SIP F. Cao
Internet-Draft C. Jennings
Expires: January 11, 2006 Cisco Systems

July 10, 2005

Response Identity and Authentication in Session Initiation Protocol
draft-cao-sip-response-auth-00

Status of this Memo

By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware

have been or will be disclosed, and any of which he or she becomes
aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/lid-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on January 11, 2006.
Copyright Notice

Copyright (C) The Internet Society (2005).
Abstract

This draft describes some extensions for verifying SIP response
identity and enhancing SIP response authentication. Some mechanisms
are demonstrated for providing and verifying the identity of SIP
responses. In order to prevent several kinds of security attacks
through SIP response, SIP response authentication should be provided
through a chain of trust of the SIP responses. Some extensions are
proposed to enhance the per-hop authentication for handling SIP
response.

Cao & Jennings Expires January 11, 2006 [Page 1

Internet-Draft Response Identity and Authentication

July 2005

This draft is an early work in progress and suggests some approaches

but there is still significant discussion needed.

Some of the

attacks discussed in this draft can be mitigated by using the sips

URL.

Table of Contents

1. Introduction 3
2. Terminology 3
3. Overview e e e 4
3.1 SIP Response Identity 4
3.2 Chain of SIP Response Trust 5
4. User Agent Behavior 8
4.1 SIP Response Identity 8
4.2 Chain of SIP Response Trust 9
5. Proxy Server Behavior 9
5.1 SIP Response Identity 9
5.2 Chain of SIP Response Trust 10
6. Syntax and Examples 11
6.1 Header Syntax 11
7. Security Consideration 14
8. IANA Considerations 15
8.1 Header Field Names e e e e e e e e 15
8.2 431 'Failed Responder Identity Response Code 15
8.3 432 ’"Failed Response Authorization Response Code 15
9. Acknowledgments 16
10. Appendix A. AIB used for SIP response identity 16
11. References P 18
11.1 Normative References 18
11.2 Informational References 19
Authors’ Addresses e e e e e e e e 19
Intellectual Property and Copyright Statements 21

Cao & Jennings Expires January 11, 2006 [Page 2]

Internet-Draft Response Identity and Authentication July 2005

1.

Introduction

This document provides enhancements for addressing security concerns
on response messages in Session Initiation Protocol (SIP [1]). There
are some limitations with the current handling of SIP response
without identity verification and authentication that leaves holes
for malicious attacks through SIP response.

[3] described the current limitations of some security mechanisms
provided in SIP [1]. Due to these limitations, some extensions were
added in [3] to address the need for authenticating identity of SIP
request.

The identity of SIP response is more complicated than that of SIP
request. First, SIP response may be originated by any intermediate
SIP proxies instead of the desired SIP UAS. Because SIP UAC may send
requests to SIP UAS without any previous association, these
intermediate SIP proxies may not be known or verified by SIP UAC
beforehand. Second, the presence of the exact responder for SIP
response is not clearly defined, which is different from the From
header field for SIP request. In general, it is obvious that the To
header field cannot be used as described above. Contact and Reply-to
have their own meanings and cannot be relied on for backward
compatibility.

In this document, some mechanisms are demonstrated to enable the
sender to verify the identity of a corresponding SIP response.

Furthermore, there are still some loopholes left for malicious
attacks through SIP responses. In particular, there is no strict
per-hop authentication for the received SIP response. This could
enable an attacker to spoof SIP response and disturb the SIP service.

This issue is defined as Chain of SIP Response Trust (CSRT) in this
document. Some extensions are shown in this document to enhance CSRT
in SIP.

Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [2].
Domain-based Authentication Service (DAS): Authentication service is
provided for each domain through its certificate and the domain

private key. Proxies may authenticate servers with the domain keys.

Authenticated Identity Body (AIB): some SIP headers are replicated

Cao & Jennings Expires January 11, 2006 [Page 3

Internet-Draft Response Identity and Authentication July 2005

into an S/MIME body of the same message and are signed with a digital
signature (See [5])

Chain of SIP Response Trust (CSRT): as described in Section 1.

Certificate: An X.509v3 [15] style certificate containing a public

key and a list of identities in the SubjectAltName that are bound to
this key. The certificates discussed in this document are generally
self signed and use the mechanisms in the SIP Identity specification
to vouch for their validity.

3. Overview

This section gives an overview of the requirements and the mechanisms
for addressing the security concerns of SIP response. In particular,
the first part is about SIP response identity and how to verify it.
The rest is about CSRT for guaranteeing per-hop authentication to
prevent malicious attacks through SIP response.

3.1 SIP Response Identity
SIP response identify is crucial for negotiation and providing the
desired services. UAC might guess the identity of the responder of
the received SIP response message through the response code and some
header fields. But there is no defined mechanism for determining
that identity and verifying it.
The following requirements should be addressed:
O The identities of both UAs and proxies should be covered

O The mechanism should be backward compatible.

O The identity should be clearly specified for the responder of the
SIP response message.

O The integrity of SIP response should be covered along with the
responder identify

The following example is used in this document to demonstrate the
mechanisms in many sections:

UAC: alice@source.com
Proxy-1: pxl@source.com
Proxy-2: px2@destination.com
UAS: bob@destination.com

Cao & Jennings Expires January 11, 2006 [Page 4

Internet-Draft Response Identity and Authentication July 2005

Alice sends an INVITE request to Bob. Proxy-2 receives the request
and informs Alice of the response code 183 Session Progress, along
with two new header fields called Responder and Responder-Info:

Responder: claimer=px2@destination.com;
verify-method=DAS;

Responder-Info: https://www.destination.com/certs

Identify: akfjigiowrgnavnvnnfa2o3fafanfkfjakfjalkf203urjafskjfaf
Jprgiyupirequgpiruskfka

[Identity needs to be recalculated]

The field of claimer specifies the exact identity of the responder.
The field of verify-method indicates the secure mechanism for
verifying the identify of the responder.

There are several security methods covered in this document to
support this mechanism:

O DAS
O AIB (See Appendix A)

For DAS, the mechanism is similar to [3]. Some headers, including
the new header Responder, and the body of the message are used to
compute a hash. This hash is signed with certificate for Proxy-2's
domain (destination.com), and the final output is inserted into the
header field Identity introduced by [3]. One new header, Responder,
is introduced to specify the exact responder and related
authentication method. Responder-Info is inserted to indicate where
to acquire the certificate for the claimer of the responder.

For DAS, the proxy servers can obtain the certificate of DAS for the
responder through Responder-Info. The digest in Identity can be
verified for the responder identity. If there is a mismatch, the
proxy server may replace the response code with 431 Failed Responder
Identity for indicating the problem as early as possible.

