result, it is RECOMMENDED
that the server not generate notifications for a single subscriber at
a rate faster than once every 5 seconds.

3.10 State Agents
Conference state is ideally maintained in the element in which the
conference resides. Therefore, the elements that maintain the

conference are the ones best suited to handle subscriptions to it.
Therefore, the usage of state agents is NOT RECOMMENDED for this

Rosenberg, et al. Expires January 16, 2005 [Page 8]

Internet-Draft Conference Package July 2004

package.

Rosenberg, et al. Expires January 16, 2005 [Page 9]

Internet-Draft Conference Package July 2004
4. Conference Data Format

Conference information is an XML document that MUST be well-formed
and SHOULD be valid. Dialog information documents MUST be based on
XML 1.0 and MUST be encoded using UTF-8. This specification makes
use of XML namespaces for identifying dialog information documents
and document fragments. The namespace URI for elements defined by
this specification is a URN [3], using the namespace identifier
"ietf’ defined by [4] and extended by [1]. This URN is:

urn:ietf:params:xml:ns:conference-info

A conference information document begins with the root element tag
"conference—-info".

4.1 Conference Information

Conference information begins with the top level element

"conference-info". This element has three mandatory attributes:

version: This mandatory attribute allows the recipient of conference
information documents to properly order them. Versions start at 0
and increment by one for each new document sent to a subscriber.
Versions are scoped within a subscription. Versions MUST be
represented using a 32 bit integer.

state: This mandatory attribute indicates whether the document
contains the full conference information, or whether it contains
only the information that has changed since the previous document
(partial) .

entity: This mandatory attribute contains the conference URI that
identifies the conference being described in the document.

The "conference-info" element has zero or more "user" sub-elements
which contain information on the users in the conference. This is
followed by zero or more "sidebar" sub-elements which contain
information on the sidebars in the conference. This is followed by
zero or more "conf-uri" sub-elements which contain information on
additional URIs that the conference can be accessed by. This is
followed by zero or more "policy-uri" sub-elements which contain
information on additional URIs that the conference policies can be
accessed by. This is followed by "recording" and "streaming"
elements describing recording and streaming statuses of the
conference.

4.1.1 User Element

Rosenberg, et al. Expires January 16, 2005 [Page 10]

Internet-Draft Conference Package July 2004
4.1.1.1 User Attributes

The user element has one mandatory attribute, "uri" that indicates
the URI for the user in the conference. This is a logical
identifier, which corresponds to the authenticated identity of the
participant. The "uri" attribute MUST be unique in the user element
list because it is used as the key in partial notifications about
users’ state.

If a conference participant has more than a single signaling dialog
associated with the conference, the conference focus MAY present the
user’s aggregated information (e.g. the statuses) and display all
its media streams under a single user element.

Note, that the optional element "instance" of "media" (see below) MAY
be used in this case to specify the actual signaling dialog for each
media stream.

An anonymous participant in a conference SHOULD be represented by an
anonymous URI generated by the focus. For multiple anonymous
participants, the focus must ensure that each anonymous URI is
unique. The guidelines for generating anonymous URIs in RFC 3323 [8]
should be followed. For example,

"Anonymousl" <sip:anonymousl@anonymous.invalid>
could be used for a participant requesting privacy.

The optional attribute "display-name" contains a display name for the
user. The standard "xml:lang" language attribute can also be present
to indicate the language of the display-name.

The optional attribute "cascaded-focus" contains a conference URI
(different from the main conference URI) for users that are connected
to the main conference as a result of focus cascading. In accordance
with the SIP conferencing framework [14], this package allows for
representation of peer-to-peer (i.e. "flat") focus cascading only.
The actual cascading graph can not be deduced from the information
provided in the package alone. Advanced applications can construct
the graph by subscribing to both this package and the Dialog Package
[15] of the cascaded foci and correlating the relevant information.

If the main conference "state" is "full", the state of its user(s)

MUST "full". 1If the main conference "state" is "partial", the state
of its user(s) MAY be either "partial" or "full".

Rosenberg, et al. Expires January 16, 2005 [Page 11]

Internet-Draft Conference Package July 2004
4.1.1.2 User Status Elements

Three optional status elements are defined: status, Jjoining-mode, and

disconnection-reason.

o "status": provides information about user’s current level of
participation in the conference.

o "Jjoining-mode": if present, provides information about the way the
user joined the conference.

o "disconnection-reason": if present, provides information about the
way the user left the conference.

The following statuses are defined for the "status" element:

connected: The user is a participant in the conference. Depending on
the media policies, he/she can send and receive media to and from
other participants.

disconnected: The user is not a participant in the conference and no
active dialog exists between the user and the focus.

on-hold: Active SIP dialog exists between a user and a focus, but
user 1is "on-hold" for this conference, i.e. neither he/she 1is
"hearing" the conference mix, nor is his/her media being mixed in
the conference. As an example, the user has asked to join the
conference using SIP, but his/her participation is pending based
on moderator approval. In the meantime he/she is hearing
music-on-hold or some other kind of related content.

muted-via-focus: Active SIP dialog exists between a user and a focus
and the user can "listen" to the conference, but user’s media is
not being mixed into the conference. Note that sometimes a subset
of user media streams can be muted by focus (such as poor quality
video) while others (such as voice or IM) can still be active. 1In
this case, it is RECOMMENDED that the "aggregated" user
connectivity "status" reflects the status of the mostly active
media.

blocked: User is denied from ever participating in this conference.

pending: User is not yet in the session, but it is anticipated that
he/she will join in the near future.

calling: User is being called by the focus.

ringing: An PSTN ALERTING or SIP 180 Ringing was returned for the
outbound call, user is being alerted.

dialing-in: User is dialing into the conference, not yet in the
roster (probably being authenticated).

disconnecting: Focus is in the process of disconnecting user (either
DISCONNECT or BYE was sent to the user’s device).

removed: This status is used to remove the user from the roster using
partial notifications mechanism.

Note that the defined transient states (e.g., calling, ringing, etc.)

could generate a lot of notifications. Implementations MAY choose
not to generate notifications on these to all participants if it will

Rosenberg, et al. Expires January 16, 2005 [Page 12]

Internet-Draft Conference Package July 2004
generate too much traffic.

The following statuses are defined for the "joining-mode" element:
dialed-in: The user dialed into the conference, i.e. sent INVITE to
the focus, which resulted in successful dialog establishment.

dialed-out: The focus has brought the user into the conference by
sending a successful INVITE to the user.

focus-owner: The user is the focus for this conference. This status
is used only when a participant UA acts as a conference focus.

The following statuses are defined for the disconnection-reason

element:

departed: The user sent a BYE, thus leaving the conference.

booted: The user was sent a BYE by the focus, booting him/her out of
the conference. Alternatively, the user tried to dial into to
conference without success because was rejected by the focus
according to local policy decisions.

failed: The server tried to bring the user into the conference, but
its attempt to contact the specific user resulted in a non-200
class final response. Alternatively, the user tried to dial into
the conference without success due to technical reasons.

4.1.1.3 Media Information
Each user has zero or more "media" sub-elements.

Each "media" element indicates the media that the user is currently
connected to. Here, "connected to" implies that a user has a media

line in his/her SDP [12] document(s). With this definition, a user
is connected to a media stream even if he/she is not sending any
media.

4.1.1.3.1 Media Attributes

The "media" element has a mandatory "media-type" attribute which
identifies the media type (e.g. audio, video, message and
application) and MUST have one of the values registered for "media"
of SDP [12].

The optional "id" attribute serves as a unique reference to a "media"
element within the "user" element. It MUST be included for each
"media" element for all notifications if the focus uses "partial"
user notifications for this conference. Otherwise, the "id"
attribute MAY be omitted.

If the user "state" is "full", the state of its "media" element (s)

MUST be "full". If the user "state" is "partial", the state of its
"media" element (s) MAY be either "partial" or "full".

Rosenberg, et al. Expires January 16, 2005 [Page 13]

Internet-Draft Conference Package July 2004
4.1.1.3.2 Media Elements

The "media" element has also an optional "proto" sub-element, which
MUST has the value registered for "proto" of SDP [12].

An optional "ssrc" sub-element, if present, carries the value of SSRC
(defined in RTP/RTCP [10]) as generated by the user for the stream it
sends.

When an RTP mixer generates a CSRC list according to RTP/RTCP [10],
it inserts a list of the SSRC identifiers of the sources that
contributed to the generation of a particular packet into the RTP
header of that packet. "An example application is audio conferencing
where a mixer indicates all the talkers whose speech was combined to
produce the outgoing packet, allowing the receiver to indicate the
current talker, even though all the audio packets contain the same
SSRC identifier (that of the mixer)."

An optional "info" sub-element, if present, carries a human readable
description for this stream populated by the focus. The value of
this element corresponds to the information media attribute "i" in
SDP [12].

An optional "label" sub-element, if present, carries a unique
identifier for this stream among all streams in the conference and is
assigned by the focus. The value of this element corresponds to the
"label" media attribute in SDP [12] and defined in [18].

An optional "instance" sub-element, if present, carries a URI, which
MUST uniquely identify the signaling dialog being used for
establishing of this media stream. In SIP, for example, values of
Contact URI or GRUU [17] can be used for this purpose. It is
RECOMMENDED to include the "instance" information for every user that
has more than a single dialog associated with the conference. This
element SHOULD NOT be included for an anonymous participant.

An optional "status" sub-element, if present, is used to remove
"media" elements during partial notifications.

Optional "snd-status" and "rcv-status" sub-elements, if present,
describe the status of media streams in each direction.

4.1.1.4 User Role
The optional "role" element conveys the role of the user in the
conference, e.g. participant, presenter, panelist, host, etc.

User’s role MAY change dynamically in the course of the conference.
Also, a user MAY have more than a single role in one time.

Rosenberg, et al. Expires January 16, 2005 [Page 14]

Internet-Draft Conference Package July 2004

This document does not define fixed values for the "role" element,
instead it is expected that conferencing applications will define
custom-fit roles by templates.

4.1.2 Sidebar Element

The sidebar element is of the general "conference-type" and MAY use
all the attributes and elements defined by it. Typically, only the
"entity", which uniquely identifies the sidebar, and the "user"
elements will be useful to present to the majority of the
participants in the conference.

The "conference-type" mandatory attributes MUST be included for each
sidebar.

The value of the "version" attribute is meaningless for "sidebar"
elements and MUST be ignored because it is always overruled by the
"version" attribute of the main "conference-info".

If the main conference "state" is "full", the state of its sidebar (s)
MUST be "full". If the main conference "state" is "partial", the
state of its sidebar(s) MAY be either "full" or "partial".

The "entity" URI attribute MUST be unique among the sidebar
identifiers of the same conference. Attribute "entity" is used as
the key for "sidebar" elements in partial notifications for
"conference-info".

4.1.3 Additional Conference Identifiers
In addition to the Conference URI present in the "entity" attribute,
a conference MAY have additional URIs of various types. Connecting
to these URIs will result in Jjoining to the same conference.

4.1.4 Policy URIs
A policy URI specifies where and how a certain policy pertaining to
the conference can be accessed. The actual policy name and usage is
deduced from the URI schema name.
An example for the "policy-uri" usage is inclusion of the URI of the
CPCP [16]. A subscriber to the Conference package can use the Policy
URI to access and modify the conference policy.

4.1.5 Recording
In many cases, legal regulations require conference providers to

announce to the participants that a specific conference is being

Rosenberg, et al. Expires January 16, 2005 [Page 15]

Internet-Draft Conference Package July 2004
recorded.

In addition to the recording "status" information, the "recording"
element MAY include the URIs specifying the location and the format
of the recorded data. Typically, the recorded data becomes available
after the conference ends. Multiple URIs can be provided, for
example, specifying different content types. For Web-Page embedded
media, a plain HTTP URI MAY be provided.

4.1.6 Streaming

The "streaming" element, if present, specifies whether the conference
output is being streamed (to general public, for example), in what
streaming format, and at what (e.g. multicast) addresses it can be
listened at. RTSP [11] is an example of such streaming protocol.

4.2 Constructing Coherent State

The conference information is described by a hierarchal XML structure
with the root element "conference-info". The root element is the
only element in the schema that carries meaningful version number for
all the elements in the document. The whole conference information
is associated with this version number.

The version number MUST be initialized with the value of the
"version" attribute from the "conference-info" element in the first
document received. Each time a new document is received, the wvalue
of the local version number, and the "version" attribute in the new
document, are compared. If the value in the new document is one
higher than the local version number, the local version number is
increased by one, and the document is processed. If the value in the
document is more than one higher than the local version number, the
local version number is set to the value in the new document, the
document is processed, and the subscriber SHOULD generate a refresh
request to trigger a full state notification. If the value in the
document is less than the local version, the document is discarded
without processing.

Further processing of the conference information document depends on
whether it contains full or partial state. If it contains full
state, indicated by the value of the "state" attribute in the
"conference-info" element, the whole local content is flushed and
repopulated from the document.

If the document contains partial state, as indicated by the value of

the "state" attribute in the "conference-info" element, the document
is used to update the local content as described below.

Rosenberg, et al. Expires January 16, 2005 [Page 16]

Internet-Draft Conference Package July 2004

All sub-elements in the "conference-info" hierarchal XML structure
can be classified in two groups: those that carry relatively small
amount of data and those that can potentially carry a lot of data.
During partial notifications, the light elements are updated as
atomic pieces of data. On the other hand, elements that can carry a
substantial amount of data have the general "state" attribute
attached to them. That is in order to support partial notifications
for their content.

A "state" attribute of a child element in the document MUST adhere to

its parent "state". It means that if the parent’s "state" is "full",
the state of its children MUST be "full". 1If the parent’s "state" is
"partial", the state of its children MAY be either "partial" or
"full".

For elements with optional "state" attribute, if the attribute is not
included for an element, it means that the element’s state is "full".

For a parent element with "state", its sub-elements with possible
multiple appearances under the parent have keys that uniquely
identify each element among others in the same list.

4.2.1 The Algorithm
The conference package subscriber locally maintains a local element
for each element in the schema and a table for each "element with
key(s)" in the schema. The tables are indexed by the key(s) defined
in schema for the element.

Starting from outer elements in the received document,

1. If the parent element contains full state, the element is
replaced with the new information as a whole.

2. Otherwise, if the parent element contains partial state,

2.1 For elements with keys, the subscriber compares the keys received
in the update with the keys in the local tables.

2.1.1 If a key doesn’t exist in the local table, a row is added, and
its content is set to the element information from the update.

2.1.2 Otherwise, if a key of the same value does exist, for each
sub-element in the row the algorithm is applied from step 2.2.

2.2 For each atomic element received in the schema, the element is

replaced with the new information as a whole. Also, for each
non-atomic element received in the schema with either no "state"

Rosenberg, et al. Expires January 16, 2005 [Page 17]

Internet-Draft Conference Package July 2004

attribute included or the state attribute is set to "full", the
element is replaced with the new information as a whole.

2.2.1 If the updated or created element carries the "removed" status,
that element SHOULD be removed from the local content. If the
element is updated or created, such that it is empty, that element
MAY be removed from the local content at any time.

2.3 For each non-atomic element with the state attribute set to
"partial", the algorithm is applied recursively starting from step 2.

4.3 Schema

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema targetNamespace="urn:ietf:params:xml:ns:conference-info" xmlns:tns="urn:
<l==
This import brings in the XML language attribute xml:lang
-—>
<xs:import namespace="http://www.w3.0rg/XML/1998/namespace" schemalLocation="http:

<xs:element name="conference-info" type="tns:conference-type"/>

<xs:simpleType name="state-type">

<xs:restriction base="xs:string">
<xs:enumeration value="full" />
<xs:enumeration value="partial" />

</xs:restriction>

</xs:simpleType>

<xs:complexType name="conference-type">

<xXs:sequence>
<xs:element name="user" type="user-type" minOccurs="0" maxOccurs="unbounded" />
<xs:element name="sidebar" type="conference-type" minOccurs="0" maxOccurs="unboun
<xs:element name="conf-ids" type="conf-ids-type" minOccurs="0" maxOccurs="1" />
<xs:element name="policy-ids" type="policy-ids-type" minOccurs="0" maxOccurs="1"
<xs:element name="recording" type="recording-type" minOccurs="0" maxOccurs="1" />
<xs:element name="streaming" type="streaming-type" minOccurs="0" maxOccurs="1" />
<xs:any processContents="1lax" minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="version" type="xs:nonNegativelnteger" use="required"/>
<xs:attribute name="state" type="tns:state-type" use="required"/>
<xs:attribute name="entity" type="xs:anyURI" use="required"/>
<xs:anyAttribute />

Rosenberg, et al. Expires January 16, 2005 [Page 18]

Internet-Draft Conference Package July 2004
</xs:complexType>

<xs:complexType name="conf-ids-type">
<xXs:sequence>
<xs:element name="conf-uri" type="xs:anyURI" minOccurs="0" maxOccurs="unbounded"
<xs:any processContents="1lax" minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>

<xs:anyAttribute />
</xs:complexType>

<xs:complexType name="policy-ids-type">
<xXs:sequence>
<xs:element name="policy-uri" type="xs:anyURI" minOccurs="0" maxOccurs="unbounded
<xs:any processContents="1lax" minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>

<xs:anyAttribute />
</xs:complexType>

<xs:complexType name="recording-type">
<xXs:sequence>
<xs:element name="uri" type="xs:anyURI" minOccurs="0" maxOccurs="unbounded" />
<xs:any processContents="1lax" minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>

<xs:attribute name="status" type=="stream-status-type" use="required"/>
<xs:anyAttribute />
</xs:complexType>

<xs:complexType name="streaming-type">
<xs:sequence>
<xs:element name="uri" type="xs:anyURI" minOccurs="0" maxOccurs="unbounded" />
<xs:any processContents="1lax" minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>

<xs:attribute name="status" type="stream-status-type" use="required"/>
<xs:anyAttribute />
</xs:complexType>

<xs:complexType name="user-type">

<xs:sequence>
<xs:element name="status" type="tns:user-status-type" minOccurs="0"/>
<xs:element name="joining-mode" type="tns:user-joining-mode-type" minOccurs="0"/>
<xs:element name="disconnection-reason" type="tns:user-disconnection-reason-type"
<xs:element name="media" type="tns:media-type" minOccurs="0" maxOccurs="unbounded
<xs:element name="role" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>

Rosenberg, et al. Expires January 16, 2005 [Page 19]

Internet-Draft

Conference Package

July 2004

<xs:any processContents="1lax" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute
<xs:attribute
<xs:attribute
<xs:attribute
<xs:attribute
<xs:anyAttribu

</xs:complexTyp

<xs:simpleType
<xs:restrictio

name="uri"

ref="xml:lang"

name="cascaded-focus" type="xs:anyURI"
name="state" type="tns:state-type"

te />
e>

name="user-status-type">
n base="xs:string">

<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration
<xs:enumeration

value="connected"/>
value="disconnected"/>
value="on-hold"/>
value="muted-via-focus"
value="blocked"/>
value="pending"/>
value="calling"/>
value="ringing"/>
value="dialing-in"/>
value="disconnecting"/>
value="removed"/>

</xs:restricti
</xs:simpleType

on>
>

type="xs:anyURI"
name="display-name" type="xs:string"

/>

<xs:simpleType name="user-joining-mode-type">

<xs:restrictio
<xs:enumerati
<xs:enumerati
<xs:enumerati
</xs:restricti
</xs:simpleType

<xs:simpleType name="user-disconnection-reason-type">

<xs:restrictio
<xs:enumerati
<xs:enumerati
<xs:enumerati
</xs:restricti
</xs:simpleType

<xs:complexType
<Xs:sequence>
<xs:element n

Rosenberg, et al.

n base="xs:string">

on value="dialed-in" />
on value="dialed-out" />
on value="focus-owner" />
on>

>

n base="xs:string">

on value="departed" />
on value="booted" />
on value="failed" />
on>

>

name="media-type">

ame="proto"

Expires January 16,

type="xs:string"

2005

use="required"/>
use="optional"/>
use="optional"/>
use="optional"/>
use="optional"/>

minOccurs="0"/>

[Page 20]

Internet-Draft

<xs:element name="ssrc"
<xs:element name="info"
<xs:element name="label"
<xs:element name="instance"
<xs:element name="status"
<xs:element name="snd-status"
<xs:element name="rcv-status"
<xs:any processContents="lax"
</xs:sequence>

<xs:attribute name="media"
<xs:attribute name="id"
<xs:attribute name="state"
<xs:anyAttribute />

</xs:complexType>

Conference Package

type="xs:string"
type="nonNegativelnteger"
type="tns:state-type"

July 2004

type="xs:nonNegativeInteger" minOccurs="0"/>
type="xs:string" minOccurs="0"/>
type="xs:string" minOccurs="0"/>
type="xs:anyURI" minOccurs="0"/>

type="tns:media-status-type" minOccurs="0"/>
type="tns:stream-status-type" minOccurs="0"/>
type="tns:stream-status-type" minOccurs="0"/>
minOccurs="0" maxOccurs="unbounded"/>

use="required"/>
use="optional"/>
use="optional"/>

<xs:simpleType name="media-status-type">
<xs:restriction base="xs:string">

<xs:enumeration value="removed"
</xs:restriction>
</xs:simpleType>

/>

<xs:simpleType name="stream-status-type">
<xs:restriction base="xs:string">
<xXs:enumeration value="on"/>
<xs:enumeration value="off"/>
<xs:enumeration value="muted"
</xs:restriction>
</xs:simpleType>

/>

</xs:schema>

4.4 Example
The following is an example conference information document:
Rosenberg, et al. Expires January 16, 2005 [Page 21]

Internet-Draft Conference Package July 2004

<?xml version="1.0" encoding="utf-8" ?>
<conference-info version="0" state="full" entity="sip:conf233@example.com">
<user uri="sip:boblexample.com" display-name="Bob Jones">
<status>connected</status>
<joining-mode>dialed-in</joining-mode>
<media media="audio">
<proto>RTP/AVP</proto>
<ssrc>583398</ssrc>
</media>
</user>
<user uri="sip:barbara@example.com" display-name="Barbara Jones">
<status>on-hold</status>
</user>
<user uri="sip:bill@example.com" display-name="Bill Minelli">
<status>on-hold</status>
</user>

<sidebar version="0" state="full" entity="sip:conf233.l@example.com">
<user uri="sip:barbaralexample.com" />
<user uri="sip:bill@example.com" />

</sidebar>

<conf-ids>
<conf-uri>tel:+18005671234</conf-uri>
<conf-uri>h323:conf545@example.com</conf-uri>
</conf-ids>

<recording status="on">
<uri>http://quicktime.streaming.com/54634/recording.mov</uri>
<uri>http://real.streaming.com/54634/recording.ram</uri>
<uri>http://windowsmedia.streaming.com/54634/recording.wmv</uri>
<uri>http://www.streaming.com/54634/recording.html</uri>
</recording>

</conference-info>
This conference currently has three users, two of which are in a
sidebar conversation. The conference is being recorded. There are

additional means to join the conference either by phone using tel URI
[14] or by H.323 protocol using H.323 URL [13].

Rosenberg, et al. Expires January 16, 2005 [Page 22]

Internet-Draft Conference Package July 2004
5. Security Considerations

Subscriptions to conference state can reveal very sensitive
information. For this reason, the document recommends authentication
and authorization, and provides guidelines on sensible authorization
policies.

Since the data in notifications is sensitive as well, end-to-end SIP
encryption mechanisms using S/MIME SHOULD be used to protect it.

Since a focus provides participants identity information using this
event package, participant privacy needs to be taken into account. A
focus MUST support requests by participants for privacy. Privacy can
be indicated by the conference policy - for every participant or
select participants. It can also be indicated in the session
signaling. In SIP this can be done using the Privacy header field
described in RFC 3323 [8]. For a participant requesting privacy, no
identity information SHOULD be revealed by the focus such as a URI
(e.g. the Address of Record, Contact, or GRUU). For these cases,
the anonymous URI generation method outlined in section "User
Element" of this document MUST be followed.

Rosenberg, et al. Expires January 16, 2005 [Page 23]

Internet-Draft Conference Package July 2004
6. IANA Considerations

This document registers a SIP event package, a new MIME type,
application/conference-info+xml, a new XML namespace, and a new XML
schema.

6.1 conference Event Package Registration

This specification registers an event package, based on the

registration procedures defined in RFC 3265 [7]. The following is

the information required for such a registration:

Package Name: conference

Package or Template-Package: This is a package.

Published Document: RFC XXXX (Note to RFC Editor: Please fill in XXXX
with the RFC number of this specification).

Person to Contact: Jonathan Rosenberg, jdrosen@jdrosen.net.

6.2 application/conference-info+xml MIME Registration

MIME media type name: application

MIME subtype name: conference-info+xml

Mandatory parameters: none

Optional parameters: Same as charset parameter application/xml as
specified in RFC 3023 [5].

Encoding considerations: Same as encoding considerations of
application/xml as specified in RFC 3023 [5].

Security considerations: See Section 10 of RFC 3023 [5] and Section 5
of this specification.

Interoperability considerations: none.

Published specification: This document.

Applications which use this media type: This document type has been
used to support SIP conferencing applications.

Additional Information:
Magic Number: None
File Extension: .cif or .xml
Macintosh file type code: "TEXT"

Personal and email address for further information: Jonathan
Rosenberg, <jdrosen@jdrosen.net>

Intended usage: COMMON

Author/Change controller: The IETF.

6.3 URN Sub-Namespace Registration for
urn:ietf:params:xml:ns:conference-info

This section registers a new XML namespace, as per the guidelines in

[17.

Rosenberg, et al. Expires January 16, 2005 [Page 24]

Internet-Draft Conference Package July 2004

URI: The URI for this namespace is
urn:ietf:params:xml:ns:conference-info.

Registrant Contact: IETF, SIPPING working group, <sipping@ietf.org>,
Jonathan Rosenberg <jdrosen@jdrosen.net>.

XML :

BEGIN
<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"
"http://www.w3.0rg/TR/xhtml-basic/xhtml-basicl0.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<meta http-equiv="content-type"
content="text/html; charset=1s0-8859-1"/>
<title>Conference Information Namespace</title>
</head
<body>
<hl>Namespace for Conference Information</hl>
<h2>urn:ietf:params:xml:ns:conference-info</h2>
<p>See RFCXXXX.</p>
</body>
</html>
END

6.4 XML Schema Registration

This specification registers a schema, as per the guidelines in in
[1].
URI: please assign.
Registrant Contact: IETF, SIPPING Working Group
(sipping@ietf.org), Jonathan Rosenberg (jdrosen@jdrosen.net).
XML: The XML can be found as the sole content of Section 4.3.

Rosenberg, et al. Expires January 16, 2005 [Page 25]

Internet-Draft Conference Package July 2004
7. Acknowledgements

The authors would like to thank Dan Petrie, Sean Olson, Alan
Johnston, and Rohan Mahy for their comments and inputs.

Rosenberg, et al. Expires January 16, 2005 [Page 26]

Internet-Draft Conference Package July 2004

8.
8.1

O
O

8.2

@)

8.3

O O O O O O

O

Changes History

Changes since -04

"Sidebar-type" has been removed. "Sidebar" conference element is
defined using the general "conference-type".

"Recording" conference attribute has been replaced with
"recording" and "streaming" elements within "conference-type".
New "recording-type" and "streaming-type" have been introduced.
Attribute "state" has been added to "user-type".

Element "media-stream" within "user-type" has been renamed to
"media".

Element "role" within "user-type" has been introduced.

The following statuses have been added to "user-status-type":
blocked, pending, calling, ringing, dialing-in, disconnecting,
removed.

User status "muted-by-focus" has been renamed to
"muted-via-focus".

Attributes "id" and "state" have been added to "media-type".
Elements "status", "snd-status" and "rcv-status" have been added
to "media-type".

Element "dialog-id" has been renamed to "instance".

"Constructing Coherent State" section has been updated to include
user and media partial notifications.

Changes since -03

"Constructing Coherent State" section has been updated.

In order to support partial notifications, two placeholders
"conference-ids" and "policy-ids" (for "conf-uri" and "policy-uri"
elements, correspondingly) are created.

Discussion and security considerations regarding anonymous
participation have been added.

Optional elements "dialog-uri", "info" and "label" per media
stream are added.

Changes since -02

State "muted-by-focus" is added to user’s status.

Optional conference attribute "recording" is added.

Policy URI placeholder (i.e. element "policy-uri") is created.
Example’s syntax is corrected.

Optional attribute "cascaded-focus" URI per user is added.
Optional additional conference identifiers (i.e. element
"conf-uri") are added.

In order to cover all possible cases, participant’s status is
expressed using three optional statuses: "status", "joining-mode"
and "disconnection-reason". That is instead of "activity-status",
"history-status" and "is-on-dial-out-list".

Rosenberg, et al. Expires January 16, 2005 [Page 27]

Internet-Draft Conference Package July 2004

8.4
o

Changes since -01

Package parameters are removed. Decision about performing
"recursive" membership algorithm is perceived as a focus local
policy.

General information (i.e. pointers to additional available
services) is removed. The defined XML schema can be extended in
future to include those when XCON work matures.

Dialog information is removed. It can be obtained by direct
subscription to a dialog package of a participant.

Media stream information is aligned with SDP definitions (media
and proto) and SSRC attribute is added.

Participant’s status is expressed using two optional statuses:
"activity" and "history". Optional "is-on-a-dial-out-list"
indication is added.

Normative references to XCON work are removed.

Optional sidebar rosters are added.