.2 Chain of SIP Response Trust

In order to prevent several kinds of malicious attacks through SIP
response, Chain of SIP Response Trust (CSRT) should be provided to
enhance the per-hop authentication for receiving SIP response.

For example, in the above example, a rogue proxy can spoof the IP
address of Proxy-2 and send the response back to Proxy-1 along with
its rogue domain authentication service info, before Proxy-2's

Cao & Jennings Expires January 11, 2006 [Page 5

Internet-Draft Response Identity and Authentication July 2005

response. Without the per-hop authentication, Proxy-1 will be
deceived by the response from the rogue proxy.

The following requirements should be addressed:

O authentication between neighboring domains or nodes can be enhanced
O The mechanism should be simple

O CSRT can be built when this mechanism is applied on all the hops.
One simple authentication mechanism is proposed in this document for
satisfying all these requirements. This mechanism is to generate a
digest challenge for the next-hop node (or domain). The
authorization to this challenge should be delayed and piggybacked
with the next normal SIP response from the next-hop downstream node
(or domain). After the digest is verified, the trust can be enhanced

for the SIP response from the next-hop node (or domain).

There are several security mechanisms covered in this document to
support this mechanism:

O DAS

O shared secret key with the next-hop downstream node

O public key of the next-hop downstream node

The figure below shows a basic call to illustrate some scenarios.
The call is initiated by alicefatlanta.com to bob@biloxy.com. The

assumption is that Alice and Atlanta have a shared secret, Biloxi has
a public certificate, and Bob and Biloxi have a shared secret.

Cao & Jennings Expires January 11, 2006 [Page 6

Internet-Draft Response Identity and Authentication July 2005

Alice Atlanta Biloxi Bob

| INV+E (nl) | |

[Fl--—————mv >| SUBSCRIBE [\
+———— F2——— >
| NOTIFY (cert) |
[<==————- F3-———-——- +

| | |
| INV+E (n2) |

- F4-—————- >+ INV+E (n3) |

Fmm— FS————————- >

|

I

200+hash2(n2, .) | <===m=—= F6-—————————- +

200+hashl (nl, .) <—————= Pl +
<mmmmm F8--—-———— + [\
I | I
| | BYE+ hash3(n3, .) |
| BYE+ hash2(n2, .) | <=====—= FO-——————- +

BYE+hashl (nl, .) [<==————- F10------——- +
< --F1l1- + | |

In message F1, Alice sends a normal invite but includes an
Authentication header that includes the encrypted nonce, nl, that is
encrypted for the next hop, which is Atlanta.

In message F4, Atlanta will forward the invite to Biloxi with a nonce
that is encrypted for Biloxi; however, to do the encryption, Atlanta
may have to use the SUB/NOT in message F2 and F3 to fetch Biloxi’s
public key so that Atlanta can encrypt the nonce. Note F2 and F3
might have already been done for previous SIP dialogs from
Atlanta.com to Biloxi.com.

In message F5, biloxi sends the INVITE with a nonce encrypted for
Bob, using the shared secret between Biloxi and Bob.

In message F6, Bob inserts a header that says the responder in
bob@biloxi.com and computes a hash over key parts of the message
including the responder header field value. The hash includes the
decrypted content of the nonce that Biloxi sent to Bob. When Biloxi
receives this message it can verify that the hash is correct and that
it believes the responder information.

Biloxi computes a new hash over the message using the nonce2 and
sends F7 using this hash.

Later in message F9, F10, and F11, the hash can be computed using the
previous nonces. The proxies do not need to be session state-full,
as long as the nonce are constructed such that the proxy can later

Cao & Jennings Expires January 11, 2006 [Page 7

Internet-Draft Response Identity and Authentication July 2005

check that they are only being used in the dialog for which they were
originally constructed.

If the verification in Biloxy or Atlanta indicates the unmatched SIP
response authorization, the proxy may replace the response code with
432 Failed Response Authorization for announcing the failure of the

next-hop response authentication.

There are some advantages of this mechanism. For example, man-in-
the-middle attacks can be prevented as the rogue proxy does not have
the message forward to him in a valid way and cannot compute a valid
hash for the response. This method can be easily distributed to
enhance the security in any specified hops among domains.

A proxy such as Biloxy does not need to do work until Bob actually
sends the 180 response. At this point it must decrypt the the
original nonce and recompute the hash. However, this is after the
call has been at some level accepted by a device that this provides
service for.

Therefore, CSRT can be enhanced through this extension from end to
end. The rogue proxies can be prevented from attacking SIP services
through SIP responses.

User Agent Behavior

The extensions in this document require new processing and parsing
for both UAS and UAC. Their behaviors are described in this section.

.1 SIP Response Identity

When UAS sends the response, UAS must accurately generate the new
header fields as the responder.

For DAS, UAS must populate Responder inside the SIP response. In
addition, the URI as claimer inside Responder must be consistent with
what UAS registers in its domain. Note the URI as claimer may be
different from other header fields, such as Reply-To, Contact, and
To, in some scenarios. Please see Proxy Server Behavior for Identity
and Responder-Info.

When it receives the corresponding SIP response, UAC can verify the
identify of the responder. For DAS, the certificate of DAS for the
responder should be obtained to verify the digest in Identity.

UAC may receive the response code 431 Failed Responder Identity. UAC
should choose to avoid the verification of the responder identity.
UAC should treat it as a failure and may terminate the dialog.

Cao & Jennings Expires January 11, 2006 [Page 8

Internet-Draft Response Identity and Authentication July 2005

4.

5.

Cao & Jennings

2 Chain of SIP Response Trust

When UAC sends the SIP request, UAC can generate nonce before
assembling the new authentication header field.

For DAS, UAC must obtain the certificate of DAS for the next-hop
node. The nonce is encrypted and inserted into Response-
Authentication. For the shared key with the next-hop node, the nonce
is encrypted by the shared key to ensure its privacy.

When it receives the SIP response for the corresponding SIP request,
UAC should verify the authorization from the next hop. It generates
its own digest through its saved nonce in decrypted format, plus some
header fields and the message body in response message. This digest
is compared with the one in SIP response message from the next hop.
If there is a mismatch, it should treat it as an error and may
terminate the dialog with the failure reason.

Even 1f UAC may receive the response code 432 Failed Response
Authorization, UAC should finish the steps for verifying the received
response from the next-hop. If Response-Authorization carries the
correct digest, this response code can be trusted. The proper
follow-up operations should take place, such as terminating the
dialog with the failure reason. If not, the received response may be
suspicious. UAC should analyze the reason before taking any steps
for further operations.

As a recipient of the SIP request with Response-Authentication, UAS
should generate the digest for SIP response with respect to the
specified method. The digest is inserted into UAS’s next SIP
response.