Rosenberg, et al. Expires January 16, 2005 [Page 28]

Internet-Draft Conference Package July 2004
9. References

9.1 Normative References

[1] Mealling, M., "The IETF XML Registry",
draft-mealling-iana-xmlns-registry-05 (work in progress), June
2003.

[2] Bradner, S., "Key words for use in RFCs to Indicate Requirement

Levels", BCP 14, RFC 2119, March 1997.
[3] Moats, R., "URN Syntax", RFC 2141, May 1997.

[4] Moats, R., "A URN Namespace for IETF Documents", RFC 2648,
August 1999.

[5] Murata, M., St. Laurent, S. and D. Kohn, "XML Media Types", RFC
3023, January 2001.

[6] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
Peterson, J., Sparks, R., Handley, M. and E. Schooler, "SIP:
Session Initiation Protocol"™, RFC 3261, June 2002.

[7] Roach, A., "Session Initiation Protocol (SIP)-Specific Event
Notification™, RFC 3265, June 2002.

[8] Peterson, J., "A Privacy Mechanism for the Session Initiation
Protocol (SIP)", RFC 3323, November 2002.

[9] Camarillo, G., Eriksson, G., Holler, J. and H. Schulzrinne,
"Grouping of Media Lines in the Session Description Protocol
(SDP) ", RFC 3388, December 2002.

[10] Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobson,
"RTP: A Transport Protocol for Real-Time Applications"™, STD 64,
RFC 3550, July 2003.

9.2 Informative References

[11] Schulzrinne, H., Rao, A. and R. Lanphier, "Real Time Streaming
Protocol (RTSP)", RFC 2326, April 1998.

[12] Handley, M. and V. Jacobson, "SDP: Session Description
Protocol", RFC 2327, April 1998.

[13] Levin, 0., "H.323 Uniform Resource Locator (URL) Scheme
Registration", RFC 3508, April 2003.

Rosenberg, et al. Expires January 16, 2005 [Page 29]

Internet-Draft Conference Package July 2004

[14]

[15]

[17]

Authors’

Rosenberg, J., "A Framework for Conferencing with the Session
Initiation Protocol",
draft-ietf-sipping-conferencing-framework-02 (work in
progress), June 2004.

Rosenberg, J. and H. Schulzrinne, "An INVITE Inititiated Dialog
Event Package for the Session Initiation Protocol (SIP)",
draft-ietf-sipping-dialog-package-04 (work in progress),
February 2004.

Koskelainen, P. and H. Khartabil, "Requirements for Conference
Policy Control Protocol", draft-ietf-xcon-cpcp-regs-03 (work in
progress), April 2004.

Rosenberg, J., "Obtaining and Using Globally Routable User
Agent (UA) URIs (GRUU) in the Session Initiation Protocol
(SIP)", draft-ietf-sip-gruu-02 (work in progress), July 2004.

Levin, O. and G. Camarillo, "The SDP (Session Description
Protocol) Label Attribute",
draft-levin-mmusic-sdp-media-label-00 (work in progress), July
2004.

Addresses

Jonathan Rosenberg
dynamicsoft

600 Lanidex Plaza
Parsippany, NJ 07054

Us

Phone:
EMail:

URI:

+1 973 952-5000
jdrosen@dynamicsoft.com
http://www. jdrosen.net

Henning Schulzrinne
Columbia University
M/S 0401

1214 Amsterdam Ave.
New York, NY 10027

Us

EMail:

URT:

schulzrinne@cs.columbia.edu
http://www.cs.columbia.edu/ hgs

Rosenberg, et al. Expires January 16, 2005 [Page 30]

Internet-Draft Conference Package July 2004

Orit Levin (editor)
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052
USA

EMail: oritl@microsoft.com

Rosenberg, et al. Expires January 16, 2005 [Page 31]

Internet-Draft Conference Package July 2004
Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.

Disclaimer of Validity

This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement
Copyright (C) The Internet Society (2004). This document is subject
to the rights, licenses and restrictions contained in BCP 78, and
except as set forth therein, the authors retain all their rights.
Acknowledgment
Funding for the RFC Editor function is currently provided by the

Internet Society.

Rosenberg, et al. Expires January 16, 2005 [Page 32]

SIPPING D. Petrie
Internet-Draft Pingtel Corp.
Expires: January 17, 2005 July 19, 2004

A Framework for Session Initiation Protocol User Agent Profile
Delivery
draft-ietf-sipping-config-framework-04.txt

Status of this Memo

This document is an Internet-Draft and is in full conformance with
all provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as
Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/lid-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on January 17, 2005.
Copyright Notice

Copyright (C) The Internet Society (2004). All Rights Reserved.
Abstract

This document defines the application of a set of protocols for
providing profile data to SIP user agents. The objective is to
define a means for automatically providing profile data a user agent
needs to be functional without user or administrative intervention.
The framework for discovery, delivery, notification and updates of
user agent profile data is defined here. As part of this framework a
new SIP event package is defined here for the notification of profile
changes. This framework is also intended to ease ongoing
administration and upgrading of large scale deployments of SIP user
agents. The contents and format of the profile data to be defined is
outside the scope of this document.

Petrie Expires January 17, 2005 [Page 1]

Table of Contents

2
2
2

~J

1
.2
3

WWwWwwwwwwwwwww

Oy U1 i W N D DD

I Y

~ J J 3

o]

.1

.1

Internet-Draft SIP UA Profile Framework July 2004
Motivation 4
Introduction 4

Requirements Termlnology . 4
Profile Delivery Framework Termlnology 5
Overview . 5
Profile Change Event Notlflcatlon Package 8
1 Event Package Name 8
2 Event Package Parameters 8
3 SUBSCRIBE Bodies 11
4 Subscription Duration 11
5 NOTIFY Bodies . 11
6 Notifier processing of SUBSCRIBE requests 12
7 Notifier generation of NOTIFY requests 13
8 Subscriber processing of NOTIFY requests 13
Handling of forked requests 14
.10 Rate of notifications 14
.11 State Agents 14
.12 Examples 14
.13 Use of URIs to Retrleve State 15
3.13.1 Device URIs 15
3.13.2 User and Appllcatlon URIS 17
3.13.3 Local Network URIs 17
Profile Delivery Framework Detalls 17
Discovery of Subscription URI 17
.1.1 Discovery of Local Network URI 17
.1.2 Discovery of Device URI . . 18
.1.3 Discovery of User and Appllcatlon URI 19
Enrollment with Profile Server 19
Notification of Profile Changes 20
Retrieval of Profile Data 20
Upload of Profile Changes 20
Usage of XCAP with the Profile Package 20
IANA Considerations 23
SIP Event Package 23
Security Considerations 23
Symmetric Encryption of Proflle Data 23
Change History . . 24
1 Changes from draft 1etf srpplng conflg framework 03 txt . 24
2 Changes from draft-ietf-sipping-config-framework-02.txt . 24
3 Changes from draft-ietf-sipping-config-framework-01l.txt . 24
4 Changes from draft-ietf-sipping-config-framework-00.txt . 25
5 Changes from
draft-petrie-sipping-config-framework-00.txt 25
6 Changes from draft-petrie-sip-config-framework-01. txt 25
7 Changes from draft-petrie-sip-config-framework-00.txt 25
References 26

Petrie

Expires January 17, 2005

[Page 2]

Internet-Draft SIP UA Profile Framework July 2004

Author’s Address o . . o o o o .. o . . . 28
A. Acknowledgments L L oo 00000 28
Intellectual Property and Copyright Statements 29

Petrie Expires January 17, 2005 [Page 3]

Internet-Draft SIP UA Profile Framework July 2004
1. Motivation

Today all SIP user agent implementers use proprietary means of
delivering user or device profiles to the user agent. The profile
delivery framework defined in this document is intended to enable a
first phase migration to a standard means of providing profiles to
SIP user agents. It is expected that UA implementers will be able to
use this framework as a means of delivering their existing
proprietary user and device data profiles (i.e. using their existing
proprietary binary or text formats). This in itself is a tremendous
advantage in that a SIP environment can use a single profile delivery
server for profile data to user agents from multiple implementers.
Follow-on standardization activities can:

1. define a standard profile content format framework (e.g. XML
with namespaces [W3C.REC-xml-namesll1-20040204] or name-value
pairs [RFC0822]).

2. specify the content (i.e. name the profile data parameters, xml
schema, name spaces) of the data profiles.

One of the objectives of the framework described in this document is
to provide a start up experience similar to that of users of an
analog telephone. When you plug in an analog telephone it just works
(assuming the line is live and the switch has been provisioned).
There is no end user configuration required to make analog phone
work, at least in a basic sense. So the objective here is to be able
to take a new SIP user agent out of the box, plug it in or install
the software and have it get its profiles without human intervention
other than security measures. This is necessary for cost effective
deployment of large numbers of user agents.

Another objective is to provide a scalable means for ongoing
administration of profiles. Administrators and users are likely to
want to make changes to user and device profiles.
Additional requirements for the framework defined in this document
are described in: [I-D.ietf-sipping-ua-prof-framewk-reqgs],
[I-D.sinnreich-sipdev-req]

2. Introduction

2.1 Requirements Terminology
Keywords "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT" and

"MAY" that appear in this document are to be interpreted as described
in RFC 2119([RFC2119].

Petrie Expires January 17, 2005 [Page 4]

Internet-Draft SIP UA Profile Framework July 2004
2.2 Profile Delivery Framework Terminology

profile - data set specific to a user or device.

device - SIP user agent, either software or hardware appliance.

profile content server - The server that provides the content of the
profiles using the protocol specified by the URL scheme.

notifier - The SIP user agent server which processes SUBSCRIBE
requests for events and sends NOTIFY requests with profile data or
URI (s) point to the data.

profile delivery server — The logical collection of the SIP notifier
and the server which provides the contents of the profile URI(s).

2.3 Overview

The profile life cycle can be described by five functional steps.
These steps are not necessarily discrete. However it is useful to
describe these steps as logically distinct. These steps are named as
follows:

Discovery - discover a profile delivery server

Enrollment - enroll with the profile delivery server

Profile Retrieval - retrieve profile data

Profile Change Notification - receive notification of profile changes

Profile Change Upload - upload profile data changes back to the
profile delivery server

Discovery 1is the process by which a UA finds the address and port at
which it enrolls with the profile delivery server. As there is no
single discovery mechanism which will work in all network
environments, a number of discovery mechanisms are defined with a
prescribed order in which the UA tries them until one succeeds.

Enrollment is the process by which a UA makes itself known to the
profile delivery server. 1In enrolling the UA provides identity
information, name requested profile type(s) and supported protocols
for profile retrieval. It also subscribes to a mechanism for
notification of profile changes. As a result of enrollment, the UA
receives the data or the URI for each of the profiles that the
profile delivery server is able to provide. Each profile type (set)
requires a separate enrollment or SUBSCRIBE session.

Profile Retrieval is the process of retrieving the content for each
of the profiles the UA requested.

Profile Change Notification is the process by which the profile
delivery server notifies the UA that the content of one or more of
the profiles has changed. If the content is provided indirectly the
UA SHOULD retrieve the profile from the specified URI upon receipt of

Petrie Expires January 17, 2005 [Page 5]

Internet-Draft SIP UA Profile Framework July 2004
the change notification.

Profile Upload is the process by which a UA or other entity (e.g.
0SS, corporate directory or configuration management server) pushes a
change to the profile data back up to the profile delivery server.

This framework defines a new SIP event package [RFC3265] to solve
enrollment and profile change notification steps. This event packet
defines everything but the mandatory content type. This make this
event package abstract until the content type is bound. The profile
content type(s) will be defined outside the scope of this document.
It is he author’s belief that it would be a huge accomplishment if
all SIP user agent used this framework for delivering their existing
proprietary profiles. Even though this does not accomplish
interoperability of profiles, it is a big first step in easing the
administration of SIP user agents. The definition of standard
profiles and data set (see [I-D.petrie-sipping-profile-datasets])
will enable interoperability as a subsequent step.

The question arises as to why SIP should be used for the profile
delivery framework. In this document SIP is used for only a small
portion of the framework. Other existing protocols are more
appropriate for transport of the profile contents (to and from the
user agent) and are suggested in this document. The discovery step
is simply a specified order and application of existing protocols.
SIP is only needed for the enrollment and change notification
functionality of the profile delivery framework. In many SIP
environments (e.g. carrier/subscriber and multi-site enterprise)
firewall, NAT and IP addressing issues make it difficult to get
messages between the profile delivery server and the user agent
requiring the profiles.

With SIP the users and devices already are assigned globally routable
addresses. In addition the firewall and NAT problems are already
presumably solved in the environments in which SIP user agents are to
be used. Therefore SIP is the best solution for allowing the user
agent to enroll with the profile delivery server which may require
traversal of multiple firewalls and NATs. For the same reason the
notification of profile changes is best solved by SIP.

The content delivery server may be either in the public network or
accessible through a DMZ. The user agents requiring profiles may be
behind firewalls and NATs and many protocols, such as HTTP, may be
used for profile content retrieval without special consideration in
the firewalls and NATs (e.g. an HTTP client on the UA can typically
pull content from a server outside the NAT/firewall.).

A conscious separation of device, user, application and local network

Petrie Expires January 17, 2005 [Page 6]

Internet-Draft SIP UA Profile Framework July 2004

profiles is made in this document. This is useful to provide
features such as hotelling as well as securing or restricting user
agent functionality. By maintaining this separation, a user may walk
up to someone else’s user agent and direct that user agent to get
their profile data. 1In doing so the user agent can replace the
previous user’s profile data while still keeping the devices profile
data that may be necessary for core functionality and communication
described in this document. The local network profiles are relevant
to a visiting device which gets plugged in to a foreign network. The
concept of the local network providing profile data is useful to
provide hotelling (described above) as well as local policy data that
may constrain the user or device behavior relative to the local
network. For example media types and codecs may be constrained to
reflect the networks capabilities.

The separation of these profiles also enables the separation of the
management of the profiles. The user profile may be managed by a
profile delivery server operated by the user’s ISP. The device
profile may be delivered from a profile delivery server operated by
the user’s employer. The application profile may be delivered from
the user’s ASP. The local network profile may delivered by a WIFI
hotspot service provider. Some interesting services and mobility
applications are enabled with this separation of profiles.

A very high level data model is implied here with the separation of
these four profile types. Each profile type requires a separate
subscription to retrieve the profile. A loose hierarchy exists
mostly for the purpose of boot strapping and discovery or formation
of the profile URIs. No other meaning is implied by this hierarchy.
However the profile format and data sets to be define outside this
document, may define additional meaning to this hierarchy. 1In the
boot strapping scenario, a device straight out of the box (software
or hardware) does not know anything about it’s user or local network.
The one thing that is does know is it’s instance id. So the
hierarchy of the profiles exists as follows.

The instance id is used to form the URI for subscribing to the device
profile. The device profile may contain a default user AOR for that
device. The default user AOR may then be used to retrieve the user
profile. Applications to be used on the device may be defined in the
device and user profiles. The user’s AOR is also used to retrieve
any application profiles for that user. The local network profile is
not referenced in any way from the device, user, application
profiles. It is subscribed to and retrieved based upon a URI formed
from the local network domain.

Petrie Expires January 17, 2005 [Page 7]

Internet-Draft SIP UA Profile Framework July 2004

3.

3.

3.

Profile Change Event Notification Package

This section defines a new SIP event package [RFC3265]. The purpose
of this event package is to send to subscribers notification of
content changes to the profile(s) of interest and to provide the
location of the profile(s) via content indirection
[I-D.ietf-sip-content-indirect-mech] or directly in the body of the
NOTIFY. Frequently the profiles delivered to the user agent are much
larger (e.g. several KB or even several MB) than the MTU of the
network. These larger profiles will cause larger than normal SIP
messages and consequently higher impact on the SIP servers and
infrastructure. To avoid the higher impact and load on the SIP
infrastructure, content indirection SHOULD be used if the profile is
large enough to cause packet fragmentation over the transport
protocol. The presence of the MIME type for content indirection
[I-D.ietf-sip-content-indirect-mech] in the Accept header indicates
that the user agent supports content indirection and that the profile
delivery server SHOULD use content indirection. Similarly the
content type for the differential notification of profile changes
[I-D.ietf-simple-xcap-package] may be used in the Accept header to
receive profile change deltas.

The MIME types or formats of profile to be delivered via this
framework are to be defined in the documents that define the profile
contents. These profile MIME types specified in the Accept header
along with the profile types specified in the Event header parameter
"orofile-name" MAY be used to specify which profiles get delivered
either directly or indirectly in the NOTIFY requests. As this event
package does not specify the mandatory content type, this package is
abstract. The profile definition documents will specify the
mandatory content type to make a concrete event package.

1 Event Package Name

The name of this package is "sip-profile". This value appears in the
Event header field present in SUBSCRIBE and NOTIFY requests for this
package as defined in [RFC3265].

2 Event Package Parameters

This package defines the following new parameters for the event
header: "profile-name", "vendor", "model", "version", "effective-by",
"document", "app-id". The effective-by parameter is for use in
NOTIFY requests only. The others are for use in the SUBSCRIBE
request, but may be used in NOTIFY requests as well.

The "profile-name" parameter is used to indicate the token name of
the profile type the user agent wishes to obtain data or URIs for and

Petrie Expires January 17, 2005 [Page 8]

Internet-Draft SIP UA Profile Framework July 2004

to be notified of subsequent changes. Using a token in this
parameter allows the URL semantics for retrieving the profiles to be
opaque to the subscribing user agent. All it needs to know is the
token value for this parameter. This document defines four logical
types of profiles and their token names. The contents or format of
the profiles is outside the scope of this document.

The four types of profiles define here are "device", "user",
"application” and "local". Specifying "device" type profile(s)
indicates the desire for the profile data (URI when content
indirection is used) and change notification of the contents of the
profile(s) that are specific to the device or user agent. Specifying
"user" type profile indicates the desire for the profile data or URI
to the profile(s) and change notification of the profile content for
the user. Specifying "application" type profile indicates the desire
for the profile data or URI to the profile(s) and change notification
of the profile content for the user’s applications. Specifying
"local" type profile indicates the desire for profiles data or URI to
the profile(s) specific to the local network. The device, user,
application or local network is identified in the URI of the
SUBSCRIBE request. The Accept header of the SUBSCRIBE request MUST
include the MIME types for all profile content types that the
subscribing user agent wishes to retrieve profiles or receive change
notifications.

Profile-Name "profile-name" HCOLON profile-value
profile-value profile-types / token
profile-types = "device" / "user" / "application" / "local"

The "device", "user", "application" or "local" token in the
profile-name parameter may represent a class or set of profile
properties. As standards are defined for specific profile
contents related to the user device or local network, it may be
desirable to define additional tokens for the profile-name header.
Also additional content types may be defined along with the
profile formats that can be used in the Accept header of the
SUBSCRIBE to filter or indicate what data sets of the profile are
desired.

The rational for the separation of user, device and local network
type profiles is provided in Section 2.3. It should be noted that
any of the types may indicate that zero or more profiles or URIs are
provided in the NOTIFY request. As discussed, a default user may be
assigned to a device. The default user’s AOR may in turn be used as
the URI to SUBSCRIBE to the "user" and "application" profile types.

The data provided in the four types of profiles may overlap. As an
example the codecs that a user prefers to use, the codecs that the

Petrie Expires January 17, 2005 [Page 9]

Internet-Draft SIP UA Profile Framework July 2004

device supports (and the enterprise or device owner wishes to use),
the codecs that the local network can support (and the network
operator wishes to allow) all may overlap in how they are specified
in the three corresponding profiles. This policy of merging the
constraints across the multiple profile types can only unambiguously
be defined along with the profile format and syntax. This is out of
scope for this document.

The "vendor", "model" and "version" parameter values are tokens
specified by the implementer of the user agent. These parameters are
useful to the profile delivery server to affect the profiles
provided. In some scenarios it is desirable to provide different
profiles based upon these parameters. For example feature property X
in a profile may work differently on two versions of user agent.

This gives the profile deliver server the ability to compensate for
or take advantage of the differences.

The "network-user" parameter is used when subscribing for local
network profiles. If the value of the profile-name parameter is not
"local", the "network-user" parameter has no defined meaning. If the
user has special privileges beyond that of an anonymous user in the
local network, the "network-user" parameter identifies the user to
the local network. The value of this parameter is the user’s address
of record. The SUBSCRIBE server may authenticate the subscriber to
verify this AOR.

The "effective-by" parameter in the Event header of the NOTIFY
specifies the maximum number of seconds before the user agent MUST
make the new profile effective. A value of 0 (zero) indicates that
the user agent MUST make the profiles effective immediately (despite
possible service interruptions). This gives the profile delivery
server the power to control when the profile is effective. This may
be important to resolve an emergency problem or disable a user agent
immediately.

The "document" parameter is used to specify a relative URI for a
specific profile document that the user agent wishes to retrieve and
to receive change notification. This is particularly useful for
profile content like XCAP [I-D.ietf-simple-xcap] where there is a
well defined URL schema and the user agent knows the specific content
that it wants. The "document" parameter value syntax is a quoted
string. For more details on the use of this package with XCAP see
Section 4.6.

The "app-id" parameter is only used when the "profile-name" parameter
value is "application". The "app-id" indicates that the user agent
wishes to retrieve the profile data or URI and change notification
for the application profile data for the specific application

Petrie Expires January 17, 2005 [Page 10]

Internet-Draft SIP UA Profile Framework July 2004

indicated in the value of the "app-id" parameter. The "app-id"
parameter value is a token.

SUBSCRIBE request Event header examples:
Event: sip-profile;profile—-name=device;
vendor=acme; model=72100;version=1.2.3

Event: sip-profile;profile-name=
"http://example.com/services/user-profiles/users/freds.xml";
vendor=premier;model=trs8000;version=5.5

NOTIFY request Event header examples:
Event:sip-profile;effective-by=0

Event:sip-profile;effective-by=3600

3.3 SUBSCRIBE Bodies

This package defines no new use of the SUBSCRIBE request body.

Future follow on documents may specify a filter-like mechanism using
etags to minimize the delivery or notification of profiles where the
user agent already has a current version.

3.4 Subscription Duration

As the presence (or lack of) a device or user agent it not very time
critical to the functionality of the profile delivery server, it is
recommended that default subscription duration be 86400 seconds (one
day) .

3.5 NOTIFY Bodies

The size of profile content is likely to be hundreds to several
thousand bytes in size. Frequently even with very modest sized SDP
bodies, SIP messages get fragmented causing problems for many user
agents. For this reason if the Accept header of the SUBSCRIBE
included the MIME type: message/external-body indicating support for
content indirection the profile delivery server SHOULD use content
indirection [I-D.ietf-sip-content-indirect-mech] in the NOTIFY body
for providing the profiles.

When delivering profiles via content indirection the profile delivery
server MUST include the Content-ID defined in
[I-D.ietf-sip-content-indirect-mech] for each profile URL. This is
to avoid unnecessary download of the profiles. Some user agents are
not able to make a profile effective without rebooting or restarting.

Petrie Expires January 17, 2005 [Page 11]

Internet-Draft SIP UA Profile Framework July 2004

Rebooting is something to be avoided on a user agent performing
services such as telephony. 1In this way the Content-ID allows the
user agent to avoid unnecessary interruption of service as well. The
Content-Type MUST be specified for each URI.

Initially user agent implementers may use a proprietary content
type for the profiles retrieved from the URIs(s). This is a good
first step towards easing the management of user agents. Standard
profile contents, content type and formats will need to be defined
for true interoperability of profile delivery. The specification
of the content is out of the scope of this document.

Likewise the URL scheme used in the content indirection is outside
the scope of this document. This document is agnostic to the URL
schemes as the profile content may dictate what is required. It is
expected that TFTP [RFC3617], FTP [?7?], HTTP [RFC2616], HTTPS
[RFC2818], LDAP [RFC3377], XCAP [I-D.ietf-simple-xcap] and other URL
schemes are supported by this package and framework.

3.6 Notifier processing of SUBSCRIBE requests

The general rules for processing SUBSCRIBE requests [RFC3265] apply
to this package. If content indirection is used for delivering the
profiles, the notifier does not need to authenticate the subscription
as the profile content is not transported in the SUBSCRIBE or NOTIFY
transaction messages. With content indirection only URLs are
transported in the NOTIFY request which may be secured using the
techniques in Section 6. If content indirection is not used, SIPS
with SIP authentication SHOULD be used.

The behavior of the profile delivery server is left to the
implementer. The profile delivery server may be as simple as a SIP
SUBSCRIBE UAS and NOTIFY UAC front end to a simple HTTP server
delivering static files that are hand edited. At the other extreme
the profile delivery server can be part of a configuration management
system that integrates with a corporate directory and IT system or
carrier 0SS, where the profiles are automatically generated. The
design of this framework intentionally provides the flexibility of
implementation from simple/cheap to complex/expensive.

If the user or device is not known to the profile delivery server,
the implementer MAY accept the subscription or reject it. It is
recommended that the implementer accept the subscription. It is
useful for the profile delivery server to maintain the subscription
as an administrator may add the user or device to the system,
defining the profile contents. This allows the profile delivery
server to immediately send a NOTIFY request with the profile URIs.
If the profile delivery server does not accept the subscription from

Petrie Expires January 17, 2005 [Page 12]

Internet-Draft SIP UA Profile Framework July 2004

an unknown user or device, the administer or user must manually
provoke the user agent to reSUBSCRIBE. This may be difficult if the
user agent and administrator are at different locations.

3.7 Notifier generation of NOTIFY requests

As in [RFC3265], the profile delivery server MUST always send a
NOTIFY request upon accepting a subscription. If the device or user
is unknown to the profile delivery server and it chooses to accept
the subscription, the implementer has two choices. A NOTIFY MAY be
sent with no body or content indirection containing the profile
URI(s). Alternatively a NOTIFY MAY be sent with a body or content
indirection containing URI(s) pointing to a default data set. The
data sets provided may allow for only limited functionality of the
user agent (e.g. a phone user agent with data to enable calls to
help desk and emergency services.). This is an implementation and
business policy decision for the profile delivery server.

If the URI in the SUBSCIRBE request is a known identity and
provisioned with the requested profile type (i.e. as specified in
the profile-name parameter), the profile delivery server SHOULD send
a NOTIFY with profile data or content indirection (if the content
type was included in the Accept header) containing the URI for the
profile.

A user agent can provide hotelling by collecting a userks AOR and
credentials needed to SUBSCRIBE and retrieve the user’s profiles.
hotelling functionality is achieved by subscribing to the user’s AOR
and specifying the "user" profile type. This same mechanism can also
be used to secure a user agent, requiring a user to login to enable
functionality beyond the default userks restricted functionality.

The profile delivery server MAY specify when the new profiles MUST be
made effective by the user agent. By default the user agent makes
the profiles effective as soon as it thinks that it is non-obtrusive.
Profile changes SHOULD affect behavior on all new dialogs which are
created after the notification, but may not be able to effect
existing dialogs. However the profile delivery server MAY specify a
maximum time in seconds (zero or more), in the effective-by event
header parameter, by which the user agent MUST make the new profiles
effective for all dialogs.

3.8 Subscriber processing of NOTIFY requests

The user agent subscribing to this event package MUST adhere to the

NOTIFY request processing behavior specified in [RFC3265]. The user
agent MUST make the profiles effective as specified in the NOTIFY
request (see Section 3.7). The user agent SHOULD use one of the

Petrie Expires January 17, 2005 [Page 13]

Internet-Draft SIP UA Profile Framework July 2004
techniques specified in Section 6 to securely retrieve the profiles.

3.9 Handling of forked requests
This event package allows the creation of only one dialog as a result
of an initial SUBSCRIBE request. The techniques to achieve this are
described in section 4.4.9 of [RFC3265].

3.10 Rate of notifications
It is anticipated that the rate of change for user and device
profiles will be very infrequent (i.e. days or weeks apart). For
this reason no throttling or minimum period between NOTIFY requests
is specified for this package.

3.11 State Agents
State agents are not applicable to this event package.

3.12 Examples

Example SUBSCRIBE and NOTIFY request using content indirection:

Petrie Expires January 17, 2005 [Page 14]

Internet-Draft SIP UA Profile Framework July 2004

SUBSCRIBE sip:ff00000036¢c5@example.com SIP/2.0

Event: sip-profile;profile-name=device;vendor=acme;
model=7100;version=1.2.3

From: sip:££f00000036c5@acme.com;tag=1234

To: sip:££00000036c5@acme.com; tag=abcd

Call-ID: 35738533429234220@10.1.1.44

CSeq: 2131 SUBSCRIBE

Contact: sip:ff00000036¢c5@10.1.1.44

Accept: message/external-body, application/z100-device-profile

Content-Length: 0

NOTIFY sip:ff00000036¢c5@10.1.1.44 SIP/2.0

Event: sip-profile;effective-by=3600

From: sip:££00000036c5@acme.com;tag=abcd

To: sip:f£f00000036c5@acme.com;tag=1234

Call-ID: 3573853342923422@10.1.1.44

CSeq: 321 NOTIFY

MIME-Version: 1.0

Content-Type: multipart/mixed; boundary=boundary4?2
Content-Length:

——boundary4?2
Content-Type: message/external-body;
access—-type="URL";
expiration="Mon, 24 June 2002 09:00:00 GMT";
URL="http://www.example.com/devices/f£f00000036c5";
size=1234

Content-Type: application/z100-device-profile
Content-ID: <39EHF78SACexample.com>

——boundary42--

3.13 Use of URIs to Retrieve State
The URI for the SUBSCRIBE request is formed differently depending
upon which profile type the subscription is for. This allows the
different profile types to be potentially managed by different
profile delivery servers (perhaps even operated by different
entities).