Proxy Server Behavior

The extensions in this document require new processing and parsing
for proxy servers. Their behaviors are described in this section.

1 SIP Response Identity

The proxy server may provide the domain authentication service for an
outgoing SIP response. When a SIP response is received without the
header Responder, the proxy server may insert the identity of the
sender as the responder along with Responder-Info and Identity.

After receiving the SIP response with a new header field Responder,

the proxy servers may verify the responder identity in order to
detect the mismatched identity as early as possible.

Expires January 11, 2006 [Page 9]

Cao & Jennings

Internet-Draft Response Identity and Authentication July 2005

For DAS, the proxy server can obtain the certificate of DAS for the
responder through Responder-Info. The digest in Identity can be
verified for the responder identity.

If there is a mismatch, the proxy server may replace the response
code with 431 Failed Responder Identity for announcing the problem.
On the other hand, the proxy servers may relay the SIP responses
without checking the responder identity and modifying any fields
including response codes.

.2 Chain of SIP Response Trust

After receiving the SIP request with Response-Authentication, the
proxy server must save the nonce received from the upstream node.

It is recommended that when the proxy server relays the SIP request,
the proxy server carry its own Response-Authentication inside the
request. The nonce should be encrypted.

Before relaying the SIP request to the next-hop downstream node, the
proxy server should generate its own nonce, encrypt the nonce, and
overwrite the Response-Authentication header field inside the SIP
request.

For DAS, the nonce is encrypted by the certificate of the next-hop
domain and inserted into Response-Authentication. For the shared key
with the downstream node, the nonce is encrypted by the shared key to
ensure its privacy.

Note that to reduce the risk of disclosure, the nonce received from
the previous hop should not be forwarded to the next hop.

If the SIP response is received, the proxy server must finish two
steps. First, it has to verify the authorization from the next-hop
downstream node. It generates its own digest through its saved nonce
in decrypted format, plus some header fields and the message body in
response message. This digest is compared with the one in the SIP
response message from the next hop.

Second, the proxy server has to generate another digest from the
decrypted nonce received from the upstream node, some header fields,
and the message body for SIP response. This digest is inserted into
its relayed SIP response to the upstream node.

Note that the proxy server has to obtain the certificate, the public
key or the shared key with the downstream node (or domain) before
Response-Authentication is assembled. [4] is recommended to retrieve
the certificate through SUBSCRIBE and NOTIFY in the enhanced

Expires January 11, 2006 [Page 10]

Internet-Draft Response Identity and Authentication July 2005

6.

6.

certificate management.

When it receives the SIP response for the corresponding SIP request,
the proxy server should compare the digest inside Response-
Authorization with its generated one. If there is a mismatch, the
proxy server should analyze this suspicious response. The proper
follow-up operations should take place, such as replacing the
response code with 432 Failed Response Authorization. Note that the
saved digest for the corresponding SIP request should be piggybacked
into its response.

Even if it receives the response code 432 Failed Response-

Authorization, the proxy server should finish the steps for verifying

the validness of this received response from the downstream node.
Syntax and Examples

1 Header Syntax

Four new SIP headers are introduced in this document. Responder,

Responder-Info, and Response-Authorization appear in the response.
Response-Authentication is eligible in the request.

Responder = "Responder" HCOLON responder-param

Responder-param = claimer-param *(SEMI verify-param)

claimer-param = "claimer" EQUAL (name-addr / addr-spec)
verify-param = "verify-method" EQUAL ("DAS" / token)

Note: token in verify-param can be extended to cover other
verification methods, such as AIB(See Appendix A in detail).
Responder-Info = "Responder-Info" HCOLON responder—-info-param
responder-info-param = LAQUOT absoluteURI RAQUOT

For DAS, the responder’s identity is the digest in the the Identity
header. This digest is generated by including the following elements
of the SIP response in a bit-exact string in this specified order.
O addr-spec in To

O addr-spec in From

O addr-spec of claimer field in Responder

O callid from Call-ID

Cao & Jennings Expires January 11, 2006 [Page 11]

Internet-Draft Response Identity and Authentication July 2005

O the digits and the method from CSeqg
O Date field

O body content of the message with the bits exactly as they are in
the message (in the ABNF for SIP, the message body) .

In summary, digest-string for Identity header in the SIP response is

n.n n.n

digest-string = addr-spec addr-spec
addr-spec ":" callid ":" 1*DIGIT SP method
":" SIP-Date ":" message-body

Similar to [3], this digest-string is hashed and signed with the
certificate for the domain. The mandatory procedure is
shalWithRSAEncryption as described in RFC 3371 with base64 encoding
as described in RFC 3548.

Here is one sample response from Bob in the above example:

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP pxl.source.com;branch=z9hG4bKnashds8
;received=101.37.45.98

Via: SIP/2.0/UDP px2.destination.com;branch=bfajk341k2
;jreceived=121.56.12.1

To: Bob <sip:bob@destination.com>;tag=a6c85cf634

From: Alice <sip:alicel@source.com>;tag=1928301774

Call-ID: a84b4c76e66710

Contact: <sip:bob@192.0.2.4>

CSeq: 314159 INVITE

Responder: claimer=bob@destination.com; verify-method=DAS

Responder-Info: https://www.destination.com/certificate

Identity: oiurw20984o0ijl2kfgfknrewgfhgahgl9843lufadsafafdag32r4189f

hafaaafi298r3398i32uip293gDFQgireu904328FQWlkafqroiewrjafaf

k189ahffahjf4289981

Content-Length: 0

[*Identity: needs to be recalculated]

Two new headers are introduced for CSRT:

Cao & Jennings Expires January 11, 2006 [Page 12]

Internet-Draft Response Identity and Authentication July 2005

Response-Authentication = "Response—Authentication"
HCOLON resp-authen-param

resp-authen-param = auth-method-param * (SEMI nonce-param)

auth-method-param = "method" EQUAL auth-method-enum

auth-method-eum = "DAS" / "SharedKey" / "PublicKey"
nonce-param = "nonce" EQUAL "nonce-value"
Response-Authorization = "digest" EQUAL resp-author-digest

Resp-author-digest = LDQUOT 32LHEX RDQUOT

For the digest generated in Response-Authorization, the digest-string
includes

O status code of the response

O addr-spec in To

O addr-spec in From

O addr-spec of claimer field in Responder

O method and nonce in Response-Authentication
O callid from Call-ID

O the digits and the method from CSeq

O Date field

O body content of the message with the bits exactly as they are in
the message (in the ABNF for SIP, the message body) .

In summary, digest-string for Identity header in the SIP response is

digest-string = status-code ":"
addr-spec ":" addr-spec addr-spec
auth-method-enum nonce-value ":"
callid ":" 1*DIGIT SP method ":" SIP-Date ":"
message-body

n.n n.on

The decrypted nonce plus this digest-string are hashed and signed
with the key based on the specified method. The mandatory procedure
is shalWithRSAEncryption as described in RFC 3371 with base64
encoding as described in RFC 3548.

Cao & Jennings Expires January 11, 2006 [Page 13]

Internet-Draft Response Identity and Authentication July 2005

Security Considerations

This document provides some security enhancements on SIP response
identity and response authentication.

There are some advantages for the proposed mechanisms in this
document. The new fields inside SIP response provide the needed
responder identity with authentication methods, and are backward
compatible with [1]. The mechanisms proposed for per-hop SIP
response authentication can be easily used on any hops, such as hops
between different domains, to prevent malicious attacks through SIP
responses over those hops. Furthermore, if each hop (or all the hops
with security concerns) is enhanced with these mechanisms, CRST can
be created to detect and prevent several kinds of malicious attacks
through SIP responses, and to guarantee the validness of SIP
response.

For example, if a rogue proxy can sniff the SIP requests from Proxy-1
to Proxy-2, it can spoof the addresses and URIs of Proxy-2 and send
the response back to Proxy-1 along with its own rogue domain
authentication service info, before Proxy-2’s response. Without the
proposed mechanisms, Proxy-1 and the caller of SIP requests will be
deceived by the response from the rogue proxy. This will allow the
rogue proxy to conduct attacks, such as redirecting the requests to
attack other targets for DoS attacks, redirecting the requests to
rogue users for information disclosure, and terminating the dialogs
for turning down SIP services.

With the mechanisms introduced in the document, Proxy-1 can detect
the faked responses from the rogue proxy by checking the digest in
Response-Authorization. These faked responses are dropped
immediately by Proxy-1 without any impact on the callers of SIP
requests.

Another example is to verify the response identity, which is
important in many scenarios. This document provides the responder
identity through the new header fields in SIP response, and the
mechanism for verifying this identity.

All the hops with security concerns should apply these mechanisms for
enhancing authentication for SIP response. If not, man-in-the-middle
attacks may be possible again through SIP response, just as before.

This document is based on some existing results for domain-based
authentication and certificate management (See [3, 4]). Therefore,
these mechanisms may be affected by the secure concerns for these
functional components.

Cao & Jennings Expires January 11, 2006 [Page 14]

Internet-Draft Response Identity and Authentication July 2005 Internet-Draft Response Identity and Authentication July 2005

As anonymous identity is a subject for future work, this document http://www.iana.org/assignments/sip-parameters.
leaves one open question about the exact impact of these mechanisms Response Code Number: 432
on anonymous identity. Default Reason Phrase: Bad Identity-Info

8. IANA Considerations
9. Acknowledgments
This document requests changes to the header and response-code sub-
registries of the SIP parameters IANA registry.

10. Appendix A. AIB used for SIP response identity
8.1 Header Field Names
The following example is used in this document to demonstrate the
This document specifies four new SIP headers: Responder, Responder- mechanisms in many sections:

Info, Response-Authentication and Response-Authorization. Their
syntax is given in Section 6. These headers are defined by the
following information, which is to be added to the header sub- UAC <——m—= > Proxy-1 <-——---—-— > Proxy-2 <--—--—- > UAS
registry under http://www.iana.org/assignments/sip-parameters. UAC: alice@source.com

Proxy-1: pxl@source.com

Proxy-2: px2@destination.com

Header Name: Responder UAS: bob@destination.com

Compact Form: (none)

Header Name: Responder-Info Alice sends an INVITE request to Bob. Proxy-2 receives the request
Compact Form: (none) and informs Alice of the response code 183 Session Progress, along
Header Name: Response-Authentication with two new header fields called Responder and Responder-Info:
Compact Form: (none)

Header Name: Response-Authorization Responder: claimer=px2@destination.com; verify-method=AIB
Compact Form: (none) Responder-Info: https://www.destination.com/certification

For AIB inside S/MIME, some headers including Responder are used as

8.2 431 ’"Failed Responder Identity Response Code the authenticated body inside S/MIME. It is up to the responder to
decide if end-to-end security is needed, which may trigger the
This document registers a new SIP response code which is described in encryption of AIB through the public key of the caller, i.e. Alice.
Section 3.1. It is used when the responder of the SIP response AIB is signed with responder’s private key to assure its identify.
cannot be verified successfully. This response code is defined by
the following information, which is to be added to the method and Assume that TLS is set up for each hop, including between Alice and
response-code sub-registry under Proxy-1 and between Proxy-1 and Proxy-2. The mechanism for handling
AIB inside S/MIME can be applied for handling the identity in this
http://www.iana.org/assignments/sip-parameters. scenario. Proxy-2 generates the SIP response of 183 Session
Response Code Number: 431 Progress, and Proxy-2 must insert its URI into Responder with the
Default Reason Phrase: Failed Responder Identity link to acquire its certification inside Responder-Info.

AIB may be generated by Proxy-2 without any encryption. After

8.3 432 ’'Failed Response Authorization Response Code verifying AIB for Proxy-2’s identify, Proxy-1 can propagate the same
info back to Alice. Then Alice can verify Responder by herself
This document registers a new SIP response code which is described in through AIB and Responder-Info.
Section 3.2. It is used when the expected Response-Authorization is
missing or doesn’t carry the correct digest. This response code is One variation for TLS is that AIB may be encrypted by Proxy-2 with
defined by the following information, which is to be added to the Proxy-1’s certificate. This requires Proxy-1 to decrypt the AIB and
method and response-code sub-registry under verify the identity of Proxy-2 . If the identity is proven

Cao & Jennings Expires January 11, 2006 [Page 15] Cao & Jennings Expires January 11, 2006 [Page 16

Internet-Draft Response Identity and Authentication July 2005 Internet-Draft Response Identity and Authentication July 2005

consistent, Proxy-1 may have to encrypt the AIB again by Alice’s —-unique-boundary-1

public key. Similarly, Alice can verify the identity of the Content-Type: multipart/signed;
responder. If the verification fails, Proxy-1 may decide what the protocol="application/pkcs7-signature";
right follow-up operations are. micalg=shal; boundary=boundary68

Content-Length: 742
In some scenarios for providing better secure operations, the proxies

may verify the identity of the responder. If the verification ——boundary68
indicates the unmatched SIP response identity, the proxies may Content-Type: message/sipfrag
replace the response code with the 431 Failed Responder Identity for Content-Disposition: aib; handling=optional

announcing the identity problem as early as possible.
To: Bob <sip:bobldestination.com>