3.13.1 Device URIs
The URI for the "device" type profile is base upon the identity of

the device. The device URI MUST be unique over time and space for

Petrie Expires January 17, 2005 [Page 15]

Internet-Draft SIP UA Profile Framework July 2004

all devices and implementations. The instance id used as the user
part of the device URI SHOULD remain the same for the lifetime of the
user agent. The device URI is used to identify which profile is
associated with a specific instance of a user agent.

If the user agent were to change its device URI, the profile
delivery server would loose its association between the profile
and the device. This would also make it difficult for the profile
delivery server to track user agents under profile management.

The URI for the device type profile should use a unique identifier as
the user portion of the URI. The host and port portion of the URI as
set to that of the domain or address of the profile deliver server
which manages that user agent. A means of discovering the host and
port portion is discussed in Section 4.1. Two approaches are
suggested for constructing a unique identifier to be used in the user
portion of the device URI.

The MAC address of the device may be used if there will always be
no more than one user agent using that MAC address over time (e.q.
a dedicate telephone appliance). The MAC address may not be used
if more than one user agent instance exists or use the same MAC
address (e.g. multiple instances of a softphone may run on a
general purpose computing device). The advantage of the MAC
address is that many vendors put bar codes on the device with the
actual MAC address on it. A bar code scanner is a convenient
means of collecting the instance id for input and provisioning on
the profile delivery server. If the MAC address is used, it is
recommended that the MAC address is rendered in all lower case
with no punctuation for consistency across implementations. For
example a device managed by sipuaconfig.example.com using its MAC
address to form the device URI might look like:
sip:00dfle004cdO@sipuaconfig.example.com.

For devices where there is no MAC address or the MAC address is
not unique to an instance of a user agent (e.g. multiple
softphones on a computer or a gateway with multiple logical user
agents) it is recommended that a URN [RFC2141] is used as the user
portion of the device URI. The approach to defining a user agent
instance ID in for GRUU [I-D.ietf-sip-gruu] should be considered.
When constructing the instance id the implementer should also
consider that a human may need to manual enter the instance id to
provision the device in the profile delivery server (i.e. longer
strings are more error prone in data entry). When the URN is used
as the user part of URI, it MUST be URL escaped. The ":" is not a
legal character (without being escaped) in the user part of a
name—-addr. For example the instance ID:
urn:uuid:f81d4fae-T7dec-11d0-a765-00a0c91leb6bf6 would be escaped to
look as follows in a URI:

Petrie Expires January 17, 2005 [Page 16]

Internet-Draft SIP UA Profile Framework July 2004
sip:urn%3auuid%3af8ldifae-T7dec-11d0-a765-00a0c9lebbfblexample.com.
3.13.2 User and Application URIs

The URI for the "user" and "application" type profiles is based upon
the identity of the user. The user’s address of record (AOR) is used
as the URI in the SUBSCRIBE request. A new user agent or device may
not know the user’s AOR. The user’s AOR may be obtained as part of a
default user property in the device profile. Alternatively the user
agent may prompt the user for an AOR to be used. This can provide a
login and/or hotelling feature on the user agent.

3.13.3 Local Network URIs

The URI for the "local" type profile is based upon the identity of
the local network. When subscribing to the local network profile,
the use part of the URI is "anonymous". The host and port part of
the URI is the local network name/domain. The discovery of the local
network name or domain is discussed in Section 4.1. The user agent
may provide the user’s AOR as the value to the "network-user" event
header parameter. This is useful if the user has privileges in the
local network beyond those of the default user. The profile delivery
server SHOULD authenticate the user before providing the profile if
additional privileges are granted. Example URI:
sip:ananymous@example.com

4. Profile Delivery Framework Details

The following describes how different functional steps of the profile
delivery framework work. Also described here is how the event
package defined in this document provides the enrollment and
notification functions within the framework.

4.1 Discovery of Subscription URI

The discover approach varies depending upon which profile type URI is
to be discovered. The order of discover is important in the boot
strapping situation as user agent may not have any information
provisioned. The local network profile should be discovered first as
it may contain key information such as how to traverse a NAT/firewall
to get to outside services (e.g. the user’s profile delivery
server). The device profile URI should be discovered next. The
device profile may contain the default user’s AOR. The user and
application profile subscription URI’s are discovered last.

4.1.1 Discovery of Local Network URI

The "discovered" host for the "local" profile subscription URI is the

Petrie Expires January 17, 2005 [Page 17]

Internet-Draft SIP UA Profile Framework July 2004

local IP network domain for the user agent, either provisioned as
part of the device’s static network configuration or discovered via
DHCP. The local network profile subscription URI should not be
cached as the user agent may be move from one local network to the
other. The user agent should perform the local network discovery
every time it starts up or network connectivity is regained.

4.1.2 Discovery of Device URI

The discovery function is needed to bootstrap user agents to the
point of knowing where to enroll with the profile delivery server.
Section 3.13.1 describes how to form the device URI used to send the
SUBSCRIBE request for enrollment. However the bootstrapping problem
for the user agent (out of the box) is what to use for the host and
port in the device URI. Due to the wide variation of environments in
which the enrolling user agent may reside (e.g. Dbehind residential
router, enterprise LAN, WIFI hotspot, ISP, dialup modem) and the
limited control that the administrator of the profile delivery
server (e.g. enterprise, service provider) may have over that
environment, no single discovery mechanism works everywhere.
Therefore a number of mechanisms SHOULD be tried in the specified
order: SIP DHCP option [RFC3361], SIP DNS SRV [RFC3263], DNS A record
and manual. The user agent may be preprovisioned with the host and
port (e.g. service providers may preprovision a device before
sending it to a subscriber) in which case this discovery mechanism is
not needed. Before performing the discover steps, the user agent
SHOULD provide a means to skip the discovery stage and manually enter
the device URI host and port. In addition the user agent SHOULD
allow the user to accept or reject the discovered host and port, in
case an alternate to the discovered host and port are desired.

1. The first discovery mechanism that SHOULD be tried is to
construct the device SUBSCRIBE URI, as described in Section
3.13.1, is to use the host and port of the out bound proxy
discovered by the SIP DHCP option as described in [RFC3361]. 1If
the SIP DHCP option is not provided in the DHCP response; oOr no
SIP response is received for the SUBSCRIBE request; or a SIP
failure response other than for authorization is received for the
SUBSCRIBE request to the sip-profile event, the next discovery
mechanism SHOULD be tried.

2. The local IP network domain for the user agent, either configured
or discovered via DHCP, should be used with the technique in
[RFC3263] to obtain a host and port to use in the SUBSCRIBE URI.
If no SIP response or a SIP failure response other than for
authorization is received for the SUBSCRIBE request to the
sip-profile event, the next discovery mechanism SHOULD be tried.

3. The fully qualified host name constructed using the host name
"sipuaconfig" and concatenated with the local IP network domain

Petrie Expires January 17, 2005 [Page 18]

Internet-Draft SIP UA Profile Framework July 2004

4

4,

(as provided via DHCP or provisioned) should be tried next using
the technique in [RFC3263] to obtain a host and port to use in
the SUBSCRIBE URI. If no SIP response or a SIP failure response
other than for authorization is received for the SUBSCRIBE
request to the sip-profile event, the next discovery mechanism
SHOULD be tried.

4., If all other discovery techniques fail, the user agent MUST
provide a manual means for the user to enter the host and port
used to construct the SUBSCRIBE URI.

Once a user agent has successfully discovered, enrolled, received a
NOTIFY response with profile data or URI(s), the user agent SHOULD
cache the device profile SUBCRIBE URI to avoid having to rediscover
the profile delivery server again in the future. The user agent
SHOULD NOT cache the SUBSCRIBE URI until it receives a NOTIFY with
profile data or URI(s). The reason for this is that a profile
delivery server may send 202 responses to SUBSCRIBE requests and
NOTIFY responses to unknown user agent (see Section 3.6) with no
URIs. Until the profile delivery server has sent a NOTIFY request
with profile data or URI(s), it has not agreed to provide profiles.

To illustrate why the user agent should not cache the device
profile SUBSCRIBE URI until profile data or URI(s) are provided in
the NOTIFY, consider the following example: a user agent running
on a laptop plugged into a visited LAN in which a foreign profile
delivery server is discovered. The profile delivery server never
provides profile URIs in the NOTIFY request as it is not
provisioned to accept the user agent. The user then takes the
laptop to their enterprise LAN. If the user agent cached the
SUBSCRIBE URI from the visited LAN (which did not provide
profiles), when subsequently placed in the enterprise LAN which is
provisioned to provide profiles to the user agent, the user agent
would not attempt to discover the profile delivery server.

.1.3 Discovery of User and Application URI

The default user’s AOR from the device profile (if provided) may then
be used to subscribe to the "user" and "application" profiles.
Alternatively the user’s AOR to be used for the "user" and
application" subscription URI, may be "discovered" manually by
prompting the user. This "discovered" URI for the user and
application profile subscription may be cached.

2 Enrollment with Profile Server
Enrollment is accomplished by subscribing to the event package

described in Section 3. The enrollment process is useful to the
profile delivery server as it makes the server aware of user agents

Petrie Expires January 17, 2005 [Page 19]

Internet-Draft SIP UA Profile Framework July 2004

to which it may delivery profiles (those user agents the profile
delivery server is provisioned to provide profiles to; those present
that the server may be provide profiles in the future; and those that
the server can automatically provide default profiles). It is an
implementation choice and business policy as to whether the profile
delivery server provides profiles to user agents that it is not
explicitly provisioned to do so. However the profile server SHOULD
accept (with 2xx response) SUBSCRIBE requests from any user agent as
explained in Section 3.5.

4.3 Notification of Profile Changes

The NOTIFY request in the sip-profile event package serves two
purposes. First it provides the user agent with a means to obtain
the profile directly data or via URI(s) for desired profiles without
requiring the end user to manually enter them. It also provides the
means for the profile delivery server to notify the user agent that
the content of the profiles have changed and should be made
effective. Optionally the differential changes may be obtained by
including the content-type defined in [I-D.ietf-simple-xcap-package]
in the Accept header of the SUBSCRIBE request.

4.4 Retrieval of Profile Data

The user agent retrieves its needed profile(s) directly or via the
URI (s) provided in the NOTIFY request as specified in Section 3.5.
The profile delivery server SHOULD secure the content of the profiles
using one of the techniques described in Section 6. The user agent
SHOULD make the new profiles effective in the timeframe described in
Section 3.2.

The contents of the profiles SHOULD be cached by the user agent.
This it to avoid the situation where the content delivery server is
not available, leaving the user agent non-functional.

4.5 Upload of Profile Changes

The user agent or other service MAY push changes up to the profile
delivery server using the technique appropriate to the profile’s URL
scheme (e.g. HTITP PUT method, FTP put command). The technique for
pushing incremental or atomic changes MUST be described by the
specific profile data framework. A means for pushing changes up into
the profile delivery server for XCAP is defined in
[I-D.ietf-simple-xcap].

4.6 Usage of XCAP with the Profile Package

This framework allows for the usage of several different protocols

Petrie Expires January 17, 2005 [Page 20]

Internet-Draft SIP UA Profile Framework July 2004

for the retrieval of profiles. One protocol which is suitable 1is
XCAP [I-D.ietf-simple-xcap], which allows for HTTP URIs to represent
XML documents, elements and attributes. XCAP defines a specific
hierarchy for how documents are organized. As a result, it is
necessary to discuss how that organization relates to the rough data
model presented here.

When a user or device enrolls with a SUBSCRIBE request, the request
will contain some kind of identifying information for that user or
device. This identity is mapped to an XCAP User ID (XUID) based on
an implementation specific mapping. The "profile-name" along with
the "app-id" Event header parameters specify the specific XCAP
application usage.

In particular, when the "profile-name" is "application", the "app—-id"
contains the XCAP Application Unique ID (AUID). When the
"profile—-name" is application, but the "app-id" parameter is absent,
this specifies that the user wishes to SUBSCRIBE to all documents for
all application usages associated with the user in the request-uri.
This provides a convenient way for a single subscription to be used
to obtain all application data. The XCAP root is determined by a
local mapping.

When the "profile-name" is "device", or "user" or "local-network",

this maps to an AUID and document selector for representing device,
user and local-network data, respectively. The mapping is a matter
of local policy. This allows different providers to use different

XCAP application usages and document schemas for representing these
profiles, without having to configure the device with the specific

AUID which is being used.

Furthermore, when the "document" attribute is present, it identifies
a specific document that is being requested. If the "profile-name"
is "application", the "app-id" MUST be present as well. The
"document" attribute then specifies a relative path reference. Its
first path segment is either "global", specifying global data, or
"user", specifying user data for the user in the request URI. The
next path segment identifies the path in the global directory or the
user’s home directory.

For example, consider a phone with an instance ID of
urn:uuid:00000000-0000-0000-0000-0003968c£920. To obtain its device
profile, it would generate a SUBSCRIBE that looks like this:

SUBSCRIBE

sip:urn%3auuid%3a00000000-0000-0000-0000-0003968cf920@example.com
Event: sip-profile;profile-name=device

Petrie Expires January 17, 2005 [Page 21]

Internet-Draft SIP UA Profile Framework July 2004

If the profile data is stored in an XCAP server, the server would the
"device" profile to an application usage and document selector based
on local policy. 1If this mapping specifies the AUID
"vendor2-device-data" and a document called "index" within the user
directory, the corresponding HTTP URI for the document is:

http://xcap.example.com/root/vendor2-device-data/users/
urn%3auuid%3a00000000-0000-0000-0000-0003968cf920/index

and indeed, if a content indirection is returned in a NOTIFY, the URL
would equal this.

That user profile might specify the user identity (as a SIP AOR) and
their application-usages. From that, the device can enroll to learn
about its application data. To learn about all of the data:

SUBSCRIBE sip:user-aor@example.com SIP/2.0
Event: sip-profile;profile-name=application

The server would map the request URI to an XUI (user-aor, for
example) and the xcap root based on local policy. If there are two
AUIDs, "resource-lists" [I-D.ietf-simple-xcap-list-usage] and
"rls-services" [I-D.ietf-simple-xcap-list-usage], this would result
in a subscription to all documents within:

http://xcap.example.com/root/rls-services/users/user-aor
http://xcap.example.com/root/resource-lists/users/user-aor

The user would not be subscribed to the global data for these two
application usages, since that data is not important for users.

However, the user/device could be made aware that it needs to
subscribe to a specific document. 1In that case, its subscribe would
look like:

SUBSCRIBE sip:user—aor@example.com SIP/2.0
Event: sip-profile;profile-name=application;app-id=resource-lists

; document="global/index"

this would result in a subscription to the single global document for
resource-lists.

In some cases, these subscriptions are to a multiplicity of
documents. In that case, the notification format will need to be one

Petrie Expires January 17, 2005 [Page 22]

Internet-Draft SIP UA Profile Framework July 2004

which can indicate what document has changed. This includes content
indirection, but also the xcap diff format
[I-D.ietf-simple-xcap-package].

5. IANA Considerations

There are several IANA considerations associated with this
specification.

5.1 SIP Event Package

This specification registers a new event package as defined in
[RFC3265]. The following information required for this registration:
Package Name: sip-profile
Package or Template-Package: This is a package
Published Document: RFC XXXX (Note to RFC Editor: Please fill in
XXXX with the RFC number of this specification).
Person to Contact: Daniel Petrie dpetrie@pingtel.com
New event header parameters: profile-name, vendor, model, version,
effective-by, document, app-id

6. Security Considerations

Profiles may contain sensitive data such as user credentials. The
protection of this data depends upon how the data is delivered. If
the data is delivered in the NOTIFY body, SIP authentication MUST be
used for SUBSCRIPTION and SIPS and/or S/MIME MAY be use to encrypt
the data. If the data is provided via content indirection, SIP
authentication is not necessary for the SUBSCRIBE request. With
content indirection the data is protected via the authentication,
authorization and encryption mechanisms provided by the profile URL
scheme. Use of the URL scheme security mechanisms via content
indirection simplifies the security solution as the SIP event package
does not need to authenticate, authorize or protect the contents of
the SIP messages. Effectively the profile delivery server can safely
provide profile URI(s) to anyone. The profile content is protected
via the URL scheme transport mechanisms for authentication,
authorization and encryption (e.g. via HTTPS). HTTPS provides two
possible mechanisms for authentication: 1) the device may have a
certificate that the profile deliver server can request in the TLS
setup; or 2) the profile deliver server may use HTTP authentication
[REFC2617] with the device or users credentials.

6.1 Symmetric Encryption of Profile Data
If the transport for the URL scheme used for content indirection does

not provide authentication, authorization or encryption, a technique
to provide this is to encrypt the profiles on the content delivery

Petrie Expires January 17, 2005 [Page 23]

Internet-Draft SIP UA Profile Framework July 2004

server using a symmetric encryption algorithm using a shared key.

The encrypted profiles are delivered by the content delivery server
via the URIs provided in the NOTIFY requests. Using this technique
the profile delivery server does not need to provide authentication
or authorization for the retrieval as the profiles are obscured. The
user agent must obtain the username and password from the user or
other out of band means to generate the key and decrypt the profiles.

7. Change History

Many thanks to those who contributed and commented on the many
iterations of this document. Detailed input was provided by Jonathan
Rosenberg from Dynamicsoft, Henning Schulzrinne from Columbia U.,
Cullen Jennings from Cisco, Rohan Mahy from Cisco, Rich Schaaf from
Pingtel, Volker Hilt from Bell Labs.

7.1 Changes from draft-ietf-sipping-config-framework-03.txt

Incorporated changes to better support the requirements for the use
of this event package with XCAP and SIMPLE so that we can have one
package (i.e. simple-xcap-package now defines a content type not a
package). Added an additional profile type: application. Added
document and app-id Event header parameters in support of the
application profile. Define a loose high level data model or
relationship between the four profile types. Tried to edit and fix
the confusing and ambiguous sections related to URI formation and
discovery for the different profile types. Better describe the
importance of uniqueness for the instance id which is used in the
user part of the device URI.

7.2 Changes from draft-ietf-sipping-config-framework-02.txt
Added the concept of the local network as a source of profile data.
There are now three separate logical sources for profile data: user,
device and local network. Each of these requires a separate
subscription to obtain.

7.3 Changes from draft-ietf-sipping-config-framework-01.txt
Changed the name of the profile-type event parameter to profile-name.
Also allow the profile-name parameter to be either a token or an

explicit URI.

Allow content indirection to be optional. Clarified the use of the
Accept header to indicate how the profile is to be delivered.

Added some content to the Iana section.

Petrie Expires January 17, 2005 [Page 24]

Internet-Draft SIP UA Profile Framework July 2004
7.4 Changes from draft-ietf-sipping-config-framework-00.txt

This version of the document was entirely restructured and re-written
from the previous version as it had been micro edited too much.

All of the aspects of defining the event package are now organized in
one section and is believed to be complete and up to date with
[REFC3265].

The URI used to subscribe to the event package is now either the user
or device address or record.

The user agent information (vendor, model, MAC and serial number) are
now provided as event header parameters.

Added a mechanism to force profile changes to be make effective by
the user agent in a specified maximum period of time.

Changed the name of the event package from sip-config to sip-profile
Three high level security approaches are now specified.

7.5 Changes from draft-petrie-sipping-config-framework-00.txt
Changed name to reflect SIPPING work group item
Synchronized with changes to SIP DHCP [RFC3361], SIP [RFC3261] and
[RFC3263], SIP Events [RFC3265] and content indirection

[I-D.ietf-sip-content-indirect-mech]

Moved the device identity parameters from the From field parameters
to User—-Agent header parameters.

Many thanks to Rich Schaaf of Pingtel, Cullen Jennings of Cisco and
Adam Roach of Dyamicsoft for the great comments and input.

7.6 Changes from draft-petrie-sip-config-framework-01.txt
Changed the name as this belongs in the SIPPING work group.
Minor edits
7.7 Changes from draft-petrie-sip-config-framework-00.txt
Split the enrollment into a single SUBSCRIBE dialog for each profile.
The 00 draft sent a single SUBSCRIBE listing all of the desired.

These have been split so that each enrollment can be routed
differently. As there is a concept of device specific and user

Petrie Expires January 17, 2005 [Page 25]

Internet-Draft SIP UA Profile Framework July 2004

specific profiles, these may also be managed on separate servers.
For instance in a roaming situation the device might get its profile
data from a local server which knows the LAN specific profile data.
At the same time the user specific profiles might come from the
user’s home environment profile delivery server.

Removed the Config-Expires header as it is largely superfluous with
the SUBSCRIBE Expires header.

Eliminated some of the complexity in the discovery mechanism.

Suggest caching information discovered about a profile delivery
server to avoid an avalanche problem when a whole building full of
devices powers up.

Added the User-Profile From header field parameter so that the device
can request a user specific profile for a user that is different from
the device’s default user.

8 References

[I-D.ietf-simple-xcap]
Rosenberg, J., "The Extensible Markup Language (XML)
Configuration Access Protocol (XCAP)",
draft-ietf-simple-xcap-02 (work in progress), February
2004.

[I-D.ietf-simple-xcap-list-usage]
Rosenberg, J., "An Extensible Markup Language (XML)
Configuration Access Protocol (XCAP) Usage for Presence
Lists", draft-ietf-simple-xcap-list-usage-02 (work in
progress), February 2004.

[I-D.ietf-simple-xcap-package]
Rosenberg, J., "A Session Initiation Protocol (SIP) Event
Package for Modification Events for the Extensible Markup
Language (XML) Configuration Access Protocol (XCAP)
Managed Documents", draft-ietf-simple-xcap-package-01
(work in progress), February 2004.

[I-D.ietf-sip-content-indirect-mech]
Olson, S., "A Mechanism for Content Indirection in Session
Initiation Protocol (SIP) Messages",
draft-ietf-sip-content-indirect-mech-03 (work in
progress), June 2003.

[I-D.ietf-sip—-gruu]
Rosenberg, J., "Obtaining and Using Globally Routable User

Petrie Expires January 17, 2005 [Page 26]

Internet-Draft SIP UA Profile Framework July 2004

Agent (UA) URIs (GRUU) in the Session Initiation Protocol
(SIP)", draft-ietf-sip-gruu-02 (work in progress), July
2004.

[I-D.ietf-sipping-ua-prof-framewk-reqgs]
Petrie, D. and C. Jennings, "Requirements for SIP User
Agent Profile Delivery Framework",
draft-ietf-sipping-ua-prof-framewk-regs-00 (work in
progress), March 2003.

[I-D.petrie-sipping-profile-datasets]
Petrie, D., "A Schema for Session Initiation Protocol User
Agent Profile Data Sets",
draft-petrie-sipping-profile-datasets-00 (work in
progress), July 2004.

[I-D.sinnreich-sipdev-req]
Butcher, I., Lass, S., Petrie, D., Sinnreich, H. and C.
Stredicke, "SIP Telephony Device Requirements and
Configuration", draft-sinnreich-sipdev-regq-04 (work in
progress), July 2004.

[RFC0822] Crocker, D., "Standard for the format of ARPA Internet
text messages", STD 11, RFC 822, August 1982.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2131] Droms, R., "Dynamic Host Configuration Protocol", RFC
2131, March 1997.

[RFC2132] Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor
Extensions", RFC 2132, March 1997.

[RFC2141] Moats, R., "URN Syntax", RFC 2141, May 1997.

[RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P. and T. Berners-Lee, "Hypertext
Transfer Protocol —-- HTTP/1.1", RFC 2616, June 1999.

[RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
Leach, P., Luotonen, A. and L. Stewart, "HTTP
Authentication: Basic and Digest Access Authentication",
RFC 2617, June 1999.

Petrie Expires January 17, 2005 [Page 27]

Internet-Draft SIP UA Profile Framework July 2004
[RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

[RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
A., Peterson, J., Sparks, R., Handley, M. and E. Schooler,
"SIP: Session Initiation Protocol", RFC 3261, June 2002.

[RFC3263] Rosenberg, J. and H. Schulzrinne, "Session Initiation
Protocol (SIP): Locating SIP Servers", RFC 3263, June
2002.

[RFC3265] Roach, A., "Session Initiation Protocol (SIP)-Specific
Event Notification", RFC 3265, June 2002.

[RFC3361] Schulzrinne, H., "Dynamic Host Configuration Protocol
(DHCP-for-IPv4) Option for Session Initiation Protocol
(SIP) Servers", RFC 3361, August 2002.

[RFC3377] Hodges, J. and R. Morgan, "Lightweight Directory Access
Protocol (v3): Technical Specification", RFC 3377,
September 2002.

[RFC3617] Lear, E., "Uniform Resource Identifier (URI) Scheme and
Applicability Statement for the Trivial File Transfer
Protocol (TFTP)", RFC 3617, October 2003.

[W3C.REC-xml-namesl11-20040204]
Layman, A., Tobin, R., Bray, T. and D. Hollander,
"Namespaces in XML 1.1", W3C REC REC-xml-namesl11-20040204,
February 2004.

Author’s Address
Daniel Petrie

Pingtel Corp.
400 W. Cummings Park

Suite 2200
Woburn, MA 01801
Us

Phone: "Dan Petrie (+1 781 938 5306)"<sip:dpetriel@pingtel.com>
EMail: dpetrie@pingtel.com
URI: http://www.pingtel.com/

Appendix A. Acknowledgments

Petrie Expires January 17, 2005 [Page 28]

Internet-Draft SIP UA Profile Framework July 2004
Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any
intellectual property or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; neither does it represent that it
has made any effort to identify any such rights. Information on the
IETF’s procedures with respect to rights in standards-track and
standards-related documentation can be found in BCP-11. Copies of
claims of rights made available for publication and any assurances of
licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such
proprietary rights by implementors or users of this specification can
be obtained from the IETF Secretariat.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights which may cover technology that may be required to practice
this standard. Please address the information to the IETF Executive
Director.

The IETF has been notified of intellectual property rights claimed in
regard to some or all of the specification contained in this
document. For more information consult the online list of claimed
rights.

Full Copyright Statement
Copyright (C) The Internet Society (2004). All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assignees.

Petrie Expires January 17, 2005 [Page 29]

Internet-Draft SIP UA Profile Framework July 2004

This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgment

Funding for the RFC Editor function is currently provided by the
Internet Society.

Petrie Expires January 17, 2005 [Page 30]

SIPPING J. Rosenberg
Internet-Draft dynamicsoft
Expires: August 13, 2004 H. Schulzrinne
Columbia University

R. Mahy, Ed.

Cisco Systems, Inc.

February 13, 2004

An INVITE Inititiated Dialog Event Package for the Session
Initiation Protocol (SIP)
draft-ietf-sipping-dialog-package-04.txt

Status of this Memo

This document is an Internet-Draft and is in full conformance with
all provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that other
groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://
www.iletf.org/ietf/lid-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on August 13, 2004.
Copyright Notice
Copyright (C) The Internet Society (2004). All Rights Reserved.
Abstract
This document defines a dialog event package for the SIP Events
architecture, along with a data format used in notifications for this
package. The dialog package allows users to subscribe to another

user, an receive notifications about the changes in state of INVITE
initiated dialogs that the user is involved in.

Rosenberg, et al. Expires August 13, 2004 [Page 1]

Internet-Draft Dialog Package

Table of Contents

1.

2.

3.
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.7.1
3.7.2
3.8
3.9
3.10
3.11
4.
4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.1.6.1
4.1.6.2
4.1.6.3
4.2
4.3
5.

6.
6.1
6.2
6.3
7.

8.
8.1
8.2
8.3

e

Rosenberg,

Introduction

Terminology .
Dialog Event Package
Event Package Name

Event Package Parameters
SUBSCRIBE Bodies
Subscription Duration
NOTIFY Bodies

Notifier Process1ng of SUBSCRIBE Requests

Notifier Generation of NOTIFY Requests
The Dialog State Machine

Applying the state machine

Subscriber Processing of NOTIFY Requests
Handling of Forked Requests

Rate of Notifications

State Agents .

Dialog Information Format

Structure of Dialog Information

Dialog Element

State

Duration

Replaces

Referred-By .

Local and Remote elements

Identity

Target .

Session Description

Sample Notification Body

Constructing Coherent State

Schema

Examples

Basic Example .
Emulating a Shared- Llne phone system
Minimal Dialog Information with Privacy
Security Considerations

IANA Considerations

application/dialog- 1nfo+xml MIME Reglstratlon

URN Sub-Namespace Registration for
urn:ietf:params:xml:ns:dialog-info
Schema Registration
Acknowledgements

Normative References

Informative References

Authors’ Addresses

Intellectual Property and Copyrlght Statements

et al. Expires August 13, 2004

February 2004

d OO U S D W

prO SNy HrPRRPRARrRRrRARERERERAREPRARPRARrRRARrRRRrPRRPRRRRRRE
W WO O O -JoyoYOoUlUrO1Url Ok WWwdhDNDNDDND PP O

30
30
31
31
32
32
34

[Page 2]

Internet-Draft Dialog Package February 2004

1. Introduction

The SIP Events framework [1] defines general mechanisms for
subscription to, and notification of, events within SIP networks. It
introduces the notion of a package, which is a specific
"instantiation" of the events mechanism for a well-defined set of
events. Packages have been defined for user presence [14], watcher
information [15], and message waiting indicators [16], amongst
others. Here, we define an event package for INVITE initiated
dialogs. Dialogs refer to the SIP relationship established between
two SIP peers [2]. Dialogs can be created by many methods, although
RFC 3261 defines only one - the INVITE method. RFC 3265 defines the
SUBSCRIBE and NOTIFY methods, which also create dialogs. However, the
usage of this package to model transitions in the state of those
dialogs is out of the scope of this specification.