If AIB is specified as the verifier-method inside Responder header, From: Alice <sip:alice@source.com>;tag=1928301774
AIB inside S/MIME is used to provide the digital signature of the SIP Call-ID: aB84b4c76e66710
response Identity. CSeqg: 314159 INVITE

Date: Thu, 21 Apr 2005 16:28:56 GMT
The headers used for this purpose should include the minimum set of Responder: claimer=px2@destination.com; verify-method=AIB
To, From, Call-ID, CSeq, Date, and Responder. Any additional headers
may be put into AIB by the responder. —-boundary68

Content-Type: application/pkcs7-signature; name=smime.p7s

The following example is to illustrate the response from Proxy-2. Content-Transfer-Encoding: base64
Proxy-2 adds its identity into AIB. Content-Disposition: attachment; filename=smime.p7s;

handling=required

SIP/2.0 100 Trying H77n8HHGTrfvbnj756tbBIHGAVQPfyF467GhIGEHEYT6vhJhjHT776tbBIHG4

Via: SIP/2.0/UDP pxl.source.com;branch=z9hG4bKnashds8 T63H77Tn8HHGghyHhHUujhJh756tbBOHGTrfvbnjTrvbnj756tbBIHG4AVQAT
;received=127.101.56.17 hJhjH776tbBIHG4VQbnj7567GhIGEfHEYT6ghyHhHUujpfyF40irDAFqre570

To: Bob <sip:bob@destination.com> AFAwgoireikf5287REW

From: Alice <sip:alice@source.com>;tag=1928301774

Call-ID: aB84b4c76e66710 --boundary42--

CSeqg: 314159 INVITE

Max-Forwards: 50 —-unique-boundary-1--

Date: Thu, 21 Apr 2005 16:28:56 GMT

Responder: claimer=px2@destination.com; verify-method=AIB [*digest needs to be recalculated for this message]

Responder-Info: https://www.destination.com/certification

Content-Type: multipart/mixed; boundary=unique-boundary-1 It is up to the responder to decide if end-to-end security is needed,

which may trigger the encryption of AIB through the public key of the
—-—unique-boundary-1 caller. 1In this case, only the caller can verify the signature of

the responder.
Content-Type: application/sdp

Content-Length: 147 11. References

v=0 11.1 Normative References

o=UserA 3569844526 3569844526 IN IP4 source.com

s=Session SDP [1] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
c=IN IP4 px2.destination.com Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
t=0 0 Session Initiation Protocol", RFC 3261, June 2002.

m=audio 61020 RTP/AVP 0

a=rtpmap:0 PCMU/8000 [2] Bradner, S., "Key words for use in RFCs to Indicate Requirement

Cao & Jennings Expires January 11, 2006 [Page 17] Cao & Jennings Expires January 11, 2006 [Page 18

Internet-Draft Response Identity and Authentication July 2005

Levels", BCP 14, RFC 2119, March 1997.

Peterson, J. and C. Jennings, "Enhancements for Authenticated
Identity Management in the Session Initiation Protocol (SIP)",
draft-ietf-sip-identity-05 (work in progress), May 2005.

Jennings, C. and J. Peterson, "Certificate Management Service
for The Session Initiation Protocol (SIP)",

draft-ietf-sipping-certs-01 (work in progress), February 2005.

Peterson, J., "Session Initiation Protocol (SIP) Authenticated
Identity Body (AIB) Format", RFC 3893, September 2004.

Metz, C., "OTP Extended Responses", RFC 2243, November 1997.
Informational References

Peterson, J., "A Privacy Mechanism for the Session Initiation
Protocol (SIP)", RFC 3323, November 2002.

Jennings, C., Peterson, J., and M. Watson, "Private Extensions
to the Session Initiation Protocol (SIP) for Asserted Identity
within Trusted Networks", RFC 3325, November 2002.

Schulzrinne, H., "The tel URI for Telephone Numbers", RFC 3966,
December 2004.

Authors’ Addresses

Feng Cao
Cisco Systems
170 West Tasman Drive

MS:

SJC-21/2

San Jose, CA 95134
USA

Email: fcaolcisco.com

Cao &

Jennings Expires January 11, 2006 [Page 19

Internet-Draft Response Identity and Authentication

Cullen Jennings

Cisco Systems

170 West Tasman Drive
MS: SJC-21/2

San Jose, CA 95134
USA

Phone: +1 408 902-3341
Email: fluffyQcisco.com

Cao & Jennings Expires January 11, 2006

July 2005

[Page 20]

Internet-Draft Response Identity and Authentication July 2005

Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.

Disclaimer of Validity

This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement
Copyright (C) The Internet Society (2005). This document is subject
to the rights, licenses and restrictions contained in BCP 78, and
except as set forth therein, the authors retain all their rights.
Acknowledgment

Funding for the RFC Editor function is currently provided by the
Internet Society.

Cao & Jennings Expires January 11, 2006 [Page 21]

SIP K. Ono
Internet-Draft S. Tachimoto
Expires: January 10, 2006 NTT Corporation

July 9, 2005

End-to-middle Security in the Session Initiation Protocol (SIP)
draft-ietf-sip-e2m-sec-00

Status of this Memo

By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware

have been or will be disclosed, and any of which he or she becomes
aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/lid-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on January 10, 2006.
Copyright Notice

Copyright (C) The Internet Society (2005).
Abstract

Some services provided by intermediaries depend on their ability to
inspect a message body in the Session Initiation Protocol (SIP).

When sensitive information is included in the message body, a SIP
User Agent (UA) needs to protect it from other intermediaries than
those that the UA agreed to disclose it to. This document proposes a
mechanism for securing information passed between an end user and
intermediaries using S/MIME. It also proposes mechanisms for a UA to
discover intermediaries which need to inspect an S/MIME-secured

Ono & Tachimoto Expires January 10, 2006 [Page 1

Internet-Draft End-to-middle security in SIP

July 2005

message body, or to receive the message body with data integrity.

Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL"
document are to be interpreted as described in RFC-2119 [1].

Table of Contents

1. Introduction
2. Generating S/MIME secured Message Body
2.1 S/MIME-secured Message Body for Confldentlallty
2.2 S/MIME-secured Message Body for Data Integrity
3. Indicating the Target Content Coe e e e
4. Discovering the Security Policies of Proxy Servers
5. Behavior of UAs and Proxy Servers

5.1 UAC Behavior
5.2 UAS Behavior
5.3 Proxy Behavior
6. Proxy-Required-Body Header Fleld Use
7. Message Examples . .
7.1 Message Examples of End to Mlddle Confldentlallty
7.2 Message Examples of End-to-Middle Integrity
8. Security Considerations e
8.1 Impersonating a Proxy Server
8.2 Tampering with a Message Body . .
8.3 Tampering with the Label of the Target Content
9. IANA Considerations e e e
10. Acknowledgments
11. References
11.1 Normative References
11.2 Informative References
Authors’ Addresses .
Intellectual Property and Copyrlght Statements

Ono & Tachimoto Expires January 10, 2006

in this

0 0 1 1 Ul Ul W WwWw

[Page 2]

Internet-Draft

1.