There are a variety of applications enabled through the knowledge of
INVITE dialog state. Some examples include:

Automatic Callback: In this basic Public Switched Telephone Network
(PSTN) application, user A calls user B. User B is busy. User A
would like to get a callback when user B hangs up. When B hangs
up, user A’s phone rings. When A picks it up, they here ringing,
and are being connected to B. To implement this with SIP, a
mechanism is required for B to receive a notification when the
dialogs at A are complete.

Presence-Enabled Conferencing: In this application, a user A wishes
to set up a conference call with users B and C. Rather than
scheduling it, it is to be created automatically when A, B and C
are all available. To do this, the server providing the
application would like to know whether A, B and C are "online",
not idle, and not in a phone call. Determining whether or not A, B
and C are in calls can be done in two ways. In the first, the
server acts as a call stateful proxy for users A, B and C, and
therefore knows their call state. This won’t always be possible,
however, and it introduces scalability, reliability, and
operational complexities. Rather, the server would subscriber to
the dialog state of those users, and receive notifications as it
changes. This enables the application to be provided in a
distributed way; the server need not reside in the same domain as
the users.

IM Conference Alerts: In this application, a user can get an IM sent
to their phone whenever someone joins a conference that the phone
is involved in. The IM alerts are generated by an application
separate from the conference server.

Rosenberg, et al. Expires August 13, 2004 [Page 3]

Internet-Draft Dialog Package February 2004

In general, the dialog package allows for construction of distributed
applications, where the application requires information on dialog
state, but is not co-resident with the end user on which that state
resides.

2. Terminology

In this document, the key words "MUST", "MUST NOT", "REQUIRED",
"SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
and "OPTIONAL" are to be interpreted as described in RFC 2119 [9] and
indicate requirement levels for compliant implementations.

3. Dialog Event Package

This section provides the details for defining a SIP Events package,
as specified by [1].

3.1 Event Package Name

The name of this event package is "dialog". This package name is
carried in the Event and Allow-Events header, as defined in [1].

3.2 Event Package Parameters

This package defines four Event Package parameters. They are call-id,
to-tag, from-tag, and include-session-description. If a subscription
to a specific dialog is requested, all of the first three of these
parameters MUST be present. They identify the dialog that is being
subscribed to. The to-tag is matched against the local tag, the
from-tag is matched against the remote tag, and the call-id is
matched against the Call-ID. The include-session-description
parameter indicates if the subscriber would like to receive the
session descriptions associated with the subscribed dialog or
dialogs.

It is also possible to subscribe to the set of dialogs created as a
result of a single INVITE sent by a UAC. In that case, the call-id
and to-tag MUST be present. The to-tag is matched against the local
tag, and the call-id is matched against the Call-ID.

The ABNF for these parameters is shown below. It refers to many
constructions from the ABNF of RFC3261, such as EQUAL, DQUOTE, and

token.

call-id

"call-id" EQUAL (token / DQUOTE callid DQUOTE)

;7 NOTE: any DQUOTEs inside callid MUST be escaped!
from-tag = "from-tag" EQUAL token
to-tag "to-tag" EQUAL token

Rosenberg, et al. Expires August 13, 2004 [Page 4]

Internet-Draft Dialog Package February 2004

with-sessd = "include-session-description"

Any callids which contain embedded double-quotes MUST escape those
double-quotes using the backslash-quoting mechanism. Note that the
call-id parameter may need to be expressed as a quoted string. This
is because the ABNF for callid and word (which is used by callid)
allow for some characters (such as "@", "[", and ":") which are not
allowed within a token.

3.3 SUBSCRIBE Bodies

A SUBSCRIBE for a dialog package MAY contain a body. This body
defines a filter to apply to the subscription. Filter documents are
not specified in this document, and at the time of writing, are
expected to be the subject of future standardization activity.

A SUBSCRIBE for a dialog package MAY be sent without a body. This
implies the default subscription filtering policy. The default policy
is:

o If the Event header field contained dialog identifiers,
notifications are generated every time there is a change in the
state of any matching dialogs for the user identified in the
request URI of the SUBSCRIBE.

o If there were no dialog identifiers in the Event header field,
notifications are generated every time there is any change in the
state of any dialogs for the user identified in the request URI of
the SUBSCRIBE with the following exceptions. If the target
(Contact) URI of a subscriber is equivalent to the remote target
URI of a specific dialog, then the dialog element for that dialog
is suppressed for that subscriber. (The subscriber is already a
party in the dialog directly, so these notifications are
superfluous.) If no dialogs remain after supressing dialogs, the
entire notification to that subscriber is supressed and the
version number in the dialog-info element is not incremented for
that subscriber. Implicit filtering for one subscriber does not
affect notifications to other subscribers.

o Notifications do not normally contain full state; rather, they
only indicate the state of the dialog whose state has changed. The
exceptions are a NOTIFY sent in response to a SUBSCRIBE, and a
NOTIFY that contains no dialog elements. These NOTIFYs contain the
complete view of dialog state.

o The notifications contain the identities of the participants in

the dialog, the target URIs, and the dialog identifiers. Session
descriptions are not included normally unless explicitly requested

Rosenberg, et al. Expires August 13, 2004 [Page 5]

Internet-Draft Dialog Package February 2004

and/or explicitly authorized.

3.4 Subscription Duration

Dialog state changes fairly quickly; once established, a typical
phone call lasts a few minutes (this is different for other session
types, of course). However, the interval between new calls is
typically infrequent. As such, we arbitrarily choose a default
duration of one hour. Clients SHOULD specify an explicit duration.

There are two distinct use cases for dialog state. The first is when
a subscriber is interested in the state of a specific dialog or
dialogs (and they are authorized to find out about just the state of
those dialogs). In that case, when the dialogs terminate, so too does
the subscription. In these cases, the value of the subscription
duration is largely irrelevant, and SHOULD be longer than the typical
duration of a dialog, about two hours would cover most dialogs.

In another case, a subscriber is interested in the state of all
dialogs for a specific user. In these cases, a shorter interval makes
more sense. The default is one hour for these subscriptions.

3.5 NOTIFY Bodies

As described in RFC 3265 [1], the NOTIFY message will contain bodies
that describe the state of the subscribed resource. This body is in a
format listed in the Accept header field of the SUBSCRIBE, or a
package-specific default if the Accept header field was omitted from
the SUBSCRIBE.

In this event package, the body of the notification contains a dialog
information document. This document describes the state of one or
more dialogs associated with the subscribed resource. All subscribers
and notifiers MUST support the "application/dialog-info+xml" data
format described in Section 4. The subscribe request MAY contain an
Accept header field. If no such header field is present, it has a
default value of "application/dialog-info+xml". If the header field
is present, it MUST include "application/dialog-info+xml", and MAY
include any other types capable of representing dialog state.

Of course, the notifications generated by the server MUST be in one
of the formats specified in the Accept header field in the SUBSCRIBE
request.

3.6 Notifier Processing of SUBSCRIBE Requests

The dialog information for a user contains sensitive information.

Rosenberg, et al. Expires August 13, 2004 [Page 6]

Internet-Draft Dialog Package February 2004

Therefore, all subscriptions SHOULD be authenticated and then
authorized before approval. All implementors of this package MUST
support the digest authentication mechanism as a baseline.
Authorization policy is at the discretion of the administrator, as
always. However, a few recommendations can be made.

It is RECOMMENDED that, if the policy of user B is that user A is
allowed to call them, dialog subscriptions from user A be allowed.
However, the information provided in the notifications does not
contain any dialog identification information; merely an indication
of whether the user is in at least one call, or not. Specifically,
they should not be able to find out any more information than if they
sent an INVITE. (This concept of a "virtual" dialog is discussed more
in Section 3.7.2, and an example of such a notification body is shown
below.)
<?xml version="1.0"?>
<dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
version="0" state="full"
entity="sip:alicelexample.com">
<dialog id="as7d900as8">
<state>confirmed</state>
</dialog>
</dialog-info>

It is RECOMMENDED that if a user agent registers with the
address-of-record X, that this user agent authorize subscriptions
that come from any entity that can authenticate itself as X. Complete
information on the dialog state SHOULD be sent in this case. This
authorization behavior allows a group of devices representing a
single user to all become aware of each other’s state. This is useful
for applications such as single-line-extension.

Note that many implementations of "shared-lines" have a feature
which allows details of calls on a shared address-of-record to be
made private. This is a completely reasonable authorization policy
which could result in notifications which contain only the id
attribute of the dialog element and the state element when
shared-line privacy is requested, and notifications with more
complete information when shared-line privacy is not requested.

3.7 Notifier Generation of NOTIFY Requests

Notifications are generated for the dialog package when an INVITE
request is sent, when a new dialog comes into existence at a UA, or
when the state or characteristics of an existing dialog changes.
Therefore, a model of dialog state is needed in order to determine
precisely when to send notifications, and what their content should

Rosenberg, et al. Expires August 13, 2004 [Page 7]

Internet-Draft Dialog Package February 2004

be. The SIP specification has a reasonably well defined lifecycle for
dialogs. However, it is not explicitly modelled. This specification
provides an explicit model of dialog state through a finite state
machine.

It is RECOMMENDED that NOTIFY requests only contain information on
the dialogs whose state or participation information has changed.
However, if a notifier receives a SUBSCRIBE request, the triggered
NOTIFY SHOULD contain the state of all dialogs that the subscriber is
authorized to see.

3.7.1 The Dialog State Machine

Modelling of dialog state is complicated by two factors. The first is
forking, which can cause a single INVITE to generate many dialogs at
a UAC. The second is the differing views of state at the UAC and UAS.
We have chosen to handle the first issue by extending the dialog FSM
to include the states between transmission of the INVITE and the
creation of actual dialogs through receipt of 1xx and 2xx responses.
As a result, this specification supports the notion of dialog state
for dialogs before they are fully instantiated.

We have also chosen to use a single FSM for both UAC and UAS.

Fomm + Fomm——————— +

| | lxx-notag | |

| | === > | |

| Trying | |Proceeding|————— +

| R | | |

| | [| | |

R + | R + |
| | [| |
| | [| |
+<--C————- C——+ | 1xx-tag |
| | | | |

cancelled| | | \ |
rejected| | |1xx-tag +-—————--—- + |

| | o > | ! | 2xx
| | | | |
F<——C—mmmm = | Early | ————- C-——+ 1lxx-tag
| | replaced | | | | w/new tag
| | | |<-——=-C-—-+ (new FSM
| | Fom + | instance
| | 2XX | | created)
| o + |
| |]2xx |
| |

Rosenberg, et al. Expires August 13, 2004 [Page 8]

Internet-Draft Dialog Package February 2004

\Y v Vv |
+t-————— + +t-————— + |
| | | | |
| | | | |
| Terminated|<-——————————- | Confirmed|<————+
| | error | |
| | timeout | |
- + replaced +-————-————— +

local-bye A

|
remote-bye | |
|

2xx w. new tag
(new FSM instance
created)

Figure 3

The FSM for dialog state is shown in Figure 3. The FSM is best
understood by considering the UAC and UAS cases separately.

The FSM is created in the "trying" state when the UAC sends an INVITE
request. Upon receipt of a lxx without a tag, the FSM transitions to
the "proceeding" state. Note that there is no actual dialog yet, as
defined by the SIP specification. However, there is a "half-dialog",
in the sense that two of the three components of the dialog ID are
known (the call identifier and local tag). If a 1xx with a tag is
received, the FSM transitions to the early state. The full dialog
identifier is now defined. Had a 2xx been received, the FSM would
have transitioned to the "confirmed" state.

If, after transitioning to the "early" or "confirmed" states, the UAC
receives another 1xx or 2xx respectively with a different tag,
another instance of the FSM is created, initialized into the "early"
or "confirmed" state respectively. The benefit of this approach is
that there will be a single FSM representing the entire state of the
invitation and resulting dialog when dealing with the common case of
no forking.

If the UAC should send a CANCEL, and then subsequently receive a 487
to its INVITE transaction, all FSMs spawned from that INVITE
transition to the "terminated" state with the event "cancelled". If
the UAC receives a new invitation (with a Replaces [13] header) which
replaces the current Early or Confirmed dialog, all INVITE
transactions spawned from the replaced invitation transition to the
"terminated" state with the event "replaced". If the INVITE
transaction terminates with a non-2xx response for any other reason,
all FSMs spawned from that INVITE transition to the terminated state

Rosenberg, et al. Expires August 13, 2004 [Page 9]

Internet-Draft Dialog Package February 2004

with the event "rejected".

Once in the confirmed state, the call is active. It can transition to
the terminated state if the UAC sends a BYE or receives a BYE
(corresponding to the "local-bye" and "remote-bye" events as
appropriate), if a mid-dialog request generates a 481 or 408 response
(corresponding to the "error" event), or a mid-dialog request
generates no response (corresponding to the "timeout" event).

From the perspective of the UAS, when an INVITE is received, the FSM
is created in the "trying" state. If it sends a 1lxx without a tag,
the FSM transitions to the "proceeding" state. If a 1lxx is sent with
a tag, the FSM transitions to the "early" state, and if a 2xx is
sent, it transitions to the "confirmed" state. If the UAS should
receive a CANCEL request and then generate a 487 response to the
INVITE (which can occur in the proceeding and early states), the FSM
transitions to the terminated state with the event "cancelled". If
the UAS should generate any other non-2xx final response to the
INVITE request, the FSM transitions to the terminated state with the
event "rejected". If the UAS receives a new invitation (with a
Replaces [13] header) which replaces the current Confirmed dialog,
the replaced invitation transition transitions to the "terminated"
state with the event "replaced". Once in the "confirmed" state, the
other transitions to the "terminated" state occur for the same
reasons they do in the case of UAC.

There should never be a transition from the "trying" state to the
"terminated" state with the event "cancelled", since the SIP
specification prohibits transmission of CANCEL until a provisional
response is received. However, this transition is defined in the
FSM just to unify the transitions from trying, proceeding, and
early to the terminated state.

3.7.2 Applying the state machine

The notifier MAY generate a NOTIFY request on any event transition of
the FSM. Whether it does or not is policy dependent. However, some
general guidelines are provided.

When the subscriber is unauthenticated, or is authenticated, but
represents a third party with no specific authorization policies, it
is RECOMMENDED that subscriptions to an individual dialog, or to a
specific set of dialogs, is forbidden. Only subscriptions to all
dialogs (i.e., there are no dialog identifiers in the Event header
field) are permitted. In that case, actual dialog states across all
dialogs will not be reported. Rather, a single "virtual" dialog FSM
be used, and event transitions on that FSM be reported.

Rosenberg, et al. Expires August 13, 2004 [Page 10]

Internet-Draft Dialog Package February 2004

If there is any dialog at the UA whose state is "confirmed", the
virtual FSM is in the "confirmed" state. If there are no dialogs at
the UA in the confirmed state, but there is at least one in the
"early" state, the virtual FSM is in the "early" or "confirmed"
state. If there are no dialogs in the confirmed or early states, but
there is at least one in the "proceeding" state, the virtual FSM is
in the "proceeding", "early" or "confirmed" state. If there are no
dialogs in the confirmed, early, or proceeding states, but there is
at least one in the "trying" state, the virtual FSM is in the
"trying", "proceeding", "early" or "confirmed" state. The choice
about which state to use depends on whether the UA wishes to let
unknown users know that their phone is ringing, as opposed to in an
active call.

It is RECOMMENDED that, in the absence of any preference, "confirmed"
is used in all cases (as shown in the example in Section 3.6.
Furthermore, it is RECOMMENDED that the notifications of changes in
the virtual FSM machine not convey any information except the state
of the FSM and its event transitions - no dialog identifiers (which
are ill-defined in this model in any case). The use of this virtual
FSM allows for minimal information to be conveyed. A subscriber
cannot know how many calls are in progress, or with whom, Jjust that
there exists a call. This is the same information they would receive
if they simply sent an INVITE to the user instead; a 486 response
would indicate that they are on a call.

When the subscriber is authenticated, and has authenticated itself
with the same address-of-record that the UA itself uses, if no
explicit authorization policy is defined, it is RECOMMENDED that all
state transitions on dialogs that have been subscribed to (which is
either all of them, if no dialog identifiers were present in the
Event header field, or a specific set of them identified by the Event
header field parameters) be reported, along with complete dialog IDs.

The notifier MAY generate a NOTIFY request on any change in the
characteristics associated with the dialog. Since these include
Contact URIs, Contact parameters and session descriptions, receipt of
re-INVITEs and UPDATE requests [3] which modify this information MAY
trigger notifications.

3.8 Subscriber Processing of NOTIFY Requests
The SIP Events framework expects packages to specify how a subscriber
processes NOTIFY requests in any package specific ways, and in
particular, how it uses the NOTIFY requests to contruct a coherent

view of the state of the subscribed resource.

Typically, the NOTIFY for the dialog package will only contain

Rosenberg, et al. Expires August 13, 2004 [Page 11]

Internet-Draft Dialog Package February 2004

information about those dialogs whose state has changed. To construct
a coherent view of the total state of all dialogs, a subscriber to
the dialog package will need to combine NOTIFYs received over time.

Notifications within this package can convey partial information;
that is, they can indicate information about a subset of the state
associated with the subscription. This means that an explicit
algorithm needs to be defined in order to construct coherent and
consistent state. The details of this mechanism are specific to the
particular document type. See Section 4.3 for information on
constructing coherent information from an application/dialog-info+xml
document.

3.9 Handling of Forked Requests

Since dialog state is distributed across the UA for a particular
user, it is reasonable and useful for a SUBSCRIBE request for dialog
state to fork, and reach multiple UA.

As a result, a forked SUBSCRIBE request for dialog state can install
multiple subscriptions. Subscribers to this package MUST be prepared
to install subscription state for each NOTIFY generated as a result
of a single SUBSCRIBE.

3.10 Rate of Notifications

For reasons of congestion control, it is important that the rate of
notifications not become excessive. As a result, it is RECOMMENDED
that the server not generate notifications for a single subscriber at
a rate faster than once every 1 second.

3.11 State Agents

Dialog state is ideally maintained in the user agents in which the
dialog resides. Therefore, the elements that maintain the dialog are
the ones best suited to handle subscriptions to it. However, in some
cases, a network agent may also know the state of the dialogs held by
a user. As such, state agents MAY be used with this package.

4. Dialog Information Format

Dialog information is an XML document [4] that MUST be well-formed
and SHOULD be valid. Dialog information documents MUST be based on
XML 1.0 and MUST be encoded using UTF-8. This specification makes use
of XML namespaces for identifying dialog information documents and
document fragments. The namespace URI for elements defined by this
specification is a URN [5], using the namespace identifier "ietf’
defined by [6] and extended by [7]. This URN is:

Rosenberg, et al. Expires August 13, 2004 [Page 12]

Internet-Draft Dialog Package February 2004

urn:ietf:params:xml:ns:dialog-info

A dialog information document begins with the root element tag
"dialog-info".

4.1 Structure of Dialog Information

A dialog information document starts with a dialog-info element. This
element has three mandatory attributes:

version: This attribute allows the recipient of dialog information
documents to properly order them. Versions start at 0, and
increment by one for each new document sent to a subscriber.
Versions are scoped within a subscription. Versions MUST be
representable using a 32 bit integer.

state: This attribute indicates whether the document contains the
full dialog information, or whether it contains only information
on those dialogs which have changed since the previous document
(partial) .

entity: This attribute contains a URI that identifies the user whose
dialog information is reported in the remainder of the document.
This user is referred to as the "observed user".

The dialog-info element has a series of zero or more dialog

sub-elements. Each of those represents a specific dialog.

<?xml version="1.0"?>

<dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
version="0" notify-state="full"
entity="sip:alicelexample.com">

</dialog-info>

4.1.1 Dialog Element

The dialog element reports information on a specific dialog or
"half-dialog". It has single mandatory attribute: id. The id
attribute provides a single string that can be used as an identifier
for this dialog or "half-dialog". This is a different identifier than
the dialog ID defined in RFC 3261 [2], but related to it.

For a caller, the id is created when an INVITE request is sent. When
a lxx with a tag, or a 2xx is received, the dialog is formally
created. The id remains unchanged. However, if an additional 1xx or
2xx 1s received, resulting in the creation of another dialog (and
resulting FSM), that dialog is allocated a new id.

For a callee, the id is created when an INVITE outside of an existing

Rosenberg, et al. Expires August 13, 2004 [Page 13]

Internet-Draft Dialog Package February 2004

dialog is received. When a 2xx or a 1lxx with a tag is sent, creating
the dialog, the id remains unchanged.

The id MUST be unique amongst all dialogs at a UA.

There are a number of optional attributes which provide
identification information about the dialog:

call-id: This attribute is a string which represents the call-id
component of the dialog identifier. (Note that single and double
quotes inside a call-id must be escaped using "e; for " and
' for ' .)

local-tag: This attribute is a string which represents the local-tag
component of the dialog identifier.

remote-tag: This attribute is a string which represents the
remote-tag component of the dialog identifier. The remote tag
attribute won’t be present if there is only a "half-dialog",
resulting from the generation of an INVITE for which no final
responses or provisional responses with tags has been received.

direction: This attribute is either initiator or recipient, and
indicates whether the observed user was the initiator of the
dialog, or the recipient of the INVITE that created it.

<?xml version="1.0"?>
<dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
version="0" state="partial"
entity="sip:alicelexample.com">
<dialog id="as7d900as8" call-id="a84b4c76e66710"
local-tag="1928301774" direction="initiator">

</dialog>
</dialog-info>

The sub-elements of the dialog element provide additional information
about the dialog. Some of these sub-elements provide more detail
about the dialog itself, while the local and remote sub-elements
describe characteristics of the participants involved in the dialog.
The only mandatory sub-element is the state element.

4.1.2 State
The state element indicates the state of the dialog. Its value is an
enumerated type describing one of the states in the FSM above. It has

an optional event attribute that can be used to indicate the event
which caused any transition into the terminated state, and an

Rosenberg, et al. Expires August 13, 2004 [Page 14]

Internet-Draft Dialog Package February 2004

optional code attribute that indicates the response code associated
with any transition caused by a response to the original INVITE.
<state event="rejected" code="486">terminated</state>

4.1.3 Duration

The duration element contains the amount of time, in seconds, since
the FSM was created.
<duration>145</duration>

4.1.4 Replaces

The replaces element is used to correlate a new dialog with one it
replaced as a result of an invitation with a Replaces header. This

element is present in the replacement dialog only (the newer dialog)

and contains attributes with the call-id, local-tag, and remote-tag

of the replaced dialog.

<replaces call-1d="hg287s98s89" local-tag="6762h7" remote-tag="09278hsb"/>

4.1.5 Referred-By

The referred-by element is used to correlate a new dialog with a
REFER [12] request which triggered it. The element is present in a
dialog which was triggered by a REFER request which contained a
Referred-By [11] header and contains the (optional) display name
attribute and the Referred-By URI as its value.

<referred-by display="Bob">sip:boblexample.com</referred-by>

4.1.6 Local and Remote elements

The local and remote elements are sub-elements of the dialog element
which contain information about the local and remote participants
respectively. They both have a number of optional sub-elements which
indicate the identity conveyed by the participant, the target URI,
the feature-tags of the target, and the session-description of the
participant.

4.1.6.1 Identity

The identity element indicates a local or remote URI, as defined in
[2] as appropriate. It has an optional attribute, display, that
contains the display name from the appropriate URI.

Note that multiple identities (for example a sip: URI and a tel:
URI) could be included if they all correspond to the participant.
To avoid repeating identity information in each request, the
subscriber can assume that the identity URIs are the same as in

Rosenberg, et al. Expires August 13, 2004 [Page 15]

Internet-Draft Dialog Package February 2004

previous notifications if no identity elements are present in the
corresponding local or remote element. If any identity elements
are present in the local or remote part of a notification, the new
list of identity tags completely supersedes the old list in the
corresponding part.

<identity display="Anonymous">sip:anonymous@anonymous.invalid</identity>
4.1.6.2 Target

The target contains the local or remote target URI as constructed by
the user agent for this dialog, as defined in RFC 3261 [2] in a "uri"
attribute.

It can contain a list of Contact header parameters in param
sub-elements (such as those defined in [10]. The param element
contains a required pname attribute and an optional pval attribute
(some parameters merely exist and have no explicit value). The param
element itself has no contents. To avoid repeating Contact
information in each request, the subscriber can assume that the
target URI and parameters are the same as in previous notifications
if no target element is present in the corresponding local or remote
element. If a target element is present in the local or remote part
of a notification, the new target tag and list of an parameter tags
completely supersedes the old target and parameter list in the
corresponding part.
<target uri="sip:alicel@pc33.example.com">

<param pname="isfocus"/>

<param pname="class" pval="personal"/>
</target>

4.1.6.3 Session Description

The session-description element contains the session description used
by the observed user for its end of the dialog. This element should
generally NOT be included in the notifications, unless explicitly
requested by the subscriber. It has a single attribute, type, which
indicates the MIME media type of the session description. To avoid
repeating session description information in each request, the
subscriber can assume that the session description is the same as in
previous notifications if no session description element is present
in the corresponding local or remote element.

4.2 Sample Notification Body
<?xml version="1.0" encoding="UTF-8"?>

<dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

Rosenberg, et al. Expires August 13, 2004 [Page 16]

Internet-Draft Dialog Package February 2004

xsi:schemalocation="urn:ietf:params:xml:ns:dialog-info"
version="1" state="full">
<dialog id="123456">
<state>confirmed</state>
<duration>274</duration>
<local>
<identity display="Alice">sip:alicelexample.com</identity>
<target uri="sip:alicel@pc33.example.com">
<param pname="isfocus"/>
<param pname="class" pval="personal"/>
</target>
</local>
<remote>
<identity display="Bob">sip:boblexample.org</identity>
<target uri="sip:bobster@phone2l.example.org"/>
</remote>
</dialog>
</dialog-info>

4.3 Constructing Coherent State

The dialog information subscriber maintains a table for the list of
dialogs. The table contains a row for each dialog. Each row is
indexed by an ID, present in the "id" attribute of the "dialog"
element. The contents of each row contain the state of that dialog as
conveyed in the document. The table is also associated with a version
number. The version number MUST be initialized with the value of the
"version" attribute from the "dialog-info" element in the first
document received. Each time a new document is received, the value of
the local version number, and the "version" attribute in the new
document, are compared. If the value in the new document is one
higher than the local version number, the local version number is
increased by one, and the document is processed. If the value in the
document is more than one higher than the local version number, the
local version number is set to the value in the new document, and the
document is processed. If the document did not contain full state,
the subscriber SHOULD generate a refresh request to trigger a full
state notification. If the value in the document is less than the
local version, the document is discarded without processing.

The processing of the dialog information document depends on whether
it contains full or partial state. If it contains full state,
indicated by the value of the "state" attribute in the "dialog-info"
element, the contents of the table are flushed. They are repopulated
from the document. A new row in the table is created for each
"dialog" element. If the document contains partial state, as
indicated by the value of the "state" attribute in the "dialog-info"

Rosenberg, et al. Expires August 13, 2004 [Page 17]

Internet-Draft Dialog Package February 2004

element, the document is used to update the table. For each "dialog"
element in the document, the subscriber checks to see whether a row
exists for that dialog. This check is done by comparing the ID in the
"id" attribute of the "dialog" element with the ID associated with
the row. If the dialog doesn’t exist in the table, a row is added,
and its state is set to the information from that "dialog" element.
If the dialog does exist, its state is updated to be the information
from that "dialog" element. If a row is updated or created, such that
its state is now terminated, that entry MAY be removed from the table
at any time.