2.

2.

Ono & Tachimoto

End-to-middle security in SIP July 2005

Introduction

When a UA requires services provided by intermediaries that depend on
the message body in request/response messages, end-to-end
confidentiality currently has to be disabled. This problem is
pointed out in Section 23 of [2]. Since such intermediaries are not
always adjacent to the UA, this situation requires security between
the UA and the intermediaries for the message body. We call this
"end-to-middle security", where by "end" we mean a UA and by "middle"
we mean an intermediary, typically a proxy server.

End-to-middle security, as well as end-to-end security, consists of
peer authentication, data integrity, and data confidentiality. Peer
authentication is required to achieve data integrity and data
confidentiality respectively. The mechanisms of end-to-middle peer
authentication are established with pre-existing mechanisms such as
HTTP Digest authentication [7]. Therefore, this document focuses on
mechanisms for providing data confidentiality and integrity for end-
to-middle security to meet the requirements discussed in [3].

The proposed mechanisms are based on S/MIME [4], since the major
requirement is to have little impact on standardized end-to-end
security mechanisms, the way of handling S/MIME-secure messages. The
mechanisms consist of generating S/MIME-secured message body and
indicating the target message body for a proxy server selected by the
UA. 1In addition, this document describes a mechanism for a UA to
discover the intermediary which needs to inspect an S/MIME-secured
message body, or to receive the message body with data integrity.

Generating S/MIME-secured Message Body
1 S/MIME-secured Message Body for Confidentiality

For end-to-middle confidentiality, a UA MUST generate S/MIME CMS [5]
EnvelopedData. Prior to generating it, a UA needs to identify the
target proxy servers and obtain their credentials, such as their
public key certificates or shared secrets. One method is shown in
Section 4.

The structure of the S/MIME CMS EnvelopedData contains encrypted data
specified in the "encryptedContentInfo" field and its recipient list
specified in the "recipientInfos" field. The encrypted data is
encrypted with a content-encryption-key (CEK) and the recipient list
contains the CEKs encrypted with different key-encryption-keys
(KEKs), one for each recipient. The KEKs are either the public keys
of each recipient or the shared keys between the UA and each
recipient.

Expires January 10, 2006 [Page 3]

Internet-Draft

Ono & Tachimoto

End-to-middle security in SIP July 2005

If the encrypted data is destined for a proxy server, the recipient
list MUST contain only the proxy server. If the same encrypted data
is destined for multiple proxy servers, or is shared with the user
agent server (UAS) and proxy servers, the recipient list MUST be
addressed to the proxy servers, or the UAS and the proxy servers. If
there are multiple pieces encrypted data destined for each proxy
server, the recipient list in each piece of encrypted data MUST
contain the relevant proxy server. If a piece of encrypted data is
destined for a proxy server and another piece of encrypted data for
the UAS, the recipient of each piece of encrypted data MUST be each
entity respectively. In order to concatenate more than one CMS
EnvelopedData, the user agent client (UAC) MUST generate a multipart
MIME body.

For example, a UA uses this mechanism when keying materials, such as
keys used for Secure RTP (SRTP), are included in the SDP[8].

Although a proxy server needs to view SDP (i.e., for a firewall
traversal service), the UA does not want to show the keying materials
to the proxy server. 1In this case, one CMS EnvelopedData contains
the SDP, that includes keying materials of the SRTP stream, encrypted
for the UA. The other CMS EnvelopedData contains the SDP, that does
not include the keying materials, encrypted for the proxy server.

As described in [2], proxy servers are prohibited from deleting any
message body. Even if a UAC send a piece of encrypted data only to a
proxy server, the UAS receives it and cannot decrypt it. 1In order to
avoid unnecessary error conditions in the UAS, the UAC MUST set the
value "optional" in the handling parameter of the "Content-
Disposition" MIME header for the message body. If the multipart MIME
body consists of encrypted MIME bodies with the value "optional", the
"Content-Disposition" MIME header of the multipart MIME body MUST
also contain the value "optional"™ in the handling parameter. If the
multipart MIME body contains a body with the value "required" and
another body with the value "optional", the multipart MIME body MUST
have either the value "required" in the handling parameter of the
"Content-Disposition" MIME header, or no handling parameter, since
the default value is "required" as specified in [2]. The UAS SHOULD
NOT try to decrypt encrypted data that has the value "optional".

.2 S/MIME-secured Message Body for Data Integrity

For end-to-middle data integrity, a UA SHOULD generate either S/MIME
CMS SignedData. A UA MAY generate a signature in the SIP Identity
[9] header, if the UA has its own public and private key. These
mechanisms allow any entity to verify the data integrity, if it is
able to access the UA’s public key. This is why the same mechanisms
can be used in both end-to-middle and end-to-end data integrity.

Expires January 10, 2006 [Page 4]

Internet-Draft End-to-middle security in SIP July 2005

3.

Ono & Tachimoto

Note: There are other mechanisms which can provide data integrity,
such as S/MIME CMS AuthenticatedData, which requires that a UA
obtains the credential of the recipient, that is a proxy server,
in advance. However, this is not used in [2] and require a
mechanism to securely transmit the credential from the proxy
server to the UA. Thus, this document does not describe the use
of S/MIME CMS AuthenticatedData.

Indicating the Target Content

A UA needs a way to indicate content that it expects to be viewed by
a proxy server, in order for the proxy server to easily determine
whether to process a MIME body and if so, which part. To meet this
requirement, the UA SHOULD set a label to indicate the proxy server
and its target content using a new SIP header, "Proxy-Required-Body".
This header consists of one or more proxy servers’ hostnames and one
or more "content-id" parameter(s) pointing to the "Content-ID" MIME
header placed in the target body.

Note: There were three other options to label a body: a new SIP
parameter to an existing SIP header, a new MIME header, or a new
parameter to an existing MIME header.

1) Using a new parameter to Route header. Since a proxy server
views this header when forwarding a request message, it seems to
be a reasonable option. However, it cannot work with strict
routing.

2) Using a new MIME header, "Content-Target", as proposed in a
previous version of this draft. Since this option is not
necessary as a generic mechanism of MIME, it is not preferred.

3) Using a new MIME parameter to "Content-Disposition". The same
reason as above.

If a UA needs to label the encrypted data, it SHOULD set the "Proxy-
Required-Body" SIP header that contains the address of the proxy
server and "content-id" parameter indicating the target S/MIME CMS
EnvelopedData.