5. Schema

The following is the schema for the application/dialog-info+xml type:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
targetNamespace="urn:ietf:params:xml:ns:dialog-info"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="urn:ietf:params:xml:ns:dialog-info"
elementFormDefault="qualified"
attributeFormDefault="unqualified">
<!-— This import brings in the XML language attribute xml:lang-->
<xs:import namespace="http://www.w3.0rg/XML/1998/namespace"
schemalLocation="http://www.w3.0rg/2001/03/xml.xsd"/>
<xs:element name="dialog-info">
<xs:complexType>
<xs:sequence>
<xs:element ref="tns:dialog" minOccurs="0"
maxOccurs="unbounded" />
<xs:any namespace="##other" processContents="lax"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="version" type="xs:nonNegativelInteger"
use="required"/>
<xs:attribute name="state" use="required">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="full"/>
<xs:enumeration value="partial"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="entity" type="xs:anyURI" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="dialog">

Rosenberg, et al. Expires August 13, 2004 [Page 18]

Internet-Draft Dialog Package February 2004

<xs:complexType>
<xs:sequence>
<xs:element ref="tns:state" minOccurs="1" maxOccurs="1"/>
<xs:element name="duration" type="xs:nonNegativelnteger"
minOccurs="0" maxOccurs="1"/>
<xs:element name="replaces" minOccurs="0" maxOccurs="1">
<xs:complexType>
<xs:attribute name="call-id" type="xs:string"
use="required"/>
<xs:attribute name="local-tag" type="xs:string"
use="required"/>
<xs:attribute name="remote-tag" type="xs:string"
use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="referred-by" type="tns:nameaddr"
minOccurs="0" maxOccurs="1"/>
<xs:element name="route-set" minOccurs="0" maxOccurs="1">
<xs:complexType>
<xXs:sequence>
<xs:element name="hop" type="xs:string" minOccurs="1"
maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="local" type="tns:participant"
minOccurs="0" maxOccurs="1"/>
<xs:element name="remote" type="tns:participant"
minOccurs="0" maxOccurs="1"/>
<xs:any namespace="##other" processContents="lax"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use="required"/>
<xs:attribute name="call-id" type="xs:string"
use="optional"/>
<xs:attribute name="local-tag" type="xs:string"
use="optional"/>
<xs:attribute name="remote-tag" type="xs:string"
use="optional"/>
<xs:attribute name="direction" use="optional">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="initiator"/>
<xs:enumeration value="recipient"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>

Rosenberg, et al. Expires August 13, 2004 [Page 19]

Internet-Draft Dialog Package February 2004

</xs:element>
<xs:complexType name="participant">
<xs:sequence>
<xs:element name="identity" type="nameaddr"
minOccurs="0" maxOccurs="1"/>
<xs:element name="target" minOccurs="0" maxOccurs="1">
<xs:complexType>
<xXs:sequence>
<xs:element name="param" minOccurs="0"
maxOccurs="unbounded">
<xs:complexType>
<xs:attribute name="pname" type="xs:string"
use="required"/>
<xs:attribute name="pval" type="xs:string"
use="optional"/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:attribute name="uri" type="xs:string" use="required"/>
</xs:element>
<xs:element name="session-description" type="tns:sessd"
minOccurs="0" maxOccurs="1"/>
<xs:element name="cseq" type="xs:nonNegativelInteger"
minOccurs="0" maxOccurs="1"/>
<xs:any namespace="##other" processContents="lax"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="nameaddr">
<xs:simpleContent>
<xs:extension base="xs:anyURI">
<xs:attribute name="display-name" type="xs:string"
use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="sessd">
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string" use="required"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:element name="state">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">

Rosenberg, et al. Expires August 13, 2004 [Page 20]

Internet-Draft Dialog Package February 2004

<xs:attribute name="event" use="optional">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="cancelled"/>
<xs:enumeration value="rejected"/>
<xs:enumeration value="replaced"/>
<xs:enumeration value="local-bye"/>
<xs:enumeration value="remote-bye"/>
<xs:enumeration value="error"/>
<xs:enumeration value="timeout"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="code" use="optional">
<xs:simpleType>
<xs:restriction base="xs:positivelInteger">
<xs:minInclusive value="100"/>
<xs:maxInclusive value="699"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:schema>

6. Examples
6.1 Basic Example

For example, if a UAC sends an INVITE that looks like, in part:

INVITE sip:bob@example.com SIP/2.0

Via: SIP/2.0/UDP pc33.example.com;branch=z9hG4bKnashds8
Max-Forwards: 70

To: Bob <sip:boblexample.com>

From: Alice <sip:alice@example.com>;tag=1928301774
Call-ID: a84b4c76e66710

CSeq: 314159 INVITE

Contact: <sip:alice@pc33.example.com>

Content-Type: application/sdp

Content-Length: 142

[SDP not shown]

Rosenberg, et al. Expires August 13, 2004 [Page 21]

Internet-Draft Dialog Package February 2004

The XML document in a notification from Alice might look like:

<?xml version="1.0"?>
<dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
version="0"
state="full"
entity="sip:alicelexample.com">
<dialog id="as7d900as8" call-id="a84b4c76e66710"
local-tag="1928301774" direction="initiator">
<state>trying</state>
</dialog>
</dialog-info>

If the following 180 response is received:

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP pc33.example.com;branch=z9hG4bKnashds8
To: Bob <sip:bob@example.com>;tag=456887766

From: Alice <sip:alice@example.com>;tag=1928301774
Call-ID: a84b4c76e66710

CSeq: 314159 INVITE

Contact: <sip:bob@host.example.com>

The XML document in a notification might look like:

<?xml version="1.0"?>
<dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
version="1"
state="full"
entity="sip:alicelexample.com">
<dialog id="as7d900as8" call-id="a84b4c76e66710"
local-tag="1928301774" remote-tag="456887766"
direction="initiator">
<state>early</state>
</dialog>
</dialog-info>

If it receives a second 180 with a different tag:

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP pc33.example.com;branch=z9hG4bKnashds8
To: Bob <sip:bob@example.com>;tag=hh76a

From: Alice <sip:alice@example.com>;tag=1928301774
Call-ID: a84b4c76e66710

Rosenberg, et al. Expires August 13, 2004 [Page 22]

Internet-Draft Dialog Package February 2004

CSeq: 314159 INVITE
Contact: <sip:jack@host.example.com>

This results in the creation of a second dialog:

<?xml version="1.0"?>
<dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
version="2"
state="full"
entity="sip:alicelexample.com">
<dialog id="as7d9%00as8" call-id="a84b4c76e66710"
local-tag="1928301774" remote-tag="456887766"
direction="initiator">
<state>early</state>
</dialog>
<dialog id="as7d9%900as8" call-id="a84b4c76e66710"
local-tag="1928301774" remote-tag="hh76a"
direction="initiator">
<state>early</state>
</dialog>
</dialog-info>

If a 200 OK is received on the second dialog, it moves to confirmed:

<?xml version="1.0"?>
<dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
version="3"
state="partial"
entity="sip:alicelexample.com">
<dialog id="as7d900as8" call-id="a84b4c76e66710"
local-tag="1928301774" remote-tag="hh76a"
direction="initiator">
<state>confirmed</state>
</dialog>
</dialog-info>

32 seconds later, the other early dialog terminates because no 2xx is
received for it. This implies that it was successfully cancelled, and
therefore the following notification is sent:

<?xml version="1.0"?>

<dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
version="4"
state="partial"
entity="sip:alicelexample.com">

Rosenberg, et al. Expires August 13, 2004 [Page 23]

Internet-Draft Dialog Package February 2004

<dialog id="as7d900as8" call-id="a84b4c76e66710"
local-tag="1928301774" remote-tag="hh76a"
direction="initiator">
<state event="cancelled">terminated</state>
</dialog>
</dialog-info>

6.2 Emulating a Shared-Line phone system

The following example shows how a SIP telephone user agent can
provide detailed state information and also emulate a shared-line
telephone system (the phone "lies" about having a dialog while it is
merely offhook).

Idle:

<?xml version="1.0"?>

<dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
version="0" state="full"
entity="sip:alicelexample.com">

</dialog-info>

Seized:

<?xml version="1.0"?>
<dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
version="1" state="partial"
entity="sip:alicelexample.com">
<dialog id="as7d900as8">
<state>trying</state>
</dialog>
</dialog-info>

Dialing:

<?xml version="1.0"?>
<dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
version="2" state="partial"
entity="sip:alicelexample.com">
<dialog id="as7d9%900as8" call-id="a84b4c76e66710"
local-tag="1928301774" direction="initiator">
<state>trying</state>
<local>
<identity display="Alice Smith">
sip:alicelexample.com
</identity>
<target uri="sip:alice.gruul@srv3.example.com;grid0987"/>

Rosenberg, et al. Expires August 13, 2004 [Page 24]

Internet-Draft Dialog Package February 2004

</local>
<remote>
<identity>sip:bob@example.net</identity>
</remote>
</dialog>
</dialog-info>

Ringing:

<?xml version="1.0"7?>
<dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
version="3" state="partial"
entity="sip:alicelexample.com">
<dialog id="as7d900as8" call-id="a84b4c76e66710"
local-tag="1928301774"
remote-tag="07346y131" direction="initiator">
<state code="180">early</state>
<remote>
<target uri="sip:bobsterfhost2.example.net"/>
</remote>
</dialog>
</dialog-info>

Answered (by voicemail) :

<?xml version="1.0"?>
<dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
version="4" state="partial"
entity="sip:alicelexample.com">
<dialog id="as7d900as8" call-id="a84b4c76e66710"
local-tag="1928301774"
remote-tag="07346y131" direction="initiator">
<state reason="cancelled">terminated</state>
</dialog>
<dialog id="zxcvbnm3" call-id="a84b4dc76e66710"
local-tag="1928301774"
remote-tag="8736347" direction="initiator">
<state code="200">confirmed</state>
<remote>
<target uri="sip:bob-is-not-here@vm.example.net">
<param pname="actor" pval="msg-taker"/>
<param pname="automaton"/>
</target>
</remote>
</dialog>
</dialog-info>

Alice requests voicemail for Bob’s attendant.

Rosenberg, et al. Expires August 13, 2004 [Page 25]

Internet-Draft Dialog Package February 2004

(Alice presses "0" in North America / "9" in Europe)
Voicemail completes a transfer with Cathy

<?xml version="1.0"?>
<dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
version="5" state="partial"
entity="sip:alicelexample.com">
<dialog id="zxcvbnm3" call-id="a84b4c76e66710"
local-tag="1928301774"
remote-tag="8736347" direction="initiator">
<state reason="replaced">terminated</state>
</dialog>
<dialog id="sfhjsjkl2" call-id="03401iil"
local-tag="8903734"
remote-tag="78cjkus" direction="receiver">
<state reason="replaced">confirmed</state>
<replaces call-id="a84b4c76e66710"
local-tag="1928301774"
remote-tag="8736347"/>
<referred-by>
sip:bob-is-not-here@vm.example.net
</referred-by>
<local>
<target uri="sip:alice.gruul@srv3.example.com;gridl645"/>
</local>
<remote>
<identity display="Cathy Jones">
sip:cjones@example.net
</identity>
<target uri="sip:line3@host3.example.net">
<param pname="actor" pval="attendant"/>
<param pname="automaton" pval="false"/>
</target>
</remote>
</dialog>
</dialog-info>

Alice and Cathy talk, Cathy adds Alice to a local conference.

<?xml version="1.0"?>
<dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
version="6" state="partial"
entity="sip:alicelexample.com">
<dialog id="sfhjsjkl2" call-id="o0340iil"
local-tag="8903734"
remote-tag="78cjkus" direction="receiver">
<state>confirmed</state>
<remote>

Rosenberg, et al. Expires August 13, 2004 [Page 26]

Internet-Draft Dialog Package February 2004

<target uri="sip:confid-34579@host3.example.net">
<param pname="isfocus"/>
</target>
</remote>
</dialog>
</dialog-info>

Alice puts Cathy on hold

<?xml version="1.0"7?>
<dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
version="7" state="partial"
entity="sip:alicelexample.com">
<dialog id="sfhjsjkl2" call-id="0340iil"
local-tag="8903734"
remote-tag="78cjkus" direction="receiver">
<state>confirmed</state>
<local>
<target uri="sip:alice.gruu@srv3.example.com;grid=1645">
<param pname="+activity" pval="noninteractive"/>
</target>
</local>
</dialog>
</dialog-info>

Cathy hangs up

<?xml version="1.0"?>
<dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
version="8" state="partial"
entity="sip:alicelexample.com">
<dialog id="sfhjsjkl2" call-id="0340iil"
local-tag="8903734"
remote-tag="78cjkus" direction="receiver">
<state reason="remote-bye">terminated</state>
</dialog>
<dialog id="08hjh1345">
<state>trying</state>
</dialog>
</dialog-info>

Alice hangs up:

<?xml version="1.0"?>

<dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
version="9" state="full"
entity="sip:alicelexample.com">

</dialog-info>

Rosenberg, et al. Expires August 13, 2004 [Page 27]

Internet-Draft Dialog Package February 2004

6.3 Minimal Dialog Information with Privacy

The following example shows the same user agent providing minimal
information to maintain privacy for services like automatic callback.

Onhook:

<?xml version="1.0"?>

<dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
version="0" state="full"
entity="sip:alicelexample.com">

</dialog-info>

Offhook: (implementation/policy choice for Alice to transition
to this "state" when "seized", when Trying, when Proceeding,
or when Confirmed.)

<?xml version="1.0"?>
<dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
version="1" state="full"
entity="sip:alicelexample.com">
<dialog id="1">
<state>confirmed</state>
</dialog>
</dialog-info>

Onhook: (implementation/policy choice for Alice to transition to
this "state" when terminated, or when no longer "seized")

<?xml version="1.0"?>

<dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
version="2" state="full"
entity="sip:alicelexample.com">

</dialog-info>

7. Security Considerations

Subscriptions to dialog state can reveal sensitive information. For
this reason, Section 3.6 discusses authentication and authorization
of subscriptions, and provides guidelines on sensible authorization
policies. All implementations of this package MUST support the digest
authentication mechanism.

Since the data in notifications is sensitive as well, end-to-end SIP
encryption mechanisms using S/MIME MAY be used to protect it.

Rosenberg, et al. Expires August 13, 2004 [Page 28]

Internet-Draft Dialog Package February 2004

8. IANA Considerations

This document registers a new MIME type, application/dialog-info+xml
and registers a new XML namespace.

8.1 application/dialog-info+xml MIME Registration
MIME media type name: application
MIME subtype name: dialog-info+xml
Mandatory parameters: none

Optional parameters: Same as charset parameter application/xml as
specified in RFC 3023 [8].

Encoding considerations: Same as encoding considerations of
application/xml as specified in RFC 3023 [8].

Security considerations: See Section 10 of RFC 3023 [8] and Section 7
of this specification.

Interoperability considerations: none.

Published specification: This document.

Applications which use this media type: This document type has been
used to support SIP applications such as call return and
auto-conference.

Additional Information:

Magic Number: None
File Extension: .dif or .xml

Macintosh file type code: "TEXT"

Personal and email address for further information: Jonathan
Rosenberg, <jdrosen@jdrosen.net>

Intended usage: COMMON

Author/Change controller: The IETF.

Rosenberg, et al. Expires August 13, 2004 [Page 29]

Internet-Draft Dialog Package February 2004

8.2 URN Sub-Namespace Registration for
urn:ietf:params:xml:ns:dialog-info

This section registers a new XML namespace, as per the guidelines in

[71.

URI: The URI for this namespace is
urn:ietf:params:xml:ns:dialog-info.

Registrant Contact: IETF, SIPPING working group, <sipping@ietf.org>,
Jonathan Rosenberg <jdrosen@jdrosen.net>.

XML:

BEGIN
<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"
"http://www.w3.0rg/TR/xhtml-basic/xhtml-basicl0.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<meta http-equiv="content-type"
content="text/html; charset=is0-8859-1"/>
<title>Dialog Information Namespace</title>
</head
<body>
<hl>Namespace for Dialog Information</hl>
<h2>urn:ietf:params:xml:ns:dialog-info</h2>
<p>See RFCXXXX.</p>
</body>
</html>
END

8.3 Schema Registration

This specification registers a schema, as per the guidelines in in

[(7].
URI: please assign.

Registrant Contact: IETF, SIPPING Working Group
(sipping@ietf.org), Jonathan Rosenberg (jdrosen@jdrosen.net).

XML: The XML can be found as the sole content of Section 5.

Rosenberg, et al. Expires August 13, 2004 [Page 30]

Internet-Draft Dialog Package February 2004

9. Acknowledgements

The authors would like to thank Sean Olson for his comments.

Normative References

(1]

Roach, A., "Session Initiation Protocol (SIP)-Specific Event
Notification", RFC 3265, June 2002.

Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
Peterson, J., Sparks, R., Handley, M. and E. Schooler, "SIP:
Session Initiation Protocol", RFC 3261, June 2002.

Rosenberg, J., "The Session Initiation Protocol (SIP) UPDATE
Method", RFC 3311, October 2002.

Bray, T., Paoli, J., Sperberg-McQueen, C. and E. Maler,
"Extensible Markup Language (XML) 1.0 (Second Edition)", W3C
REC REC-xml1-20001006, October 2000.

Moats, R., "URN Syntax", RFC 2141, May 1997.

Moats, R., "A URN Namespace for IETF Documents", RFC 2648,
August 1999.

Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
January 2004.

Murata, M., St. Laurent, S. and D. Kohn, "XML Media Types", RFC
3023, January 2001.

Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997.

Rosenberg, J., "Indicating User Agent Capabilities in the
Session Initiation Protocol (SIP)",
draft-ietf-sip-callee-caps-00 (work in progress), June 2003.

Sparks, R., "The SIP Referred-By Mechanism",
draft-ietf-sip-referredby-01 (work in progress), February 2003.

Sparks, R., "The Session Initiation Protocol (SIP) Refer
Method", RFC 3515, April 2003.

Dean, R., Biggs, B. and R. Mahy, "The Session Inititation
Protocol (SIP) ’'Replaces’ Header", draft-ietf-sip-replaces-03
(work in progress), March 2003.

Rosenberg, et al. Expires August 13, 2004 [Page 31]

Internet-Draft Dialog Package February 2004

Informative References

[14]

Authors’

Rosenberg, J., "A Presence Event Package for the Session
Initiation Protocol (SIP)", draft-ietf-simple-presence-10 (work
in progress), January 2003.

Rosenberg, J., "A Watcher Information Event Template-Package
for the Session Initiation Protocol (SIP)",
draft-ietf-simple-winfo-package-05 (work in progress), January
2003.

Mahy, R., "A Message Summary and Message Waiting Indication
Event Package for the Session Initiation Protocol (SIP)",
draft-ietf-sipping-mwi-02 (work in progress), March 2003.

Rosenberg, J., "Obtaining and Using Globally Routable User
Agent (UA) URIs (GRUU) in the Session Initiation Protocol
(SIP)", draft-ietf-sip-gruu-00 (work in progress), January
2004.

Sparks, R. and A. Johnston, "Session Initiation Protocol Call

Control - Transfer", draft-ietf-sipping-cc-transfer-01 (work in
progress), February 2003.

Addresses

Jonathan Rosenberg
dynamicsoft

600 Lanidex Plaza
Parsippany, NJ 07054

Us

Phone:
EMail:

URI:

+1 973 952-5000
jdrosen@dynamicsoft.com
http://www.jdrosen.net

Henning Schulzrinne
Columbia University
M/S 0401

1214 Amsterdam Ave.
New York, NY 10027

Us

EMail:

URI:

schulzrinne@cs.columbia.edu
http://www.cs.columbia.edu/ hgs

Rosenberg, et al. Expires August 13, 2004 [Page 32]

Internet-Draft Dialog Package February 2004

Rohan Mahy (editor)
Cisco Systems, Inc.

5617 Scotts Valley Dr
Scotts Valley, CA 95066
USA

EMail: rohan@cisco.com

Rosenberg, et al. Expires August 13, 2004 [Page 33]

Internet-Draft Dialog Package February 2004

Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any
intellectual property or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; neither does it represent that it
has made any effort to identify any such rights. Information on the
IETF’s procedures with respect to rights in standards-track and
standards-related documentation can be found in BCP-11. Copies of
claims of rights made available for publication and any assurances of
licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such
proprietary rights by implementors or users of this specification can
be obtained from the IETF Secretariat.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights which may cover technology that may be required to practice
this standard. Please address the information to the IETF Executive
Director.

Full Copyright Statement
Copyright (C) The Internet Society (2004). All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not Dbe
revoked by the Internet Society or its successors or assignees.

This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

Rosenberg, et al. Expires August 13, 2004 [Page 34]

Internet-Draft Dialog Package February 2004

HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

Funding for the RFC Editor function is currently provided by the
Internet Society.

Rosenberg, et al. Expires August 13, 2004 [Page 35]

SIPPING K. Ono
Internet-Draft S. Tachimoto
Expires: December 29, 2004 NTT Corporation

June 30, 2004

Requirements for End-to-Middle Security for the Session Initiation
Protocol (SIP)
draft-ietf-sipping-e2m-sec-reqs-03

Status of this Memo

By submitting this Internet-Draft, I certify that any applicable
patent or other IPR claims of which I am aware have been disclosed,
and any of which I become aware will be disclosed, in accordance with
RFC 3668.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as
Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/lid-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on December 29, 2004.
Copyright Notice

Copyright (C) The Internet Society (2004). All Rights Reserved.
Abstract

A SIP User Agent (UA) does not always trust all intermediaries in its
request path to inspect its message bodies and/or headers contained
in its message. The UA might want to protect the message bodies and/
or headers from intermediaries except those that provide services
based on its content. This situation requires a mechanism called
"end-to-middle security" to secure the information passed between the
UA and intermediaries, which does not interfere with end-to-end
security. This document defines a set of requirements for a

Ono & Tachimoto Expires December 29, 2004 [Page 1]

Internet-Draft

mechanism to achieve end-to-middle security.

Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED",
"SHOULD",
document are to be interpreted as described in RFC-2119 [1].

"SHOULD NOT", "RECOMMENDED",

Table of Contents

1. Introduction

2. TUse Cases .
Examples of Scenarlos
Service Examples

2.1

2.
2.

2
2.
2

2

1
.2

.3
2.

4

Logging Services for Instant Messages

n MAY n ,

End-to-Middle Security Requirements June 2004

"SHALL", "SHALL NOT",
and "OPTIONAL" in this

g owww

Non-emergency Call Routing Based on the Locatlon

Object .
User Authentlcatlon
Media-related Services

3. Scope of End-to-Middle Security
4. Requirements for a Solution
General Requirements

4.1
.2
4.3

IS

Requirements for End-to- Mlddle Confldentlallty
Requirements for End-to-Middle Integrity

5. Security Considerations

[

IANA Considerations

7. Changes .

Changes from 02 txt

Changes from 0l.txt

Changes from 00.txt

8. Acknowledgments

9. References .
Authors’ Addresses

7.1
.2
1.3

~J

Intellectual Property and Copyrlght Statements

Ono & Tachimoto

Expires December 29,

2004

O W W 0O 0O 00 O ~J oy O Ul

e
W~ OO O W

[Page 2]

Internet-Draft End-to-Middle Security Requirements June 2004

1. Introduction

The Session Initiation Protocol (SIP) [2] supports hop-by-hop
security using Transport Layer Security (TLS) [3] and end-to-end
security using Secure MIME (S/MIME) [4]. These security mechanisms
assume that a SIP UA trusts all proxy servers along its request path
to inspect the message bodies contained in the message, or a SIP UA
does not trust any proxy servers to do so.

However, there is a model where trusted and partially-trusted proxy
servers are mixed along a message path. The partially-trusted proxy
servers are only trusted to provide SIP routing, but these proxy
servers are not trusted by users to inspect its data except routing
headers. A hop-by-hop confidentiality service using TLS is not
suitable for this model. An end-to-end confidentiality service using
S/MIME is also not suitable when the intermediaries provide services
based on reading the message bodies and/or headers. This problem is
described in Section 23 of [2].

In some cases, a UA might want to protect its message bodies and/or
headers from proxy servers along its request path except from those
that provides services based on reading its message bodies and/or
headers. Conversely, a proxy server might want to view the message
bodies and/or headers to sufficiently provide these services. Such
proxy servers are not always the first hop from the UA. This
situation requires a security mechanism to secure message bodies and/
or headers between the UA and the proxy servers, yet disclosing
information to those that need it. We call this "end-to-middle
security".

2. Use Cases
2.1 Examples of Scenarios

We describe here examples of scenarios in which trusted and
partially-trusted proxy servers both exist in a message path. These
situations demonstrate the reasons why end-to-middle security is
required.

In the following example, User #1 does not know the security policies
or services provided by Proxy server #1 (Proxy#l). User #1 sends a
MESSAGE [5] request including S/MIME-encrypted message content for
end-to-end security as shown in Figure 1, while Proxy #1 erases the
encrypted data in the request or rejects the request base on its
strict security policy that prohibits the forwarding of unknown data.
For the MESSAGE request to correctly traverse Proxy #1, the UA will
need to discover if end-to-end confidentiality will conflict with
intermediary’s services or security policies.

Ono & Tachimoto Expires December 29, 2004 [Page 3]

Internet-Draft End-to-Middle Security Requirements June 2004

Home network

e +
| +-————- + o +] o + o +

User #1----- 1 c |- |k e |k e | c |- User #2
| +————- + o + | A== + o +
| UA #1 Proxy #1 | Proxy #2 UA #2
e +

C: Content that UA #1 allows the entity to inspect
*: Content that UA #1 prevents the entity from inspecting

Figure 1: Deployment example #1

In the second example, Proxy server #1 is the home proxy server of
User #1 using UA #1. User #1 communicates with User #2 through Proxy
#1 and Proxy #2 as shown in Figure 2. Although User #1 already knows
Proxy #1’s security policy which requires the inspection of the
content of the MESSAGE request, User #1 does not know whether Proxy
#2 1is trustworthy, and thus wants to protect the message bodies in
the request. To accomplish this, UA #1 will need to be able to grant
a trusted intermediary (Proxy #1) to inspect message bodies, while
preserving their confidentiality from other intermediaries (Proxy

#2) .

Even if UA #1’'s request message authorizes a selected proxy server
(Proxy #1) to inspect the message bodies, UA #1 is unable to
authorize the same proxy server to inspect the message bodies in
subsequent MESSAGE requests from UA #2.

Home network

e +
| +————— + o o e + o +

User #l-———- | | C | ————- | C | ————~ | * | ————~ | C | ————~ User #2
| +————- + o o B + o +
| UA #1 Proxy #1 | Proxy #2 UA #2
e +

C: Content that UA #1 needs to disclose
*: Content that UA #1 needs to protect

Figure 2: Deployment example #2

In the third example, User #1 connects UA #1 to a proxy server in a
visited (potentially insecure) network, e.g., a hotspot service or a
roaming service. Since User #1 wants to utilize certain home network
services, UA #1 connects to a home proxy server, Proxy #1. However,
UA #1 must connect to Proxy #1 via the proxy server of the visited
network (Proxy A), because User #1 must follow the policy of that

Ono & Tachimoto Expires December 29, 2004 [Page 4]

Internet-Draft End-to-Middle Security Requirements June 2004

network. Proxy A performs access control based on the destination
addresses of calls. User #1 only trusts Proxy A to route requests,
not to inspect the message bodies the requests contain as shown in
Figure 3. User #1 trusts Proxy #1 both to route requests and to
inspect the message bodies for some purpose.

The same problems as in the second example also exist here.

Visited network

e +
| A + o + | A= + o + o +

User #1 —— | | C | ===~ | * | ===~ | C | ===~ | * | ===~ | C |
I + e + | A== + o + o +
| UA #1 Proxy A | Proxy #1 Proxy #2 UA #2
pom +

C: Content that UA #1 needs to disclose
*: Content that UA #1 needs to protect

Figure 3: Deployment example #3

2.2 Service Examples

We describe here several services that require end-to-middle
security.

2.2.1 Logging Services for Instant Messages

Logging Services are provided by the archiving function, which is
located in the proxy server, that logs the message content exchanged
between UAs. The archiving function could be located at the
originator network and/or the destination network. When the content
of an instant message contains private information, UACs (UA Clients)
encrypt the content for the UASs (UA Servers). The archiving
function needs a way to log the content in a message body in
bidirectional MESSAGE requests in such a way that the data is
decipherable. The archiving function also needs a way to verify the
data integrity of the content before logging.

This service might be deployed in financial or health care service
provider’s networks, where archiving communication is required by
their security policies, as well as other networks.

2.2.2 Non-emergency Call Routing Based on the Location Object

The Location Object [6] includes private information as well as
routing information for appropriate proxy servers. Some pProxy

Ono & Tachimoto Expires December 29, 2004 [Page 5]

Internet-Draft End-to-Middle Security Requirements June 2004

servers have the capability to provide location-based routing. When
UAs want to employ location-based routing in non-emergency
situations, the UAs need to connect to the proxy servers with such a
capability and disclose the location object contained in the message
body of the INVITE request, while protecting it from other proxy
servers along the request path.

The Location Object also needs to be verified for integrity before

location-based routing is applied. Sometimes the UAC want to also

send the Location Object to the UASs. This is another good example
of the need for a UAC to simultaneously send secure data to a proxy
server and to the UAS.

2.2.3 User Authentication
2.2.3.1 User Authentication using the AIBs

The Authenticated Identity Bodies (AIBs) [7] is a digitally-signed
data that is used as way to identify users. Proxy servers that need
to authenticate a user verify the signature. When the originator
needs anonymity, the user identity in the AIB is encrypted before
being signed. Proxy servers that authenticate the user need to
decrypt the body in order to view the user identity in the AIB. Such
proxy servers can be located at adjacent and/or non-adjacent to the
UA.

The AIB could be included in all request/response messages. The
proxy server needs to view it in request messages in order to
authenticate users. Another proxy server sometimes needs to view it
in response messages for user authentication.

2.2.3.2 User Authentication in HTTP Digest Authentication

User authentication data for HTTP digest authentication includes two
types of information; potentially private information, such as a user
name, and information that can be used for "replay-attacks", such as
the "response" parameter that is created by a calculation using a
user’s password. The user authentication data can be set only in a
SIP header of request messages. This information needs to be
transmitted securely to servers that authenticate users, located
either adjacently and/or non-adjacently to the UA.

2.2.4 Media-related Services
Firewall traversal is an example of services based on media
information typically in a message body, such as the Session

Description Protocol (SDP). A firewall entity that supports the SIP
protocol, or a midcom [8] agent co-located with a proxy server,

Ono & Tachimoto Expires December 29, 2004 [Page 6]

Internet-Draft End-to-Middle Security Requirements June 2004

controls a firewall based on media information. The SDP includes the
address and port information for media streams and/or key parameters
for Secure RTP (SRTP) [9]. Critical information contained in SDP
requires UAs to encrypt the SDP for recipient UAs. If the SDP is
encrypted for end-to-end confidentiality, the proxy server operating
as a midcom agent will have no way to provide firewall traversal as
it can not inspect the SDP. Therefore, there is a need for proxy
server to be able to decrypt the SDP, as well as to verify the
integrity of the SDP.