If a UA needs to label the signed data, it SHOULD set the "Proxy-
Required-Body" SIP header that contains the address of the server and
"content-id" parameter indicating the S/MIME CMS SignedData. Note
that the signature for part of a MIME body alone is meaningless in
providing data integrity.

Discovering the Security Policies of Proxy Servers
A discovery mechanism for security policies of proxy servers is

needed when a UA does not statically know which proxy servers or
domains have such policies. Security policies require disclosure of

Expires January 10, 2006 [Page 5]

Ono & Tachimoto

Internet-Draft End-to-middle security in SIP July 2005

data and/or verification in order to provide some services which
needs UA’s compliance.

There are two ways in which a UA can learn the policies of the proxy
servers. One is by receiving an error response. A UAC can learn the
policies in this way. However, it is not applicable to the UAS
because there is no way to react a response message. Alternatively,
a policy server can provide a UAC and the UAS a package mentioning
proxy’s policy as described in [10]. When a proxy server needs to
inspect the message body contained in the response, it needs to learn
the policies from a policy server before sending the response.

When the proxy server receives a request that can not be accepted due
to its condition, the proxy server MUST reject with an error
response. If the request contains encrypted data and the proxy
server cannot view the message body that has to be viewed in order to
proceed, the proxy server MUST reject with a 493 (Undecipherable)
error response. The proxy’s public key certificate and Content-Type
to be viewed SHOULD be contained with the error response. The proxy
public key certificate SHOULD be set as an "application/pkix-cert"
body. The required Content-Type SHOULD be set in the Warning header
with a new warn-code, 380.

If a digital signature is not attached to the message body in the
request and the proxy server requires the integrity check, the proxy
server MUST reject with a 495 (Signature Required) error response.
This error response does not contain signature required Content-Type,
since the attached signature to the whole body is always required.

When a proxy server requires both disclosure and an integrity check
of the message body in a request message and the message satisfies
neither, the proxy server SHOULD send one error response at a time.
When a proxy server cannot decrypt the message body in a request
message and does not see if the signature is placed inside, a proxy
server SHOULD send an error response only for requesting disclosure.
After receiving a request message including encrypted data destined
for the proxy server, it finds out whether the message has a
signature attached and SHOULD send an error response for requesting
signature when the message lacks it.

Note: A 495 (Signature Required) response is not only generated by
a proxy server, but also by the UAS.

This discovery mechanism requires two more messages’ exchange for an
error condition per each proxy server in the signaling path in order
to establish a session between UAs. Since this causes a delay in
session establishment, it is desirable that the UAs learn the
security policies of the proxy servers in advance.

Expires January 10, 2006 [Page 6]

Internet-Draft End-to-middle security in SIP July 2005

Behavior of UAs and Proxy Servers

We describe here an example of the behavior of UAs and proxy servers
in a model in which a proxy server that provides a logging service
for instant messages exists in a signaling path as shown in Figure 1.

UA #1 Proxy #1 Proxy #2 UA #2
w/Logging function

C : Content that UA #1 allows the entities to inspect
[C]: Content that UA #1 prevents the entity from inspecting

Figure 1: Deployment example

.1 UAC Behavior

When a UAC sends a MESSAGE [11] request including encrypted message
content for end-to-end and end-to-middle confidentiality, it MUST use
S/MIME CMS EnvelopedData. If UA #1 is unaware of the services
provided by Proxy #1 that requires inspecting the message body, UA #1
will MAY get a 493 (Undecipherable) error response and the public key
of Proxy #1. After getting the error response, UA #1 MUST use S/MIME
CMS EnvelopedData body for UA #2 and Proxy #1. UA #1 SHOULD specify
the hostname of Proxy #1 and Content-ID of the S/MIME CMS
EnvelopedData to be decrypted by Proxy #1 in the "Proxy-Required-
Body" SIP header.

When a UAC sends a request message of which message body needs end-
to-middle integrity, it SHOULD use S/MIME CMS SignedData to attach a
digital signature. If UA #1 does not know the service of Proxy #1
that requires verifying the message body, UA #1 MAY get a 495
(Signature Required) error response. After getting the error
response, UA #1 SHOULD generate the CMS SignedData to attach a
signature by computing with its own private key. UA #1 SHOULD
specify the hostname of Proxy #1 and Content-ID of the CMS SignedData
to be validated by Proxy #1 in the "Proxy-Required-Body" SIP header.

When a UAC sends a request and needs both end-to-middle
confidentiality and integrity for the message body, it SHOULD first
attach a digital signature, and then encrypted the message body. In
this example, UA #1 SHOULD generate S/MIME CMS SignedData for the
contents, and then generate S/MIME CMS EnvelovedData body to encrypt
the CMS SignedData. UA#1 SHOULD specify the hostname of Proxy#l and
Content-IDs of the CMS SignedData and the CMS EnvelopedData destined

Ono & Tachimoto Expires January 10, 2006 [Page 7

Internet-Draft End-to-middle security in SIP July 2005

for Proxy #1 in the "Proxy-Required-Body".

When a UAC generates S/MIME CMS EnvelopedData, the UAC MAY use the
CEK reuse mechanism [12][13]. The CEK reuse mechanism has a benefit
that enables UAs to efficiently encrypt/decrypt data in subsequent
messages. The UAC MAY use the "unprotectedAttrs" field to stipulate
reuse of the CEK and indicate its identifier. When the UAC reuses
the CEK in the previous request as the KEK, it generates CMS
EnvelopedData with the type "KEKRecipientInfo" of "RecipientInfo"
attribute.

.2 UAS Behavior

When the UAS receives a request that uses S/MIME, it first decrypts
and/or validates the S/MIME bodies as usual. In particular, when the
CMS EnvelopedData body of the request contains the "unprotectedAttrs"
attribute specifying reuse of the CEK, the UAS MAY keep the CEK with
the identifier specified in the "unprotectedAttrs" attribute.

When the UAS responds with a 200 OK, the same type of S/MIME CMS data
is RECOMMENDED to be used. For example, if the UAS receives an
INVITE request in which the SDP is encrypted by using the CMS
EnvelopedData, it is RECOMMENDED to respond with a 200 OK response in
which the SDP is encrypted by using the CMS EnvelopedData body. If
the UAS receives an INVITE request which is attached a digital
signature to the SDP by using the CMS SignedData, it is RECOMMENDED
to respond with a 200 OK response which is attached a signature to
the SDP by using the CMS SignedData. In the above example, however,
a 200 OK response to the MESSAGE request does not need to use the
same type of S/MIME CMS data since the response does not contain any
MIME body.