[Note: The validity of the use case depends on which mechanism is
selected for session policies [10] by the SIPPING WG. If the
session policy mechanism would require that UAs disclose media
information to the policy servers using out-of-band messages, such
as OPTIONS request, end-to-middle security is not required for
these use cases. If the session policy mechanism employs in-band
messages in order for UAs to disclose media information to the
policy servers co-located with a proxy server, end-to-middle
security is required. As the mechanism proposes to place subset
of SDP into the header to be viewed by proxy servers, such as
addresses and port numbers of media streams, these information
need to be secured from entities except the policy servers.]

3. Scope of End-to-Middle Security

End-to-middle security consists of user authentication, data
integrity, and data confidentiality. However, this document only
describes requirements for data confidentiality and data integrity,
since authentication is covered by existing mechanisms such as HTTP
digest authentication [2], S/MIME Cryptographic Message Syntax (CMS)
SignedData body [11], or an AIB.

As for data integrity, the CMS SignedData body can be used for
verification of the data integrity by any entities. The CMS
SignedData body could be used for end-to-middle security at the same
time for end-to-end security.

Although a proxy server is able to verify the integrity of the data,
there is no way for UAs to request a selected proxy server to verify
a message with the CMS SignedData body. Therefore some new
mechanisms are needed to achieve data integrity for end-to-middle
security.

This document mainly discusses requirements for data confidentiality
and the integrity of end-to-middle security.

Ono & Tachimoto Expires December 29, 2004 [Page 7]

Internet-Draft End-to-Middle Security Requirements June 2004

4. Requirements for a Solution

We describe here requirements for a solution. The requirements are
mainly applied during the phase of a dialog creation or sending a
MESSAGE method.

4.1 General Requirements

The following are general requirements for end-to-middle
confidentiality and integrity.

REQ-GEN-1: The solution SHOULD have little impact on the way a UA
handles S/MIME-secured messages.

REQ-GEN-2: It SHOULD have no impact on proxy servers that do not
provide services based on S/MIME bodies in terms of
handling the existing SIP headers.

REQ-GEN-3: It SHOULD have little impact on the standardized mechanism
of proxy servers in terms of handling message bodies.

REQ-GEN-4: It SHOULD allow a UA to discover security policies of
proxy servers. Security policies imply what data is
needed to disclose and/or verify in a message.

This requirement is necessary when the UA does not know
statically which proxy servers or domains need
disclosing data and/or verification.

4.2 Requirements for End-to-Middle Confidentiality

REQ-CONF-1: The solution MUST be enable an encrypted data to be
shared with the recipient UA and selected proxy servers,
when a UA wants.

REQ-CONF-2: It MUST NOT violate end-to-end encryption when the
encrypted data does not need to be shared with any proxy
servers.

REQ-CONF-3: It SHOULD allow a UA to request selected proxy servers to
view specific message bodies. The request itself SHOULD
be secure.

REQ-CONF-4: It SHOULD allow a UA to request that the recipient UA
disclose information to the proxy server, which
requesting UA is disclosing the information to. The
request itself SHOULD be secure.

4.3 Requirements for End-to-Middle Integrity

REQ-INT-1: The solution SHOULD work even when the SIP end-to-end
integrity service is enabled.

Ono & Tachimoto Expires December 29, 2004 [Page 8]

Internet-Draft End-to-Middle Security Requirements June 2004

1.

7.

REQ-INT-2: It SHOULD allow a UA to request selected proxy servers to
verify specific message bodies. The request itself SHOULD
be secure.

REQ-INT-3: It SHOULD allow a UA to request the recipient UA to send
the verification data of the same information that the
requesting UA is providing to the proxy server. The
request itself SHOULD be secure.

Security Considerations

This document describes the requirements for confidentiality and
integrity between a UA and a proxy server. Although this document
does not cover authentication, it is important in order to prevent
attacks from malicious users and servers.

The end-to-middle security requires additional processing on message
bodies, such as unpacking MIME structure, data decryption, and/or
signature verification to proxy servers. Therefore the proxy servers
that enable end-to-middle security are vulnerable to a
Denial-of-Services attack. There is a threat model where a malicious
user sends many complicated-MIME-structure messages to a proxy
server, containing user authentication data obtained by
eavesdropping. This attack will result in a slow down of the overall
performance of these proxy servers. To prevent this attack, user
authentication mechanism needs protection against replay attack. Or
the user authentication always needs to be executed simultaneously
with protection of data integrity. 1In order to prevent an attack,
the following requirements should be satisfied.

o The solution MUST support mutual authentication, data
confidentiality and data integrity protection between a UA and a
proxy server.

o It SHOULD support protection against a replay attack for user
authentication.

o It SHOULD simultaneously support user authentication and data
integrity protection.

IANA Considerations
This document requires no additional considerations.
Changes
1 Changes from 02.txt
0 Changed the text about the use case of SDP-based service in order

to decrease the dependency on session policies discussion. The
title was changed to "media-related service".

Ono & Tachimoto Expires December 29, 2004 [Page 9]

Internet-Draft End-to-Middle Security Requirements June 2004

o Simplified the "Scope of End-to-Middle Security" section.

o Removed some of the text that described detailed information on
mechanisms in the "Requirements for a Solution" section.

o Closed open issues as follows:

* Deleted an open issue described in the "General Requirements"
section, since it is no longer an issue. The issue was
concerning the necessity for the proxy server to notify the UAS
after receiving a response, which is not necessary, because
proxy servers’ security policies or services have no
dependencies on the information in a response.

* Deleted an open issue described in the "Requirements for
End-to-Middle Confidentiality" section, since it is not an
issue of requirements, but that of a mechanism.

o Changed the last item of the general requirements from
proxy-driven to UA-driven.

o Deleted the text in the requirements that describes the relation
between the requirements and the service examples.

o Added some text in the "Security Consideration" section.

o Many editorial correction.

7.2 Changes from 01l.txt

o Extracted use cases from the Introduction section, and created a
new section to describe the use cases in more detail. The use
cases are also updated.

o Deleted a few "may" words from the "Problem with Existing
Situations" section to avoid confusion with "MAY" as a key word.

o Added the relation between the requirements and the service
examples.

o Deleted the redundant requirements for discovery of the
targeted-middle. The requirement is described only in the
"Generic Requirements", not in the "Requirements for End-to-Middle
Confidentiality/Integrity".

0 Changed the 4th requirement of end-to-middle confidentiality from
"MUST" to "SHOULD".

o Changed the 3rd requirement of end-to-middle integrity from "MUST"
to "SHOULD".

0 Added some text about DoS attack prevention in the "Security
Consideration” section.

7.3 Changes from 00.txt

o Reworked the subsections in Section 4 to clarify the objectives,
separating end-to-middle confidentiality and integrity.

8. Acknowledgments

Thanks to Rohan Mahy and Cullen Jennings for their initial support of

Ono & Tachimoto Expires December 29, 2004 [Page 10]

Internet-Draft End-to-Middle Security Requirements June 2004

this concept, and to Jon Peterson, Gonzalo Camarillo, Sean Olson, and
Mark Baugher for their helpful comments.

9 References

(1]

(11]

Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", RFC 2119, BCP 14, March 1997.

Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
Peterson, J., Sparks, R., Handley, M. and E. Schooler, "SIP:
Session Initiation Protocol", RFC 3261, June 2002.

Allen, C. and T. Dierks, "The TLS Protocol Version 1.0", RFC
2246, January 1999.

Ramsdell, B., "S/MIME Version 3 Message Specification", RFC
2633, June 1992.

Campbell, B., Rosenberg, J., Schulzrinne, H., Huitema, C. and
D. Gurle, "Session Initiation Protocol (SIP) Extension for
Instant Messaging", RFC 3428, December 2002.

Cuellar, J., Morris, J., Mulligan, D., Peterson, J. and J.
Polk, "Geopriv Requirements", RFC 3693, February 2004.

Peterson, J., "SIP Authenticated Identity Body (AIB) Format",
draft-ietf-sip-authid-body-03.txt (work in progress), May 2004.

Srisuresh, P., Kuthan, J., Rosenberg, J., Brim, S., Molitor, A.
and A. Ravhan, "Middlebox communication architecture and
framework", RFC 3303, August 2002.

Baugher, M., McGrew, D., Naslund, M., Carrara, E. and K.
Norrman, "The Secure Real-time Transport Protocol (SRTP)", RFC
3711, March 2004.

Rosenberg, J., "Requirements for Session Policy for the Session
Initiation Protocol (SIP)",
draft-ietf-sipping-session-policy-reqgq-01 (work in progress),
February 2004.

Housley, R., "Cryptographic Message Syntax", RFC 2630, June
1999.

Ono & Tachimoto Expires December 29, 2004 [Page 11]

Internet-Draft End-to-Middle Security Requirements June 2004

Authors’ Addresses

Kumiko Ono

Network Service Systems Laboratories
NTT Corporation

9-11, Midori-Cho 3-Chome
Musashino-shi, Tokyo 180-8585

Japan

EMail: ono.kumiko@lab.ntt.co.jp

Shinya Tachimoto

Network Service Systems Laboratories
NTT Corporation

9-11, Midori-Cho 3-Chome
Musashino-shi, Tokyo 180-8585

Japan

EMail: tachimoto.shinya@lab.ntt.co.jp

Ono & Tachimoto Expires December 29, 2004 [Page 12]

Internet-Draft End-to-Middle Security Requirements June 2004

Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
letf-ipr@ietf.org.

Disclaimer of Validity

This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement
Copyright (C) The Internet Society (2004). This document is subject
to the rights, licenses and restrictions contained in BCP 78, and
except as set forth therein, the authors retain all their rights.

Acknowledgment

Funding for the RFC Editor function is currently provided by the
Internet Society.

Ono & Tachimoto Expires December 29, 2004 [Page 13]

SIPPING E. Burger

Internet-Draft Brooktrout Technology, Inc.
Expires: January 13, 2005 M. Dolly
AT&T Labs

July 15, 2004

A Session Initiation Protocol (SIP) Event Package for Key Press
Stimulus (KPML)
draft-ietf-sipping-kpml-04

Status of this Memo

This document is an Internet-Draft and is subject to all provisions
of section 3 of RFC 3667. By submitting this Internet-Draft, each
author represents that any applicable patent or other IPR claims of
which he or she is aware have been or will be disclosed, and any of
which he or she become aware will be disclosed, in accordance with
RFC 3668.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as
Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://
www.letf.org/ietf/lid-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.letf.org/shadow.html.

This Internet-Draft will expire on January 13, 2005.
Copyright Notice
Copyright (C) The Internet Society (2004). All Rights Reserved.
Abstract
The Key Press Stimulus Event Package is a component of the
Applications Interaction Framework for the Session Initiation
Protocol (SIP). The event package defines a Key Press Markup

Language (KPML) that describes filter specifications for reporting
key presses entered at a presentation-free user interface SIP User

Burger & Dolly Expires January 13, 2005 [Page 1]

Internet-Draft KPML July 2004

Agent (UA). The scope of this package is for collecting supplemental
key presses or mid-call key presses (triggers).

This capability allows an Application Server service provider to
monitor (filter) for a set of DTMF patterns at a SIP User Agent,
either at an end user device or a gateway. The capability eliminates
the need for hairpinning through a Media Server or duplicating all
the DTMF events, when an Application Server needs to trigger mid-call
service processing on DTMF digit patterns.

Conventions used in this document

RFC2119 [1] provides the interpretations for the key words "MUST",
"MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY", and "OPTIONAL" found in this document.

The Application Interaction Framework [23] provides the
interpretations for the terms "User Device", "SIP Application", and
"User Input". This document uses the term "Application" and
"Requesting Application" interchangeably with "SIP Application".

The Application Interaction Framework discusses User Device Proxies.
A common instantiation of a User Device Proxy is a Public-Switched
Telephone Network (PSTN) gateway. Because the normative behavior of
a presentation-free user interface is identical for a
presentation-free SIP User Agent and a presentation-free User Device
Proxy, this document uses "User Device" for both cases.

Burger & Dolly Expires January 13, 2005 [Page 2]

Internet-Draft KPML

Table of Contents

NN

o) O

Burger

Wwwwwww

O W WO WWWWWwWwwWwJoyUuld WNDREFEHEHWND R

1
4
4
4
4
4
4
4
.2 KPML Reports
4
4
D
1
2
F
1
2

Introduction

.1 Protocol Translatlon Needs
.2 Complex Call Control

Key Press Stimulus Operation

Model .

Stream to Monltor

Operation .

vent Package Operatlon

Event Package Name

Event Package Parameters

SUBSCRIBE Bodies

Subscription Duration

NOTIFY Bodies

Notifier Process1ng of SUBSCRIBE Requests
Notifier Generation of NOTIFY Requests

.1 SIP Protocol-Generated

2 Match .
3 Inter-Digit Tlmeout No Match
4 Dialog Terminated

5 Dialog Not Present

.6 Bad Document
7

S

1

2

~ I J 3334

One-Shot vs. Persistent Requests
ubscriber Processing of NOTIFY Requests
No KPML Body
KPML Body . .
Handling of Forked Requests
Rate of Notifications

O O

=
(@]

.11 State Agents

Message Format - KPML

KPML Request
User Input Buffer Behav1or
Pattern Matching
Digit Suppression . ..
One-Shot and Persistent Trlggers
Multiple Patterns
Monitoring Direction .
Multiple, Simultaneous Subscrlptlons

el
oUW N

2.1 Pattern Match Reports
2.2 KPML No Match Reports
Regex

Overview

Operation
ormal Syntax

DRegex

KPML Request

& Dolly Expires January 13, 2005

July 2004

O oY Oy U1

10
11
11
12
13
13
14
14
15
15
15
16
16
17
17
17
18
18
18
18
18
19
19
19
19
21
24
26
26
27
27
28
28
29
29
29
31
32
32
32

[Page 3]

Internet-Draft KPML July 2004

6.3 KPML Response . . G 16
7. Enumeration of KPML Status Codes . 1
8. IANA Considerations . . N

8.1 SIP Event Package Reglstratlon e S

8.2 MIME Media Type application/kpml- request+xml Y

8.3 MIME Media Type application/kpml-response+xml 38

8.4 URN Sub-Namespace Registration for

urn:ietf:xml:ns:kpml-request 38

8.5 URN Sub-Namespace Registration for

urn:ietf:xml:ns:kpml-response 39

8.6 KPML Request Schema Registration 40

8.7 KPML Response Schema Registration 40
9. Security Considerations40
10. Examples . . . O

10.1 Monitoring for Octothorpe e e e e e e e e e e e e e dt

10.2 Dial String Collection« .+ .« « « « « « o . . .41
11. Call Flow Examples « v v v v v v v v e e e e ..o 42

11.1 Supplemental Digits 42

11.2 Multiple Applications 46
12. References . . . o X
12.1 Normative References o X
12.2 Informative References 55

Authors’ Addresses <« . « « « « < « < & .« < < b6
A. Contributors o o e o o v o owo.bT
B. Acknowledgements . . . Y
Intellectual Property and Copyrlght Statements e e e o o . o.o.059

Burger & Dolly Expires January 13, 2005 [Page 4]

Internet-Draft KPML July 2004

1. Introduction

This document describes the Key Press Stimulus Event Package. The
Key Press Stimulus Package is a SIP Event Notification Package [5]
that uses the SUBSCRIBE and NOTIFY methods of SIP. The subscription
filter and notification report bodies use the Keypad Markup Language,
KPML. KPML is a markup [21] that enables presentation-free user
interfaces as described in the Application Interaction Framework
[23].

In particular, KPML enables "dumb phones" and gateways to dumb phones
to report user key-press events. Colloquially, this mechanism
provides for "digit reporting" or "Dual-Tone Multi-Frequency (DTMF)
reporting."

A goal of KPML is to fit in an extremely small memory and processing
footprint.

The name of the markup, KPML, reflects its legacy support role. The
public switched telephony network (PSTN) accomplished end-to-end
signaling by transporting DTMF tones in the bearer channel. This is
in-band signaling.

Voice—-over—-IP networks transport in-band signaling with actual DTMF
waveforms or RFC2833 [12] packets. In RFC2833, the signaling
application inserts RFC2833 named signal packets as well as or
instead of generating tones in the media path. The receiving
application gets the signal information in the media stream.

RFC2833 correlates the time the end user pressed a digit with the
user’s media. However, out-of-band signaling methods, as are
appropriate for User Device to application signaling, do not need
millisecond accuracy. On the other hand, they do need reliability,
which RFC2833 does not provide.

RFC2833 tones are ideal for conveying telephone-events point-to-point
in an RTP stream, as in the context of straightforward sessions like
a 2-party call or simple, centrally mixed conference. However, there
are other environments where additional or alternative requirements
are needed. These other environments include protocol translation
and complex call control.

An interested application could request notifications of every key
press. However, many of the use cases for such signaling has the
application interested in only one or a few keystrokes. Thus we need
a mechanism for specifying to the User Device what stimulus the
application would like notification of.

Burger & Dolly Expires January 13, 2005 [Page 5]

Internet-Draft KPML July 2004

1.1 Protocol Translation Needs

Protocol translators between SIP and other IP protocols which use
RTP, especially H.323 [18], are frequently implemented as a
signaling-only entity which arranges for RTP media streams to travel
directly between the final endpoints. This is an efficient
arrangement in terms of limiting jitter and latency in the media, and
allows the translator to support many more simultaneous sessions than
if the translator terminated media as well.

Protocol translators may receive telephony-related events (especially
signaled digits) wvia signaling. Likewise, a SIP 3pcc[l10] controller,
or a protocol translator which uses a traditional CTI (Computer
Telephony Integration) protocol for control (ex: TAPI, TSAPI, JTAPI),
may receive CTI commands to "insert" digits which may have originated
from another application (for example, a desktop call control
application). As the protocol translator or controller are not in
the RTP path, it will want to send SIP signaled digits.

RTP implementations must be able to receive media from more than one
source on the same receive port, so it would seem straightforward to
send RTP to the target User Agent. This proposal has two problems
however. If the target translator and SIP User Agent are separated
by a firewall, then it is likely that this traffic from a different
IP address will be discarded.

It is also unlikely that most low-end RTP implementations (IP phones,
and software User Agents) will render this additional media
correctly. What is more problematic is that there is no mechanism to
determine if a SIP User Agent can properly insert telephony events
received in an RTP stream separate from their other audio media.

This issue is particularly apparent for H.323-SIP interworking
scenarios where the H.323 network signals digits in the signaling
plane using H.245 [19]. 1Ideally, a protocol translator should be
able to signal the H.323 digits in the SIP network in the signaling
plane, as well.

1.2 Complex Call Control

Some applications are interested in the telephony signals represented
by telephony tones, but do not desire to be a party to the speech
portion of the audio media. This document addresses the transport
requirements of these signals in this context. Synchronizing speech
is a non-issue in these topologies, as there is no audio media with
which to synchronize; and SIP provides its own reliability mechanism
to prevent loss.

Burger & Dolly Expires January 13, 2005 [Page 6]

Internet-Draft KPML July 2004

For example, in some application scenarios, a user contacts an
application, places a new call in the context of the application (an
"outcall"), and returns to the application after the new call is
finished. Examples of such scenarios include: Calling card systems,
Voicemail or Messaging systems which allows outgoing calls, and Voice
Browsers or Voice Portals which allow outgoing calls.

All of these applications require a way for the user to get back to
the application if something has gone wrong with the outgoing call

(ex: wrong number), or if the user changes his or her mind. If the
originating user is using a TDM telephone, or a simple IP endpoint,
the application will typically expect a sequence of signaled digits
(ex: a pound or hash (#) of long duration, three stars (*) in a row,

etc.)
t———————— +
| |
| Originating |
| User |
| |
pomm - +
| A A
[
NOTIFY | SIP | | RTP
[

| [

v v v
——————— + t———————— +
Waiting for		Target User
trigger		or Service
pomm - + tom +

Below are several possible SIP topologies that would enable this type
of behavior. Most of these approaches fall into two categories: the
application could receive DTMF media corresponding to the signaled
digits, or it could receive the signaled digits using SIP.

Below are three approaches to encoding this information as media.

None of these approaches are very attractive.

o The application could relay all the media itself. This wastes
network resources and is inefficient for the application.

o The application could setup a conference and INVITE itself to the
conference. This method requires setting up a complex set of call
legs and wastes network and conferencing resources. It also
requires that the application verify that the tone media
originated exclusively from desired source, which may be

Burger & Dolly Expires January 13, 2005 [Page 7]

Internet-Draft KPML July 2004

impossible.

o The application could request "forked-media" (multi-unicast) from
RFC3264 [13] of just the RFC2833 media. While the best
media-related proposal, this method requires rather complex
functionality in the "forking" UAs; requires 3pcc, and is
problematic for firewalls because of the complexity of the SDP
session description from RFC2327 [10]]. Also, experience at
interoperability tests shows that most current SDP implementations
are much less robust than their SIP counterparts.

2. Key Press Stimulus Operation
2.1 Model

The Key Press Stimulus reporting model is that key presses, or
detected digits, are events at the User Device. The subscription
installs an event filter. That event filter specifies the User Input
strings, for which, if matched, causes the User Device to send a
notification.

There are three usage models for the event package. Functionally,
they are equivalent. However, it is useful to understand the use
cases.

The principal model is that of a third-party application that is
interested in the User Input. Figure 2 shows an established SIP
dialog between the User Device and a SIP UA. The Requesting
Application addresses the particular media stream (From RTP [9] port
B to RTP port Y) by referencing the dialog identifier referring to
the dialog between SIP ports A and X.

Burger & Dolly Expires January 13, 2005 [Page 8]

Internet-Draft KPML July 2004

fomm +
| Requesting |
/-——| Application |
/ Fom +
/
SIP / (SUBSCRIBE/NOTIFY)
/
/
+-——M-————+ SIP (INVITE) - +
| A-m——————— X |
| User | | SIP |
| Device | RTP | UA |
| B Y |
fo—————— + f———— +

Figure 2: Third-Party Model

The second scenario is when the Application is co-resident with the
remote SIP User Agent (UA). Note the application creates a separate,
SUBSCRIBE-initiated dialog, as diagrammed in Figure 3. This scenario
represents, for example, a toll by-pass situation where the User
Device is an ingress gateway and the SIP UA is an egress gateway.

- + SIP (INVITE) t———— +
| A-———————————————— X SIP |
| | SIP (SUBSCRIBE) | UA |
| User A-———————-—-—-----——- X! |
| Device | RTP | (App) |
| - Y |
fomm———— + +o———— +

Figure 3: Endpoint Model

The third model is that of a User Device Proxy, as described by App
Interaction [23]. The User Device in Figure 4 is a media relay in
the terminology of RFC1889 [9]. However, in addition to the RTP
forwarding capability of a RFC1889 media relay, the media proxy can
also do light media processing, such as tone detection, tone
transcoding (tones to RFC2833 [12]), and so on.

The Requesting Application uses dialog identifiers to identify the
stream to monitor. The default is to monitor the media entering the
User Device. For example, if the Requesting Application in Figure 4
refers to the dialog represented by SIP ports V-C, then the media
coming from SIP UAa RTP port W gets monitored. Likewise, the dialog
represented by A-X directs the User Device to monitor the media
coming from SIP UAb RTP Port Y.

Burger & Dolly Expires January 13, 2005 [Page 9]

Internet-Draft KPML July 2004

e +
| Requesting |
/-——| Application |
/ Fom +
/
SIP / (SUBSCRIBE/NOTIFY)
/
/
e + SIP +-——M-———+ SIP o +
| Voo C A X |
| SIP | | User | | SIP |
| UAa | RTP | Device | RTP | UAb |
| W—————————————————— D - Y |
e + fom + f———— +

Figure 4: Media Proxy Model

2.2 Stream to Monitor

The default media stream to monitor is the stream represented by the
first m= line of the SDP referenced by the dialog with the local tag
of the SIP dialog at the monitoring User Device. The User Device MAY
offer other streams for monitoring. One possibility is the remote
stream representing the state of the device at the other end of the
SIP dialog.

The User Device MUST be able to report on local User Input. In the
case where the User Device is a gateway, that is, it is a User Device
Proxy, local User Input is the media stream that emanates from the
User Device.

If the requesting application wishes to monitor multiple streams at a
given User Device, the application MUST establish multiple
subscriptions, one for each stream.

2.3 Operation

The Key Press Stimulus Event Package uses explicit subscription
notification requests, using the SUBSCRIBE/NOTIFY [5] mechanism.

The User Device MUST return a Contact URI that has GRUU [26]
properties in the Contact header of a SIP INVITE, 1xx, or 2xXx
response.

Following the semantics of SUBSCRIBE, if the User Device receives a

second subscription on the same dialog, including id, if present, the
User Device MUST terminate the existing KPML subscription and replace

Burger & Dolly Expires January 13, 2005 [Page 10]

Internet-Draft KPML July 2004

it with the new subscription.

An Application MAY register multiple User Input patterns in a single
KPML subscription.

If the User Device supports multiple, simultaneous KPML
subscriptions, the Application installs the subscriptions either in a
new SUBSCRIBE-initiated dialog or on an existing SUBSCRIBE-initiated
dialog with a new event id tag.

If the User Device does not support multiple, simultaneous KPML
subscriptions, the User Device MUST respond with a KPML status code.

A KPML subscription can be persistent or one-shot. Persistent
requests are active until either the dialog terminates, including
normal subscription expiration, the Application replaces them, the
Application deletes them by sending a null document on the dialog, or
the Application deletes the subscription by sending a SUBCRIBE with
an expires of zero (0).

Standard SUBSCRIBE processing dictates the User Device sends a NOTIFY
response if it receives a SUBSCRIBE with an expires of zero.

One-shot requests terminate themselves once a match occurs. The
"persist" KPML element specifies whether the subscription remains
active for the duration specified in the SUBSCRIBE message or if it
automatically terminates after a pattern matches.

KPML subscriptions route to the User Device using standard SIP
request routing. A KPML subscription identifies the media stream by
referencing its dialog identifiers.

Notifications are KPML documents. If the User Device matched a digit
map, the response indicates the User Input detected and whether the
User Device suppressed User Input. If the User Device had an error,

such as a timeout, it will indicate that instead.
3. Event Package Operation

The following sub-sections are the formal specification of the KPML
SIP-specific event notification package.

3.1 Event Package Name

The name for the Key Press Stimulus Event Package is "kpml".

Burger & Dolly Expires January 13, 2005 [Page 11]

Internet-Draft KPML July 2004

3.2 Event Package Parameters

SIP identifies dialogs by their dialog identifier. The dialog
identifier is the remote-tag, local-tag, and Call-ID entities.

To identify a specific dialog, all three of these parameters MUST be
present. Usually, the local-tag is the To: entity with the To tag,
the remote-tag is the From: entity including tag, and the call-id
matches the Call-ID.

There may be ambiguity in specifying only the SIP dialog to monitor.
The dialog may specify multiple SDP streams that could carry key
press events. For example, a dialog may have multiple audio streams.
Wherever possible, the User Device MAY apply local policy to
disambiguate which stream or streams to monitor. In order to have an
extensible mechanism for identifying streams, the mechanism for
specifying streams is as an element content to the <stream> tag. The
only content defined today is the <stream>reverse</stream> tag.

For most situations, such as a monaural point-to-point call with a
single codec, the stream to monitor is obvious. In such situations
the Application need not specify which stream to monitor.

The BNF for these parameters is as follows. The definitions of
callid, token, EQUAL, and DQUOTE are from RFC3261 [4].

call-id = "call-id" EQUAL DQUOTE callid DQUOTE
from-tag = "from-tag" EQUAL token
to-tag = "to-tag" EQUAL token

The call-id parameter is a quoted string. This is because the BNF
for word (which is used by callid) allows for characters not allowed
within token. One usually just copies these elements from the
Call-Id, to, and from fields of the SIP INVITE.

One can use any method of determining the dialog identifier. One
method available, particularly for third-party applications, is the
SIP Dialog Package [27].

Figure 6 Shows a subscription that identifies the dialog labled with
the To Tag "jfg777666bc", From Tag "002993bbcdc", and Call ID
"l2@example.com". Note the pretty-printing. The parameters to the
kpml event go on the same line as the event specification.

Burger & Dolly Expires January 13, 2005 [Page 12]

Internet-Draft KPML July 2004

SUBSCRIBE sip:a-real-gruu@ud.example.net SIP/2.0
From: <sip:app@example.com>;tag=023948asdcn

To: <sip:a-real-gruulud.example.net>;tag=7fq498489gb
Call-Id: 349f8jasdvn@example.com

Event: kpml
; to-tag=jfg777666bc
; from-tag=002993bbcdc
; call-id=12@example.com

Figure 6: Identifying a Dialog

3.3 SUBSCRIBE Bodies

KPML specifies key press event notification filters. The MIME type
for KPML requests is application/kpml-request+xml.

The KPML request document MUST be well-formed and SHOULD be valid.
KPML documents MUST conform to XML 1.0 [21] and MUST use UTF-8
encoding.

Because of the potentially sensitive nature of the information
reported by KPML, subscribers SHOULD use sips: and SHOULD consider
the use of S/MIME on the content.

Subscribers MUST be prepared for the notifier to insist on
authentication at a minimum and to expect encryption on the
documents.

3.4 Subscription Duration

The "persist" attribute to the <pattern> tag in the KPML subscription
body affects the lifetime of the subscription.

If the persist attribute is "one-shot", then once there is a match
(or no match is possible), the subscription ends after the User
Device notifies the Application.

If the persist attribute is "persist" or "single-notify", then the
subscription ends when the Application explicitly ends it or the User

Device terminates the subscription.

The subscription lifetime MUST NOT be longer than the negotiated
expires time, per RFC3265 [5].

The subscription lifetime should be longer than the expected call

Burger & Dolly Expires January 13, 2005 [Page 13]

Internet-Draft KPML July 2004

time. The default subscription lifetime (Expires value) MUST be 7200
seconds.

Subscribers MUST be able to handle the User Device returning an
Expires value smaller than the requested value. Per RFC3265 [5], the
subscription duration is the value returned by the User Device in the
200 OK Expires entity.

3.5 NOTIFY Bodies

KPML specifies the key press notification report format. The MIME
type for KPML reports is application/kpml-response+xml. The default
MIME type for the kpml event package is application/
kpml-response+xml.

If the requestor is not using a secure transport protocol such as TLS
(e.g., by using a sips: URI), the User Device SHOULD use S/MIME to
protect the user information in responses.

3.6 Notifier Processing of SUBSCRIBE Requests

The user information transported by KPML is potentially sensitive.
For example, it could include calling card or credit card numbers.
Thus the first action of the User Device (notifier) SHOULD be to
authenticate the requesting party.

User Devices MUST support digest authentication at a minimum.
User Devices MUST support the sips: scheme and TLS.

Upon authenticating the requesting party, the User Device determines
if the requesting party has authorization to monitor the user’s key
presses. Determining authorization policies and procedures is beyond
the scope of this specification.
NOTE: While it would be good to require both authorization and
user notification for KPML, some uses, such as lawful intercept
pen registers, have very strict authorization requirements yet
have a requirement of no user notification. Conversely, pre-paid
applications running on a private network may have no
authorization requirements and already have implicit user
acceptance of key press monitoring. Thus we cannot give any
normative rules here.

After authorizing the request (RECOMMENDED), the User Device checks
to see if the request is to terminate a subscription. If the request
will terminate the subscription, the User Device does the appropriate
processing, including the procedures described in Section 3.7.4.

Burger & Dolly Expires January 13, 2005 [Page 14]

Internet-Draft KPML July 2004

If the request has no KPML body, then any KPML document running on
that dialog, and addressed by the event id, if present, immediately
terminates. This is a mechanism for unloading a KPML document while
keeping the SUBSCRIBE-initiated dialog active. This can be important
for secure sessions that have high costs for session establishment,
such as TLS. The User Device follows the procedures described in
Section 3.7.1.

If the dialog referenced by the kpml subscription does not exist, the
User Device follows the procedures in Section 3.7.5 Note the User
Device MUST issue a 200 OK before issuing the NOTIFY, as the
SUBSCRIBE itself is well-formed.

If the request has a KPML body, the User Device parses the KPML
document. The User Device SHOULD validate the XML document against
the schema presented in Section 6.2. If the document is not valid,
the User Device performs the procedures described in Section 3.7.6.
If there is a loaded KPML document on the dialog (and given event id,
if present), the User Device unloads the document.

In addition, if there is a loaded KPML document on the dialog (with
the given event id, if present), the end device unloads the document.

3.7 Notifier Generation of NOTIFY Requests
3.7.1 SIP Protocol-Generated

The User Device (notifier in SUBSCRIBE/NOTIFY parlance) generates
NOTIFY requests based on the requirements of RFC3265 [5].
Specifically, unless a SUBSCRIBE request is not wvalid, all SUBSCRIBE
requests will result in an immediate NOTIFY.

The KPML payload distinguishes between a NOTIFY that RFC3265 mandates
and a NOTIFY informing of key presses. If there is no User Input
buffered at the time of the SUBSCRIBE (see Section 4.1 below) or the
buffered User Input does not match the new KPML document, then the
immediate NOTIFY MUST NOT contain a KPML body. If User Device has
User Input buffered that result in a match using the new KPML
document, then the NOTIFY MUST return the appropriate KPML document.

All subscriptions MUST be authenticated, particularly those that
match on buffered input.

3.7.2 Match
During the subscription lifetime, the User Device may detect a key

press stimulus that triggers a KPML event. 1In this case, the User
Device (notifier) MUST return the appropriate KPML document.

Burger & Dolly Expires January 13, 2005 [Page 15]

Internet-Draft KPML July 2004

3.7.3 Inter-Digit Timeout No Match

Once a user starts to enter stimulus, it is highly likely they will
enter all of the key presses of interest within a specific time
period. There is a temporal locality of reference for key presses.
It is possible for users to accidentally press a key, however.
Moreover, users may start pressing a key and then be lost as to what
to do next. For applications to handle this situation, KPML allows
applications to request notification if the user starts to enter
stimulus but then stops before a match.

Once the User Device detects a key press that matches the first
character of a digit map, the User Device starts the interdigit timer
specified in the <pattern> tag. Every subsequent key press detected
restarts the interdigit timer. If the interdigit timer expires, the
User Device generates a KPML report with the KPML status code 423,
Timer Expired. The report also includes the User Input collected up
to the time the timer expired. This could be the null string. After
sending the NOTIFY, the User Device will resume quarantining
additional detected User Input.

Applications may have different requirements for the interdigit
timer. For example, applications targeted to user populations that
tend to key in information slowly may require longer interdigit
timers. The specification of the interdigit timer is in
milliseconds. The default value is 4000, for 4 seconds. A value of
zero indicates disabling the interdigit timer. The User Device MUST
round up the requested interdigit timer to the nearest time increment
it is capable of detecting.

3.7.4 Dialog Terminated

It is possible for a dialog to terminate during key press collection.
The cases enumerated here are explicit subscription termination,
automatic subscription termination, and underlying (INVITE-initiated)
dialog termination.

If a SUBSCRIBE request has an expires of zero (explicit SUBSCRIBE
termination), includes a KPML document, and there is buffered User
Input, then the User Device attempts to process the buffered digits
against the document. If there is a match, the User Device MUST
generate the appropriate KPML report with the KPML status code of
200. The SIP NOTIFY body terminates the subscription by setting the
subscription state to "terminated" and a reason of "timeout".

If the SUBSCRIBE request has an expires of zero and no KPML body or

the expires timer on the SUBSCRIBE-initiated dialog fires at the User
Device (notifier), then the User Device MUST issue a KPML report with

Burger & Dolly Expires January 13, 2005 [Page 16]

Internet-Draft KPML July 2004

the KPML status code 487, Subscription Expired. The report also
includes the User Input collected up to the time the expires timer
expired or when the subscription with expires equal to zero was
processed. This could be the null string.

Per the mechanisms of RFC3265 [5], the User Device MUST terminate the
SIP SUBSCRIBE dialog. The User Device does this via the SIP NOTIFY
body transporting the final report described in the preceding
paragraph. In particular, the subscription state will be
"terminated" and a reason of "timeout".

Terminating the subscription when a dialog terminates ensures
reauthorization (if necessary) for attaching to subsequent
subscriptions.

3.7.5 Dialog Not Present

If a SUBSCRIBE request references a dialog that is not present at the
User Device, the User Device MUST generate a KPML report with the
KPML status code 481, Dialog Not Found. The User Device terminates
the subscription by setting the subscription state to "terminated".

3.7.6 Bad Document

If the KPML document is not wvalid, the User Device generates a KPML
report with the KPML status code 501, Bad Document. The User Device
terminates the subscription by setting the subscription state to
"terminated".

If the document is valid but the User Device does not support a
namespace in the document, the User Device MUST respond with a KPML
status code 502, Namespace Not Supported.

3.7.7 One-Shot vs. Persistent Requests

There are two types of subscriptions: one-shot and persistent.
Persistent subscriptions have two sub-types: continuous notify and
single-notify.

One-shot subscriptions terminate after a pattern match and report.
If the User Device detects a key press stimulus that triggers a
one-shot KPML event, then the User Device (notifier) MUST set the
"Subscription-State" in the NOTIFY message to "terminated". At this
point the User Device MUST consider the subscription destroyed.

Persistent subscriptions remain active at the User Device, even after

a match. For continuous notify persistent subscriptions, the User
Device will emit a notification whenever the User Input matches a

Burger & Dolly Expires January 13, 2005 [Page 17]

Internet-Draft KPML July 2004

pattern. For single-notify persistent subscriptions, the User Device
will emit a notification at the first match, but will not emit
further notifications until the Application issues a new document on
the subscription dialog.

NOTE: The single-notify persistent subscription enables lock-step
(race-free) quarantining of User Input between different digit
maps.

3.8 Subscriber Processing of NOTIFY Requests
3.8.1 No KPML Body

If there is no KPML body, it means the SUBSCRIBE was successful.
This establishes the dialog if there is no buffered User Input to
report.

3.8.2 KPML Body

If there is a KPML document, and the KPML status code is 200, then a
match occurred.

If there is a KPML document, and the KPML status code is 4xx, then an
error occurred with User Input collection. The most likely cause is
a timeout condition.

If there is a KPML document, and the KPML status code is 5xx, then an
error occurred with the subscription. See Section 7 for more on the
meaning of KPML status codes.

The subscriber MUST be mindful of the subscription state. The User
Device may terminate the subscription at any time.

3.9 Handling of Forked Requests

The SUBSCRIBE behavior described in Section 3.6 ensures that it is
only possible to have a subscription where there is an active (e.g.,
voice) dialog. Thus the case of multiple subscription installation
cannot occur.

3.10 Rate of Notifications

The User Device MUST NOT generate messages faster than 25 messages
per second, or one message every 40 milliseconds. This is the
minimum time period for MF digit spills. Even 30-millisecond DTMF,
as one sometimes finds in Japan, has a 20-millisecond off time,
resulting in a 50-millisecond interdigit time. This document
strongly RECOMMENDS AGAINST using KPML for digit-by-digit messaging,

Burger & Dolly Expires January 13, 2005 [Page 18]

Internet-Draft KPML July 2004

such as would be the case if the only <regex> is "x".

The sustained rate of notification shall be no more than 100 Notifies
per minute.

The User Device MUST reliably deliver notifications. Because there
is no meaningful metric for throttling requests, the User Device
SHOULD send NOTIFY messages over a congestion-controlled transport,
such as TCP or SCTP.

User Devices MUST at a minimum implement SIP over TCP.
3.11 State Agents

Not applicable.
4., Message Format - KPML

The Key Press Markup Language (KPML) consists of two schemas, the
kpml-request and kpml-response.

4.1 KPML Request

A KPML request document contains a <pattern> element with a series of
<regex> tags. The <regex> element specifies a pattern for the User
Device to report on. Section 5 describes the DRegex, or digit
regular expression, language.

4.1.1 User Input Buffer Behavior

User Devices MUST NOT buffer USER input prior to an authenticated
subscription, unless the INVITE establishing the dialog includes
"Require: kpml".
NOTE: This is a first stab at some sort of programmatic method of
starting buffering without buffering everything all the time.

User Devices MUST buffer User Input upon receipt of an authenticated
and accepted subscription. Subsequent KPML documents apply their
patterns against the buffered User Input. Some applications use
modal interfaces where the first few key presses determine what the
following key presses mean. For a novice user, the application may
play a prompt describing what mode the application is in. However,
"power users" often barge through the prompt.

KPML provides a <flush> tag in the <pattern> element. The default is
not to flush User Input. Flushing User Input has the effect of
ignoring key presses entered before the installation of the KPML
subscription. To flush User Input, include the tag

Burger & Dolly Expires January 13, 2005 [Page 19]

Internet-Draft KPML July 2004

<flush>yes</flush>
in the KPML subscription document. Note that this directive affects
only the current subscription dialog/id combination.

Lock-step processing of User Input is where the User Device issues a
notification, the Application processes the notification while the
User Device buffers additional User Input, the Application requests
more User Input, and only then does the User Device notify the
Application based on the collected User Input. To direct the User
Device to operate in lock-step mode, set the <pattern> attribute
persist="single-notify".

The User Device MUST be able to process <flush>no</flush>. This
directive is effectively a no-op.

Other string values for <flush> may be defined in the future. If the
User Device receives a string it does not understand, it MUST treat
the string as a no-op.

If the user presses a key that cannot match any pattern within a
<regex> tag, the User Device MUST discard all buffered key presses up
to and including the current key press from consideration against the
current or future KPML documents on a given dialog. However, as
described above, once there is a match, the User Device buffers any
key presses the user entered subsequent to the match.

NOTE: This behavior allows for applications to only receive User
Input that interest them. For example, a pre-paid application
only wishes to monitor for a long pound. If the user enters other
stimulus, presumably for other applications, the pre-paid
application does not want notification of that User Input. This
feature is fundamentally different than the behavior of TDM-based
equipment where every application receives every key press.

To limit reports to only complete matches, set the "nopartial"

attribute to the <pattern> tag to "true". 1In this case, the User
Device attempts to match a rolling window over the collected User
input.

KPML subscriptions are independent. Thus it is not possible for the
current document to know if a following document will enable barging
or want User Input flushed. Therefore, the User Device MUST buffer
all User Input, subject to the forced_flush caveat described below.

On a given SUBSCRIBE dialog with a given id, the User Device MUST
buffer all User Input detected between the time of the report and the
receipt of the next document, if any. If the next document indicates
a buffer flush, then the interpreter MUST flush all collected User

Burger & Dolly Expires January 13, 2005 [Page 20]

Internet-Draft KPML July 2004

Input from consideration from KPML documents received on that dialog
with the given event id. If the next document does not indicate
flushing the buffered User Input, then the interpreter MUST apply the
collected User Input (if possible) against the digit maps presented
by the script’s <regex> tags. If there is a match, the interpreter
MUST follow the procedures in Section 3.7.2. If there is no match,
the interpreter MUST flush all of the collected User Input.

Given the potential for needing an infinite buffer for User Input,
the User Device MAY discard the oldest User Input from the buffer.
If the User Device discards digits, when the User Device issues a
KPML notification, it MUST set the forced_flush attribute of the
<response> tag to "true". For future use, the Application MUST
consider any non-null value, other than "false" that it does not
understand, to be the same as "true".
NOTE: The requirement to buffer all User Input for the entire
length of the session is not really onerous under normal
operation. For example, if one has a gateway with 8,000 sessions,
and the gateway buffers 50 key presses on each session, the
requirement is only 400,000 bytes, assuming one byte per key
press.

Unless there is a suppress indicator in the digit map, it is not
possible to know if the User Input is for local KPML processing or
for other recipients of the media stream. Thus, in the absence of a
suppression indicator, the User Device transmits the User Input to
the far end in real time, using either RFC2833, generating the
appropriate tones, or both.

The section Digit Suppression (Section 4.1.3) describes the operation
of the suppress indicator.

4.1.2 Pattern Matching

4.1.2.1 Inter-Digit Timing
The pattern matching logic works as follows. KPML User Devices MUST
follow the logic presented in this section so that different
implementations will perform deterministically on the same KPML

document given the same User Input.

The pattern match algorithm matches the longest regular expression.
This is the same mode as H.248.1 [16] and not the mode presented by

MGCP [15]. The pattern match algorithm choice has an impact on
determining when a pattern matches. Consider the following KPML
document.

Burger & Dolly Expires January 13, 2005 [Page 21]

Internet-Draft KPML July 2004

<?xml version="1.0" encoding="UTF-8"?>
<kpml-request xmlns="urn:ietf:params:xml:ns:kpml-request"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=
"urn:ietf:params:xml:ns:kpml-request kpml-request.xsd"
version="1.0">
<pattern>
<regex>0</regex>
<regex>011</regex>
</pattern>
</kpml-request>

Figure 8: Greedy Matching

In Figure 8, if we were to match on the first found pattern, the
string "011" would never match. This happens because the "0" rule
would match first.

While this behavior is what most applications desire, it does come at
a cost. Consider the following KPML document snippet.

<regex>x{7}</regex>
<regex>x{10}</regex>

Figure 9: Timeout Matching

Figure 9 is a typical North American dial plan. From an application
perspective, users expect a seven-digit number to respond quickly,
not waiting the typical inter-digit critical timer (usually four
seconds). Conversely, the User does not want the system to cut off
their ten-digit number at seven digits because they did not enter the
number fast enough.

One approach to this problem is to have an explicit dial string
terminator. Typically, it is the pound key (#). Now, consider the
following snippet.

<regex>x{7}#</regex>
<regex>x{10}#</regex>

Figure 10: Timeout Matching with Enter
The problem with the approach in Figure 10 is that the digit
collector will still look for a digit after the "#" in the
seven-digit case. Worse yet, the "#" will appear in the returned

dial string.

The approach used in KPML is to have an explicit "Enter Key", as

Burger & Dolly Expires January 13, 2005 [Page 22]

Internet-Draft KPML July 2004

shown in the following snippet.

<pattern enterkey="#">
<regex>x{7}</regex>
<regex>x{10}</regex>
</pattern>

Figure 11: Timeout Matching with Enter Key

In Figure 11, the enterkey attribute to the <pattern> tag specifies a
string that terminates a pattern. In this situation, if the user
enters seven digits followed by the "#" key, the pattern matches (or
fails) immediately. KPML indicates a terminated nomatch with a KPML
status code 402.
NOTE: The enterkey is a string. The enterkey can be a sequence
of key presses.

To address the various key press collection scenarios, we define
three timers. The timers are the critical timer (criticaltimer), the
inter-digit timer (interdigittimer), and the extra digit timer
(extradigittimer). The critical timer is the time to wait for
another digit if the collected digits can match a pattern. The extra
timer is the time to wait after the longest match has occurred
(presumably for the Enter key). The inter-digit timer is the time to
wait between digits in all other cases. Note there is no start
timer, as that concept does not apply in the KPML context.

The User Device MAY support an inter-digit timeout value. This is
the amount of time the User Device will wait for User Input before
returning a timeout error result on a partially matched pattern. The
application can specify the inter-digit timeout as an integer number
of milliseconds by using the "interdigittimer" attribute to the
<pattern> tag. The default is 4000 milliseconds. If the User Device
does not support the specification of an inter-digit timeout, the
User Device MUST silently ignore the specification. If the User
Device supports the specification of an inter-digit timeout, but not
to the granularity specified by the value presented, the User Device
MUST round up the requested value to the closest value it can
support.

The User Device MAY support an extra-digit timeout value. This is
the amount of time the User Device will wait for another key press
when it already has a matched <regex>. The application can specify
the extra-digit timeout as an integer number of milliseconds by using
the "extradigittimer" attribute to the <pattern> tag. The default is
500 milliseconds.

The User Device MAY support a critical-digit timeout value. This is

Burger & Dolly Expires January 13, 2005 [Page 23]

Internet-Draft KPML July 2004

the amount of time the User Device will wait for another key press
when it already has a matched <regex> but there is another, longer
<regex> that may also match the pattern. The application can specify
the critical-digit timeout as an integer number of milliseconds by
using the "criticaldigittimer" attribute to the <pattern> tag. The
default is 1000 milliseconds.

4.1.2.2 Intra-Digit Timing

Some patterns look for long duration key presses. For example, some
applications look for long "#" or long "*".

KPML uses the "L" modifier to <regex> characters to indicate long key
presses. The following KPML document looks for a long pound of at
least 3 seconds.

<?xml version="1.0" encoding="UTF-8"?>
<kpml-request xmlns="urn:ietf:params:xml:ns:kpml-request"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=
"urn:ietf:params:xml:ns:kpml-request kpml-request.xsd"
version="1.0">
<pattern long="3000">
<regex>L#</regex>
</pattern>
</kpml-request>

The request can specify what constitutes "long" by setting the long
attribute to the <pattern>. This attribute is an integer
representing the number of milliseconds. If the user presses a key
for longer than "long" milliseconds, the Long modifier is true. The
default length of the long attribute is 2500 milliseconds.

Some User Devices are unable to present long key presses. An example
is an old private branch exchange (PBX) phone set that emits
fixed-length tones when the user presses a key. To address this
issue, the User Device MAY interpret a success of a single key press
to be equivalent to a long key press of the same key. The
Application indicates it wants this behavior by setting the
"longrepeat" attribute tot he <pattern> to "true".

4.1.3 Digit Suppression

Under basic operation, a KPML User Device will transmit in-band tones
(RFC2833 [12] or actual tone) in parallel with User Input reporting.

NOTE: If KPML did not have this behavior, then a User Device
executing KPML could easily break called applications. For

Burger & Dolly Expires January 13, 2005 [Page 24]

Internet-Draft KPML July 2004

example, take a personal assistant that uses "*9" for attention.
If the user presses the "*" key, KPML will hold the digit, looking
for the "9". TWhat if the user just enters a "*" key, possibly
because they accessed an IVR system that looks for "*"? In this
case, the "*" would get held by the User Device, because it is
looking for the "*9" pattern. The user would probably press the
"<" key again, hoping that the called IVR system just did not hear
the key press. At that point, the User Device would send both "*"
entries, as "**" does not match "*9". However, that would not
have the effect the user intended when they pressed "*".

On the other hand, there are situations where passing through tones
in-band is not desirable. Such situations include call centers that
use in-band tone spills to effect a transfer.

For those situations, KPML adds a suppression tag, "pre", to the
<regex> tag. There MUST NOT be more than one <pre> in any given
<regex>.

If there is only a single <pattern> and a single <regex>, suppression
processing is straightforward. The end-point passes User Input until
the stream matches the regular expression <pre>. At that point, the
User Device will continue collecting User Input, but will suppress
the generation or pass-through of any in-band User Input.

If the User Device suppressed stimulus, it MUST indicate this by
including the attribute "suppressed" with a value of "true" in the
notification.

Clearly, if the User Device is processing the KPML document against
buffered User Input, it is too late to suppress the transmission of
the User Input, as the User Device has long sent the stimulus. This
is a situation where there is a <pre> specification, but the
"suppressed" attribute will not be "true" in the notification. If
there is a <pre> tag that the User Device matched and the User Device
is unable to suppress the User Input, it MUST set the "suppressed"
attribute to "false".

A KPML User Device MAY perform suppression. If it is not capable of
suppression, it ignores the suppression attribute. It MUST set the
"suppressed" attribute to "false". 1In this case, the pattern to
match is the concatenated pattern of pre+value.

At some point in time, the User Device will collect enough User Input
to the point it hits a <pre> pattern. The interdigittimer attribute
indicates how long to wait once the user enters stimulus before
reporting a time-out error. If the interdigittimer expires, the User
Device MUST issue a time-out report, transmit the suppressed User

Burger & Dolly Expires January 13, 2005 [Page 25]

Internet-Draft KPML July 2004

Input on the media stream, and stop suppression.

Once the User Device detects a match and it sends a NOTIFY request to
report the User Input, the User Device MUST stop suppression.
Clearly, if subsequent User Input matches another <pre> expression,
then the User Device MUST start suppression.

After suppression begins, it may become clear that a match will not
occur. For example, take the expression
<regex><pre>*8</pre>xxx[2-9]xxxxxx</regex>

At the point the User Device receives "*8", it will stop forwarding
stimulus. Let us say that the next three digits are "408". 1If the
next digit is a zero or one, the pattern will not match.

NOTE: It is critically important for the User Device to have a
sensible inter-digit timer. This is because an errant dot (".")
may suppress digit sending forever. See Section 4.1 for setting
the inter-digit timer.

Applications should be very careful to indicate suppression only when
they are fairly sure the user will enter a digit string that will
match the regular expression. In addition, applications should deal
with situations such as no-match or time-out. This is because the
User Device will hold digits, which will have obvious user interface
issues in the case of a failure.

4.1.4 One-Shot and Persistent Triggers

The KPML document specifies if the patterns are to be persistent by
setting the "persist" attribute to the <pattern> tag to "persist" or
"single-notify". Any other value, including "one-shot", indicates
the request is a one-shot subscription. If the User Device does not
support persistent subscriptions, it returns a KPML document with the
KPML status code set to 531. If there are digits in the buffer and
the digits match an expression in the KPML document, the User Device
prepares the appropriate KPML document.

Note the values of the persistent attribute are case sensitive.

4.1.5 Multiple Patterns
Some User Devices may support multiple regular expressions in a given
pattern request. 1In this situation, the application may wish to know
which pattern triggered the event.
KPML provides a "tag" attribute to the <regex> tag. The "tag" is an

opaque string that the User Device sends back in the notification
report upon a match in the digit map. In the case of multiple

Burger & Dolly Expires January 13, 2005 [Page 26]

Internet-Draft KPML July 2004

matches, the User Device MUST chose the longest match in the KPML
document. If multiple matches match the same length, the User Device
MUST chose the first expression listed in the subscription KPML
document based on KPML document order.

If the User Device does not support multiple regular expressions in a
pattern request, the User Device MUST return a KPML document with the
KPML status code set to 532.

4.1.6 Monitoring Direction

By default, the User Device monitors key presses emanating from the
User Device. Given a dialog identifier of Call-ID, local-tag, and
remote-tag, the User Device monitors the key presses associated with
the local-tag.

In the media proxy case, and potentially other cases, there is a need
to monitor the key presses arriving from the remote user agent. The
optional <stream> element to the <request> tag specifies which stream
to monitor. The only legal value is "reverse", which means to
monitor the stream associated with the remote-tag. The User Device
MUST ignore other values.

NOTE: The reason this is a tag is so individual stream selection,

if needed, can be addressed in a backwards-compatible way.

NOTE: Further specification of the stream to monitor is the

subject of future standardization. The current thoughts revolve

around negotiating MIME parameters that describe namespaces

declaring the filters specification of the stream.

4.1.7 Multiple, Simultaneous Subscriptions

Some User Devices may support multiple key press event notification
subscriptions at the same time. 1In this situation, the User Device
honors each subscription individually and independently.

A SIP user agent may request multiple subscriptions on the same
SUBSCRIBE dialog, using the id parameter to the kpml event request.

One or more SIP user agents may request independent subscriptions on
different SIP dialogs. Section 3.2 describes the dialog addressing
mechanism in detail.

If the User Device does not support multiple, simultaneous
subscriptions, the User Device MUST return a KPML document with the
KPML status code set to 533 on the dialog that requested the second
subscription. The User Device MUST NOT modify the state of the first
subscription on account of the second subscription attempt.

Burger & Dolly Expires January 13, 2005 [Page 27]

Internet-Draft KPML July 2004

4.2 KPML Reports

When the user enters key press(es) that match a <regex> tag, the User
Device will issue a report.

After reporting, the interpreter terminates the KPML session unless
the subscription has a persistence indicator. If the subscription
does not have a persistence indicator, the User Device MUST set the
state of the subscription to "terminated" in the NOTIFY report.

If the subscription does not have a persistence indicator, to collect
more digits the requestor must issue a new request.

NOTE: This highlights the "one shot" nature of KPML, reflecting
the balance of features and ease of implementing an interpreter.
If your goal is to build an IVR session, we strongly suggest you
investigate more appropriate technologies.

KPML reports have two mandatory attributes, code and text. These
attributes describe the state of the KPML interpreter on the User
Device. ©Note the KPML status code is not necessarily related to the
SIP result code. An important example of this is where a legal SIP
subscription request gets a normal SIP 200 OK followed by a NOTIFY,
but there is something wrong with the KPML request. In this case,
the NOTIFY would include the KPML status code in the KPML report.
Note that from a SIP perspective, the SUBSCRIBE and NOTIFY were
successful. Also, if the KPML failure is not recoverable, the User
Device will most likely set the Subscription-Sate to "terminated".
This lets the SIP machinery know the subscription is no longer
active.

4.2.1 Pattern Match Reports

If a pattern matches, the User Device will emit a KPML report. Since
this is a success report, the code is "200" and the text is "OK".

The KPML report includes the actual digits matched in the digit
attribute. The digit string uses the conventional characters ’'*’ and
"#’ for star and octothorpe respectively. The KPML report also
includes the tag attribute if the regex that matched the digits had a
tag attribute.

If the subscription requested digit suppression (Section 4.1.3) and
the User Device suppressed digits, the suppressed attribute indicates

"true". The default value of suppressed is "false".

NOTE: KPML does not include a timestamp. There are a number of
reasons for this. First, what timestamp would in include? Would

Burger & Dolly Expires January 13, 2005 [Page 28]

Internet-Draft KPML July 2004

4,

4,

5.

5.

it be the time of the first detected key press? The time the
interpreter collected the entire string? A range? Second, if the
RTP timestamp is a datum of interest, why not simply get RTP in
the first place? That all said, if it is really compelling to
have the timestamp in the response, it could be an attribute to
the <response> tag.

2.2 KPML No Match Reports

There are a few circumstances in which the User Device will emit a no
match report. They are an immediate NOTIFY in response to SUBSCRIBE
request (no digits detected yet), a request for service not supported
by User Device, or a failure of a digit map to match a string
(timeout) .

2.2.1 Immediate NOTIFY

The NOTIFY in response to a SUBSCRIBE request has no KPML if there
are no matching buffered digits. An example of this is in Figure 14.

If there are buffered digits in the SUBSCRIBE request that match a
pattern, then the NOTIFY message in response to the SUBSCRIBE request
MUST include the appropriate KPML document.

NOTIFY sip:application@example.com SIP/2.0
Via: SIP/2.0/UDP proxy.example.com
Max-Forwards: 70

To: <sip:application@example.com>

From: <sip:endpoint@example.net>

Call-Id: 439hu409h4h09903f30i0i]j
Subscription-State: active; expires=7200
CSeq: 49851 NOTIFY

Event: kpml

Figure 14: Immediate NOTIFY Example

DRegex
1 Overview
This subsection is informative in nature.

The Digit REGular EXpression (DRegex) syntax is a telephony-oriented
mapping of POSIX Extended Regular Expressions (ERE) [17].

KPML does not use full POSIX ERE for the following reasons.

Burger & Dolly Expires January 13, 2005 [Page 29]

Internet-Draft KPML July 2004

o KPML will often run on high density or extremely low power and
memory footprint devices.

o Telephony application convention uses the star symbol ("*") for
the star key and "x" for any digit 0-9. Requiring the developer
to escape the star ("*") and expand the "x" ("[0-9]") is error
prone. This also leads DRegex to using the dot (".") to indicate
repetition, which was the function of the unadorned star in POSIX
ERE.

o POSIX ERE has clear, unambiguous rules for the precedence of the
alternation operator ("|"). However, a few people in the SIPPING
Work Group thought we should not allow them. This was due to
implementers not getting precedence right in MGCP [15] and H.248.1
[16].

The following table shows the mapping from DRegex to POSIX ERE.

Fom t—————— +
| | POSIX ERE |
| DRegex | |
Fo———— o +
*	*
.	*
x	[0-9]
[xc]	[0-9c]
Fom———— fom————— +

Table 1: DRegex to POSIX ERE Mapping

The first substitution, which replaces a star for an escaped star, is
because telephony application designers are used to using the star
for the (very common) star key. Requiring an escape sequence for
this common pattern would be error prone. In addition, the usage
found in DRegex is the same as found in MGCP [15] and H.248.1 [16].

Likewise, the use of the dot instead of star is common usage from
MGCP and H.248.1, and reusing the star in this context would also be
confusing and error prone.

The "x" character is a common indicator of a dialed digit. We use it
here, continuing the convention.

Users need to take care not to confuse the DRegex syntax with POSIX
EREs. They are NOT identical. 1In particular there are many features
of POSIX EREs that DRegex does not support.

As an implementation note, if one makes the substitutions described

in the above table, then a standard POSIX ERE engine can parse the
digit string. However, the mapping does not work in the reverse

Burger & Dolly Expires January 13, 2005 [Page 30]

Internet-Draft KPML July 2004

(POSIX ERE to DRegex) direction. DRegex only implements the
Normative behavior described below.

5.2 Operation

White space is removed before parsing DRegex. This enables sensible
pretty printing in XML without affecting the meaning of the DRegex
string.

The following rules demonstrate the use of DRegex in KPML.

_________________________________ _I,_
Matches
_________________________________ _|._
digits 0-9 and A-D (case
insensitive)
*
#
Any character in selector
Any digit (0-9) NOT in selector

I
|
I
character
|
|
|
|
|
rangel-range?2] | Any digit (0-9) in range from
|
|
|
|
|
|
|
|
|
|
|
|
|
I

| |
| |
| * |
| # |
| [character selector] |
| [*digit selector] |
| [|
| rangel to rangez, inclusive |
| x Any digit 0-9 |
| {m} m repetitions of previous |
| pattern

| m or more repetitions of

| previous pattern

| At most n (including zero) |
| repetitions of previous pattern |
| at least m and at most n |
| repetitions of previous pattern |
| Match the character c¢ if it is |
| "long"; ¢ is a digit 0-9 and |
| A-D, #, or *.
_________________________________ _I,_

Burger & Dolly Expires January 13, 2005 [Page 31]

Internet-Draft

*6[1794#]
x{10}

L‘k

6. Formal Syntax

6.1 DRegex

The following definition follows RFC2234

011x{7,15}

+———— — — — — — — + — +

July 2004

___ +

___ +

KPML
Description
Matches the digit 1
Matches 1, 7, or 9
Matches 2, 3, 4, 5, ¢,
Matches 2, 3, 4, 5, ¢,
Matches 0, 1, 2, 3, 4,
Matches *61, *67, *69,
Ten digits (0-9)

or

011 followed by seven to fifteen digits

Long star
___ _|._

[2].

DIGIT is from the CORE specification of RFC2234,
characters "0" through "9".

HEXDIG from RFC2234.

In particular,

The definition of
namely the

Note the DRegexCharacater is not a

DRegexCharacter neither includes

"E" nor "F". Moreover DRegexCharacter is case insensitive, unlike
HEXDIG.
DRegex = 1*(DRegexPosition [RepeatCount])
DRegexPosition = DRegexSymbol / DRegexSet
DRegexSet = ("[" DRegexSetList "]")
("[A" DigitLiSt n]")

DRegexSetList = 1*((DIGIT "-" DIGIT) / DRegexSymbol)
DigitList = 1*((DIGIT "-" DIGIT) / DIGIT)
DRegexSymbol = DRegexCharacter / ("L" DRegexCharacter)
RepeatCount =", "/ "{" RepeatRange "}"
RepeatRange = Count / (Count "," Count /

(Count ",") / ("," Count)
Count = 1*(DIGIT)
DRegeXCharaCter — DIGIT / mxn / "#" / "A" / "a" / "B" / "b" /

"X" / "X" / "C" / n c " / "D n / "d"

Note that future extensions to this document may

characters for DRegexCharacter,

possibly as named strings or XML namespaces.

6.2 KPML Request

The following syntax for KPML requests uses the XML Schema

Burger & Dolly

Expires January 13,

2005

in the scheme of

introduce other

H.248.1

[16] or

[8].

[Page 32]

Internet-Draft KPML July 2004

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v2004 rel. 3 U (http://www.xmlspy.com)
by Eric Burger (Brooktrout Technology, Inc.) —-->
<xs:schema targetNamespace="urn:ietf:params:xml:ns:kpml-request"
xmlns="urn:ietf:params:xml:ns:kpml-request”
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:element name="kpml-request">
<xs:annotation>
<xs:documentation>IETF Keypad Markup Language Request
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="stream" minOccurs="0">
<xs:complexType>
<xs:choice>
<xs:element name="reverse" minOccurs="0"/>
<xs:any namespace="##other"/>
</xs:choice>
</xs:complexType>
</xs:element>
<xs:element name="pattern">
<xs:complexType>
<xs:sequence>
<xs:element name="flush" minOccurs="0">
<xs:annotation>
<xs:documentation>
Default is to not flush buffer
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string"/>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="regex" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>
Key press notation is a string to allow
for future extension of non-16 digit
keypads or named keys
</xs:documentation>
</xs:annotation>
<xs:complexType mixed="true">
<xs:choice>

Burger & Dolly Expires January 13, 2005 [Page 33]

Internet-Draft KPML July 2004

<xs:element name="pre" minOccurs="0">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string"/>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:any namespace="##other"/>
</xs:choice>
<xs:attribute name="tag" type="xs:string"
use="optional"/>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="persist" use="optional">
<xs:annotation>
<xs:documentation>Default is "one-shot"
</xs:documentation>
</xs:annotation>
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="one-shot"/>
<xs:enumeration value="persist"/>
<xs:enumeration value="single-notify"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="interdigittimer"
type="xs:integer"
use="optional">
<xs:annotation>
<xs:documentation>Default is 4000 (ms)
</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="criticaldigittimer"
type="xs:integer"
use="optional">
<xs:annotation>
<xs:documentation>Default is 1000 (ms)
</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="extradigittimer"
type="xs:integer"
use="optional">
<xs:annotation>
<xs:documentation>Default is 500 (ms)

Burger & Dolly Expires January 13, 2005 [Page 34]

Internet-Draft KPML July 2004

</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="long" type="xs:integer"
use="optional"/>
<xs:attribute name="longrepeat" type="xs:boolean"
use="optional"/>
<xs:attribute name="nopartial" type="xs:boolean"
use="optional">
<xs:annotation>
<xs:documentation>Default is false
</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="enterkey" type="xs:string"
use="optional">
<xs:annotation>
<xs:documentation>No default enterkey
</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="version" type="xs:string"
use="required"/>
</xs:complexType>
</xs:element>
</xs:schema>

Figure 16: XML Schema for KPML Requests

6.3 KPML Response
The following syntax for KPML responses uses the XML Schema [8].

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v2004 rel. 3 U (http://www.xmlspy.com)

by Eric Burger (Brooktrout Technology, Inc.) -->
<xs:schema targetNamespace="urn:ietf:params:xml:ns:kpml-response”
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns="urn:ietf:params:xml:ns:kpml-response”
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:element name="kpml-response">
<xs:annotation>
<xs:documentation>IETF Keypad Markup Language Response

Burger & Dolly Expires January 13, 2005 [Page 35]

Internet-Draft KPML July 2004

</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:attribute name="version" type="xs:string"
use="required"/>
<xs:attribute name="code" type="xs:string"
use="required"/>
<xs:attribute name="text" type="xs:string"
use="required"/>
<xs:attribute name="suppressed" type="xs:boolean"
use="optional"/>
<xs:attribute name="forced_flush" type="xs:string"
use="optional">
<xs:annotation>
<xs:documentation>
String for future use for e.g., number of digits lost.
</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="digits" type="xs:string"
use="optional"/>
<xs:attribute name="tag" type="xs:string" use="optional">
<xs:annotation>
<xs:documentation>Matches tag from regex in request
</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
</xs:element>
</xs:schema>

7. Enumeration of KPML Status Codes

KPML status codes broadly follow their SIP counterparts. Codes that
start with a 2 indicate success. Codes that start with a 4 indicate
failure. Codes that start with a 5 indicate a server failure,
usually a failure to interpret the document or to support a requested
feature.

KPML clients MUST be able to handle arbitrary status codes by
examining the first digit only.

Any text can be in a KPML report document. KPML clients MUST NOT
interpret the text field.

Burger & Dolly Expires January 13, 2005 [Page 36]

Internet-Draft KPML July 2004
e et o +
| | Text |
| Code | |
e it et +
200	Success
402	User Terminated Without Match
423	Timer Expired
481	Dialog Not Found
487	Subscription Expired
501	Bad Document
502	Namespace Not Supported
531	Persistent Subscriptions Not Supported
532	Multiple Regular Expressions Not Supported
533	Multiple Subscriptions on a Dialog Not Supported
e o +

Table 4: KPML Status Codes

8. IANA Considerations

This document registers a new SIP Event Package, two new MIME types,

and two new XML namespaces.
8.1 SIP Event Package Registration

Package name: kpml
Type: package

Contact: Eric Burger, <e.burger@ieee.org>

Published Specification: RFCXXXX

8.2 MIME Media Type application/kpml-request+xml

MIME media type name:
MIME subtype name:

Required parameters:
Optional parameters:

Security considerations:

Interoperability
considerations:
Published specification:

|
|
|
|
|
|
| Encoding considerations:
|
|
|
|
|
| Applications which use this

I
I
|
|
|
|
|
|
|
|
|
|
|
|
|

_________________________________ _|,_
_________________________________ _|,_
application

kpml-request+xml

none

|
|
|
Same as charset parameter |
application/xml as specified in |
XML Media Types [3] |
See RFC3023 [3].
See Section 10 of RFC3023 [3] |
and Section 9 of RFCXXXX |
See RFC2023 [3] and RFCXXXX |
|
|
|

RECXXXX
Session-oriented applications

Burger & Dolly Expires January 13, 2005 [Page 37]

Internet-Draft KPML July 2004

media type: that have primitive user |
interfaces.
Eric Burger <e.burger@ieee.org> |
further information: |
Intended usage: |

+ _________________________________

I
|
| Personal and email address for
|
|

COMMON

+_____
:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+

Additional Information:
Magic Number: None
File Extension: .xml
Macintosh file type code: "TEXT"

8.3 MIME Media Type application/kpml-response+xml

o o +
ettt o +
| MIME media type name: | application

| MIME subtype name: | kpml-resposne+xml |
| Required parameters: | none |
| Optional parameters: | Same as charset parameter

| | application/xml as specified in |
| | XML Media Types [3] |
| Encoding considerations: | See RFC3023 [3].

| Security considerations: | See Section 10 of RFC3023 [3]

	and Section 9 of RFCXXXX
Interoperability	See RFC2023 [3] and RFCXXXX
considerations:	
Published specification:	REFCXXXX
Applications which use this	Session-oriented applications
media type:	that have primitive user
	interfaces.

Personal and email address for	Eric Burger <e.burger@ieee.org>
further information:	
Intended usage:	COMMON
o e st i e +

Additional Information:
Magic Number: None
File Extension: .xml
Macintosh file type code: "TEXT"
8.4 URN Sub-Namespace Registration for urn:ietf:xml:ns:kpml-request

URI: urn:ietf:params:xml:ns:kpml-request

Registrant Contact: IETF, SIPPING Work Group <sipping@ietf.org>, Eric
Burger <e.burger@ieee.org>.

Burger & Dolly Expires January 13, 2005 [Page 38]

Internet-Draft KPML July 2004

XML:

<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//W3C/DTD XHTML Basic 1.0//EN"
"http://www.w3.0rg/TR/xhtml-basic/xhtml-basicl0.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<meta http-equiv="content-type"
content="text/html; charset=1s0-8859-1"/>
<title>Key Press Markup Language Request</title>
</head>
<body>
<hl>Namespace for Key Press Markup Language Request</hl>
<h2>urn:ietf:params:xml:ns:kpml-request</h2>
<p>
RFCXXXX.
</p>
</body>
</html>

8.5 URN Sub-Namespace Registration for urn:ietf:xml:ns:kpml-response
URI: urn:ietf:params:xml:ns:kpml-response

Registrant Contact: IETF, SIPPING Work Group <sipping@ietf.org>, Eric
Burger <e.burger@ieee.org>.

XML:

<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//W3C/DTD XHTML Basic 1.0//EN"
"http://www.w3.0rg/TR/xhtml-basic/xhtml-basicl0.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<meta http-equiv="content-type"
content="text/html; charset=1s0-8859-1"/>
<title>Key Press Markup Language Response</title>
</head>
<body>
<hl>Namespace for Key Press Markup Language Response</hl>
<h2>urn:ietf:params:xml:ns:kpml-response</h2>
<p>
RFCXXXX.
</p>
</body>
</html>

Burger & Dolly Expires January 13, 2005 [Page 39]

Internet-Draft KPML July 2004

8.6 KPML Request Schema Registration

Per RFC3688 [7], please register the XML Schema for KPML as
referenced in Section 6.2 of RFCXXXX.

URI: Please assign.

Registrant Contact: IETF, SIPPING Work Group <sipping@ietf.org>, Eric
Burger <e.burger@ieee.org>.

8.7 KPML Response Schema Registration

Per RFC3688 [7], please register the XML Schema for KPML as
referenced in Section 6.3 of RFCXXXX.

URI: Please assign.

Registrant Contact: IETF, SIPPING Work Group <sipping@ietf.org>, Eric
Burger <e.burger@ieee.org>.

9. Security Considerations

As an XML markup, all of the security considerations of RFC3023 [3]
and RFC3406 [6] must be met. Pay particular attention to the
robustness requirements of parsing XML.

Key press information is potentially sensitive. For example, it can
represent credit card, calling card, or other personal information.
Hijacking sessions allow unauthorized entities access to this
sensitive information. Therefore, signaling SHOULD be secure, e.g.,
use of TLS and sips: SHOULD be used. Moreover, the information
itself is sensitive, therefore the use of S/MIME or other appropriate
mechanism SHOULD be used.

Subscriptions MUST be authenticated.
User Devices MUST support digest authentication.
User Devices MUST support the sips: scheme and TLS.

User Devices MUST NOT buffer USER input prior to an authenticated
subscription.

User Devices MUST buffer User Input upon receipt of an authenticated
and accepted subscription.

User Devices implementing this specification MUST implement TLS and
SHOULD implement S/MIME at a minimum.

Burger & Dolly Expires January 13, 2005 [Page 40]

Internet-Draft KPML July 2004

10. Examples

This section is informative in nature. If there is a discrepancy
between this section and the normative sections above, the normative
sections take precedence.

10.1 Monitoring for Octothorpe

A common need for pre-paid and personal assistant applications is to
monitor a conversation for a signal indicating a change in user focus
from the party they called through the application to the application
itself. For example, if you call a party using a pre-paid calling
card and the party you call redirects you to voice mail, digits you
press are for the voice mail system. However, many applications have
a special key sequence, such as the octothorpe (#, or pound sign) or
*9 that terminate the called party session and shift the user’s focus
to the application.

Figure 20 shows the KPML for long octothorpe.

<?xml version="1.0">
<kpml-request xmlns="urn:ietf:params:xml:ns:kpml-request"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=
"urn:ietf:params:xml:ns:kpml-request kpml-request.xsd"
version="1.0">
<pattern>
<regex>L#</regex>
</pattern>
</kpml-request>

Figure 20: Long Octothorpe Example

The regex value L indicates the following digit needs to be a
long-duration key press.

10.2 Dial String Collection
In this example, the User Device collects a dial string. The
application uses KPML to quickly determine when the user enters a

target number. In addition, KPML indicates what type of number the
user entered.

Burger & Dolly Expires January 13, 2005 [Page 41]

Internet-Draft KPML July 2004

11.

11.

<?xml version="1.0">
<kpml-request xmlns="urn:ietf:params:xml:ns:kpml-request"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=
"urn:ietf:params:xml:ns:kpml-request kpml-request.xsd"
version="1.0">
<pattern>
<regex tag="local-operator">0</regex>
<regex tag="ld-operator"/>00</regex>
<regex tag="vpn">7[x][x] [x]</regex>
<regex tag="local-number7">9xxxxxxx</regex>
<regex tag="RI-number">9401xxxxxxx</regex>
<regex tag="local-numberl0">9xxxxxXxxxXxxx</regex>
<regex tag="ddd">91xxxxxxxxxx</regex>
<regex tag="iddd">011x.</regex>
</pattern>
</kpml-request>

Figure 21: Dial String KPML Example Code

Note the use of the "tag" attribute to indicate which regex matched
the dialed string. The interesting case here is if the user entered
"94015551212". This string matches both the "9401lxxxxxxx" and
"Ixxxxxxxxxx" regular expressions. By following the rules described
in Section 4.1.5, the KPML interpreter will pick the "9401xxxxxxx"
string, as it occurs first in document order (both expressions match
the same length). Figure 22 shows the response.

<?xml version="1.0"?>

<kpml-response xmlns="urn:ietf:params:xml:ns:kpml-resposne"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=

"urn:ietf:params:xml:ns:kpml-response kpml-response.xsd"

version="1.0"
code="200" text="OK"
digits="94015551212" tag="RI-number"/>

Figure 22: Dial String KPML Response

Call Flow Examples
1 Supplemental Digits

This section gives a non-normative example of an application that
collects supplemental digits. Supplemental digit collection is where
the network requests additional digits after the caller enters the
destination address. A typical supplemental dial string is four

Burger & Dolly Expires January 13, 2005 [Page 42]

Internet-Draft KPML July 2004

digits in length.

Ingress Gateway Application Server Egress Gateway
(1) INVITE	
=== >	
(2) 200 OK	
<mmmmmmmm	
(3) ACK	
- >	

|
|
(5) 200 OK |
|- > |
| |
| |
| (6) NOTIFY |
|-——— > |
| |
| |
| (7) 200 OK |
|[<———— |
| |
| |
| (8) |
et e et e e |
|
|
| (9) NOTIFY (digits)

Burger & Dolly Expires January 13, 2005 [Page 43]

Internet-Draft KPML July 2004

Figure 23: Supplemental Digits Call Flow

In messages (1-3), the ingress gateway establishes a dialog with an
egress gateway. The application learns the dialog ID through
out-of-band mechanisms, such as the Dialog Package or being
coresident with the egress gateway. Part of the ACK message is
below, to illustrate the dialog identifiers.

ACK sip:gw@subA.example.com SIP/2.0

Via: ...

Max-Forwards:

Route:

From: <sip:phnlexample.com>;tag=7jfh21
To: <sip:gw@subA.example.com>; tag=onjwe?2
Call-ID: 12345592@subA.example.com

In message (4), the application requests the gateway collect a string
of four key presses.

SUBSCRIBE sip:gw@subA.example.com SIP/2.0

Via: SIP/2.0/TCP client.subB.example.com;branch=q4i9ufrdui3

From: <sip:ap@subB.example.com>;tag=567890

To: <sip:gw@subA.example.com>

Call-ID: 12345601@subA.example.com

CSeqg: 1 SUBSCRIBE

Contact: <sip:ap@client.subB.example.com>

Max-Forwards: 70

Event: kpml ;remote-tag="<sip:phnlexample.com;tag=jfh21>"
;local-tag="sip:gwl@subA.example.com; tag=onjwe2"
;call-id="12345592@subA.example.com"

Expires: 7200

Accept: application/kpml-response+xml

Content-Type: application/kpml-request+xml

Content-Length: 292

<?xml version="1.0" encoding="UTF-8"?>
<kpml-request xmlns="urn:ietf:params:xml:ns:kpml-request"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=
"urn:ietf:params:xml:ns:kpml-request kpml-request.xsd"
version="1.0">
<pattern persist="one-shot">
<regex>xxxx</regex>
</pattern>
</kpml-request>

Message (5) is the acknowledgement of the subscription request.

Burger & Dolly Expires January 13, 2005 [Page 44]

Internet-Draft KPML July 2004

SIP/2.0 200 OK

Via: SIP/2.0/TCP subB.example.com;branch=g4i9ufrdui3;
received=192.168.125.12

From: <sip:ap@subB.example.com>;tag=567890

To: <sip:gw@subA.example.com>;tag=1234567

Call-ID: 12345601@subA.example.com

CSeqg: 1 SUBSCRIBE

Contact: <sip:gw27@subA.example.com>

Expires: 3600

Event: kpml

Message (6) is the immediate notification of the subscription.

NOTIFY sip:ap@client.subB.example.com SIP/2.0
Via: SIP/2.0/UDP subA.example.com;branch=gw271d4993
To: <sip:ap@subB.example.com>;tag=567890
From: <sip:gw@subA.example.com>;tag=1234567
Call-ID: 12345601@subA.example.com

CSeqg: 1000 NOTIFY

Contact: <sip:gw27@subA.example.com>

Event: kpml

Subscription-State: active;expires=3599
Max-Forwards: 70

Content-Length: 0

Message (7) is the acknowledgment of the notification message.

SIP/2.0 200 OK

Via: SIP/2.0/TCP subA.example.com;branch=gw271d4993
To: <sip:ap@subB.example.com>;tag=567890

From: <sip:gw@subA.example.com>;tag=1234567
Call-ID: 12345601@subA.example.com

CSeqg: 1000 NOTIFY

Some time elapses (8).
The user enters the input. The device provides the notification of

the collected digits in message (9). Since this was a one-shot
subscription, note the Subscription-State is "terminated".

Burger & Dolly Expires January 13, 2005 [Page 45]

Internet-Draft KPML July 2004

NOTIFY sip:ap@client.subB.example.com SIP/2.0
Via: SIP/2.0/UDP subA.example.com;branch=gw271d4993
To: <sip:ap@subB.example.com>;tag=567890
From: <sip:gw@subA.example.com>;tag=1234567
Call-ID: 12345601@subA.example.com

CSeqg: 1001 NOTIFY

Contact: <sip:gw27@subA.example.com>

Event: kpml

Subscription-State: terminated

Max-Forwards: 70

Content-Type: application/kpml-response+xml
Content-Length: 258

<?xml version="1.0" encoding="UTF-8"?>

<kpml-response xmlns="urn:ietf:params:xml:ns:kpml-response"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=

"urn:ietf:params:xml:ns:kpml-response kpml-response.xsd"

version="1.0"
code="200" text="OK"
digits="4336"/>

Message (10) is the acknowledgement of the notification.

SIP/2.0 200 OK

Via: SIP/2.0/TCP subA.example.com;branch=gw271d4993
To: <sip:ap@subB.example.com>;tag=567890

From: <sip:gw@subA.example.com>;tag=1234567
Call-ID: 12345601@subA.example.com

CSeqg: 1001 NOTIFY

11.2 Multiple Applications

This section gives a non-normative example of multiple applications.
One application collects a destination number to call. That
application then waits for a "long pound." During the call, the call
goes to a personal assistant application, which interacts with the
user. In addition, the personal assistant application looks for a
"short pound."

For clarity, we do not show the INVITE dialogs.

Gateway Card Application Personal Assistant
(1) SUBSCRIBE (persistent)	

Burger & Dolly Expires January 13, 2005 [Page 46]

KPML July 2004

Internet-Draft

| A
I |
I |
I |
| |
I |
I |
I |
| |
I |
I |
I |
| |
I |
I |
I |
| |
I |
I |
I |
| |
I |
|| | —— —] — — —
A A	A	9N	I					
			—		O			
I		T		Q				
I		[g					
I		©		S	I			
			O		a o			
			o	[
			o		o			
I		©		©		[
			I	I	m			
			—		—		Mo	
I					N oo	>		
N bl N bl N bl O	O	O	[y					
O		O		O	[(oI	H—
I =	=	= o	m	o	5			
o	= o	= o	= o	Do o	O			
o	O	o	O	o	O	[V 0	o~ Z	
S =1 S =	“							
—	—~ 1 —	— — 1 — — —	o	—	o~ ™			
[V ™	<	T} Nl ~	[ee) o	—	—	—	—	

[Page 47]

2005

Expires January 13,

Burger & Dolly

Internet-Draft KPML July 2004

|- > |
| | |
| | |
| (14) 200 OK |

|[<-—————"""-"""""¥"""¥"""""""""""""""-"— |
(15)	
ottt e e e e e e e e e e e e	
(16) NOTIFY (tag=number)	

|- > |
| | |
| | |
| (17) 200 OK |

|[<-—————"""-"""""¥"""¥"""""""""""""""-"— |
(18)	
ettt e e e e e e e e e e e e e e	
(19) NOTIFY (tag=#)	

|- > |
| | |
| | |
| (20) 200 OK |

|[<-—————"""-"""""¥"""¥"""""""""""""""-"— |
(21)	
ettt e e e e e e e e e e e e e e	

| |

| (22) NOTIFY (tag=number)

(25) NOTIFY (L#) |

Burger & Dolly Expires January 13, 2005 [Page 48]

Internet-Draft KPML July 2004

|
| |
| |
| |
| <mmmmmmmm | |
| |
| |
| |
| |

Figure 31: Multiple Application Call Flow
Message (1) is the subscription request for the card number.

SUBSCRIBE sip:gw@subA.example.com SIP/2.0

Via: SIP/2.0/TCP client.subB.example.com;branch=3go3j0ouqg

From: <sip:ap@subB.example.com>;tag=978675

To: <sip:gw@subA.example.com>

Call-ID: 12345601@subA.example.com

CSeq: 20 SUBSCRIBE

Contact: <sip:ap@client.subB.example.com>

Max-Forwards: 70

Event: kpml ;remote-tag="<sip:phn@example.com;tag=jfi23>"
;local-tag="sip:gwl@subA.example.com;tag=0i43jfq"
;call-id="12345598@subA.example.com"

Expires: 7200

Accept: application/kpml-response+xml

Content-Type: application/kpml-request+xml

Content-Length: 339

<?xml version="1.0" encoding="UTF-8"?>
<kpml-request xmlns="urn:ietf:params:xml:ns:kpml-request"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=
"urn:ietf:params:xml:ns:kpml-request kpml-request.xsd"
version="1.0">
<pattern persist="persist">
<regex tag="card">x{16}</regex>
<regex tag="number">x{10}</regex>
</pattern>
</kpml-request>

Messages 2-4 are not shown for brevity. Message (6) 1is the
notification of the card number.

Burger & Dolly Expires January 13, 2005 [Page 49]

Internet-Draft KPML July 2004

NOTIFY sip:ap@client.subB.example.com SIP/2.0
Via: SIP/2.0/UDP subA.example.com;branch=3go3j0ouq
To: <sip:ap@subB.example.com>;tag=978675
From: <sip:gw@subA.example.com>;tag=9783453
Call-ID: 12345601@subA.example.com

CSeq: 3001 NOTIFY

Contact: <sip:gw27@subA.example.com>

Event: kpml

Subscription—-State: active;expires=3442
Max-Forwards: 70

Content-Type: application/kpml-response+xml
Content-Length: 271

<?xml version="1.0" encoding="UTF-8"?>

<kpml-response xmlns="urn:ietf:params:xml:ns:kpml-response"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=

"urn:ietf:params:xml:ns:kpml-response kpml-response.xsd"

version="1.0"
code="200" text="OK"
digits="9999888877776666"/>

Message (7) is the acknowledgement of the notification. Time goes by
in (8). Message (9) is the notification of the dialed number.

NOTIFY sip:ap@client.subB.example.com SIP/2.0
Via: SIP/2.0/UDP subA.example.com;branch=3go3j0ouq
To: <sip:ap@subB.example.com>;tag=978675
From: <sip:gw@subA.example.com>;tag=9783453
Call-ID: 12345601@subA.example.com

CSeqg: 3001 NOTIFY

Contact: <sip:gw27@subA.example.com>

Event: kpml

Subscription-State: active;expires=3542
Max-Forwards: 70

Content-Type: application/kpml-response+xml
Content-Length: 278

<?xml version="1.0" encoding="UTF-8"?>

<kpml-response xmlns="urn:ietf:params:xml:ns:kpml-response"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=

"urn:ietf:params:xml:ns:kpml-response kpml-response.xsd"

version="1.0"
code="200" text="OK"
digits="2225551212" tag="number"/>

Message (l11) is the request for long-pound monitoring.

Burger & Dolly Expires January 13, 2005 [Page 50]

Internet-Draft KPML July 2004

SUBSCRIBE sip:gw@subA.example.com SIP/2.0

Via: SIP/2.0/TCP client.subB.example.com;branch=3go3j0ouqg

From: <sip:ap@subB.example.com>;tag=978675

To: <sip:gw@subA.example.com>

Call-ID: 12345601@subA.example.com

CSeq: 21 SUBSCRIBE

Contact: <sip:ap@client.subB.example.com>

Max-Forwards: 70

Event: kpml ;remote-tag="<sip:phnl@example.com;tag=jfiz23>"
;local-tag="sip:gwl@subA.example.com;tag=0i43jfg"
;ca