Even when the UAS receives a request that does not use S/MIME, the
UAS sometimes needs end-to-end and end-to-middle confidentiality for
the message body and/or headers in a response. In this case, the UAS
MUST use CMS EnvelopedData to encrypt it. When the UAS sends a
response and needs end-to-end and end-to-middle integrity for the
message body and/or headers, it SHOULD use CMS SignedData to attach a
digital signature. This is not different from how a UAC operates as
described in Section 5.1.

.3 Proxy Behavior

When a proxy server supporting this mechanism receives a message, it
MUST inspect the "Proxy-Required-Body" header. If the header
includes the processing server’s own hostname, the proxy server MUST
inspect the body specified by the Content-ID. When the specified
body is CMS EnvelopedData, the proxy server MUST inspect it and try

Ono & Tachimoto Expires January 10, 2006 [Page 8

Internet-Draft End-to-middle security in SIP July 2005

to decrypt the "recipientInfos" field. If the header does not
include the server’s own name, nor the header exists, the proxy
server MAY view the message body.

If there is a piece of encrypted data for the proxy, the proxy server
will succeed in decryption using the "recipientInfos" field. If the
proxy server fails to decrypt the message body that is required to
view, i1t MUST respond with a 493 (Undecipherable) response if it is a
request, otherwise any existing dialog MUST be terminated.

If the proxy server succeeds in this decryption, it MAY inspect the
"unprotectedAttrs" field of the CMS EnvelopedData body. If the
attribute gives the key’s identifier, the proxy server MAY keep the
CEK with its identifier until the lifetime of the CEK expires. If it
receives subsequent messages within the lifetime, it MAY try to
decrypt the type "KEKRecipientInfo" of the "RecipientInfo" attribute
by using this CEK.

When the specified content is CMS SignedData body, the proxy server
MUST inspect it and validate the digital signature. If the
verification fails, the proxy server SHOULD reject the subsequent
procedure and respond with a 495 (Signature Required) response if the
message is a request, otherwise any existing dialog MAY be
terminated.

When the proxy server forwards the request, it modifies the routing
headers as it normally does, but does not modify the message body.
The proxy server MAY delete the "Proxy-Required-Body" header that
contains its own hostname.

When a provider operating the proxy server does not allow any
information related to its security policies to be revealed to the
proxy server serving the recipient UA, the proxy server deletes the
"Proxy-Required-Body" header. However, when a request message is
transmitted to the proxy server via a proxy server operated by
another provider, there is no way to conceal the header from the
other proxy servers.

If a proxy does not support this mechanism and receives a message
with the "Proxy-Required-Body" header, the proxy MUST ignore the
header and operate as usual.

Proxy-Required-Body Header Field Use
The following syntax specification uses the augmented Backus-Naur

Form (BNF) as described in RFC-2234 [6]. The new header "Proxy-
Required-Body" is defined as a SIP header.

Ono & Tachimoto Expires January 10, 2006 [Page 9

Internet-Draft End-to-middle security in SIP July 2005
Proxy-Required-Body = "Proxy-Required-Body" HCOLON required-proxy
SEMI target-body
required-proxy = host
target-body = cid-param * (COMMA cid-param)
cid-param = "cid" EQUAL content-id
content-id = LDQUOT dot-atom "@" (dot-atom / host) RDQUOT
dot—-atom = atom *("." atom)
atom = 1*(alphanum / n_mn / ll!ll / ll%!l / mixn /

LA A VA A L A e)

Information about the use of headers in relation to SIP methods and
proxy processing is summarized in Table 1.

Header field where proxy ACK BYE CAN INV OPT REG
Proxy-Required-Body R dr - o - o o o
Proxy-Required-Body 100-699 dr - o - o o o
Header field where proxy SUB NOT PRK IFO UPD MSG
Proxy-Required-Body R dr o o - o o o
Proxy-Required-Body 100-699 dr o o - o o o

Table 1: Summary of header field use

The "where" column gives the request and response types in which

the header field can be used. The values in the "where" column

are as follows:

* R: The header field may appear in requests

* 100-699: A numeral range indicates response codes with which
the header field can be used.

The "proxy" column gives the operations a proxy may perform on the

header field:

* d: A proxy can delete a header field value.

* r: A proxy must be able to read the header field, so it cannot
be encrypted.

The next columns relate to the presence of a header field in a

method:
* 0: The header field is optional.
* —: The header field is not applicable.

Message Examples

The following examples illustrate the use of the mechanism defined in
the previous sections.

.1 Message Examples of End-to-Middle Confidentiality

In the following example, a UAC needs message content in a MESSAGE

Ono & Tachimoto Expires January 10, 2006 [Page 10]

Internet-Draft End-to-middle security in SIP July 2005

request to be confidential and it allows a proxy server to view the
message body. It also needs to reuse the CEK in the subsequent
request messages. Even though the Content-Length has no digit, the
appropriate length is to be set. In the example message below, the
text with the box of asterisks ("*") is encrypted:

MESSAGE alicelatlanta.example.com --> ssl.atlanta.example.com

MESSAGE sip:bob@biloxi.example.com SIP/2.0

Via: SIP/2.0/TCP client.atlanta.example.com:5060;branch=z9hG4bK74bf9

Max-Forwards: 70

Route: <sip:ssl.atlanta.example.com;lr>

From: Alice <sip:alice@atlanta.example.com>;tag=9fxced76sl

To: Bob <sip:bob@biloxi.example.com>

Call-ID: 3848276298220188511@atlanta.example.com

CSeqg: 1 MESSAGE

Date: Fri, 20 June 2003 13:02:03 GMT

Proxy-Required-Body: ssl.atlanta.example.com;
cid=1234@atlanta.example.com

Content-Type: application/pkcs7-mime; smime-type=enveloped-data;
name=smime.p7m

Content-Transfer-Encoding: binary

Content-ID: 1234@atlanta.example.com

Content-Disposition: attachment; filename=smime.p7m;handling=required

Content-Length:

B R R R

(encryptedContentInfo)
Content-Type: text/plain
Content-Length:

Hello.
This is confidential.

(recipientInfos)
RecipientInfo[0] for ssl.atlanta.example.com public key
RecipientInfo[l] for Bob’s public key

(unprotectedAttrs)
CEKReference

*
*
*
*
*
*
*
*
*
*
*
*
*
*
K ok Kk ok ok Kk ok Kk ok Kk ko kK ok Kk ok ok R ok ok ok ok ok Kk ok ok ok Kk Kk ok k ok kK ok ok ok kK ok ok ok ok Kk Kk ok ok ok ok ok Kk

*
*
*
*
*
*
*
*
*
*
*
*
*
*

If the proxy server successfully views the message body, the UAC
receives a 200 OK from the UAS normally. However, if a proxy server
fails to view the message body, the UAC receives a 493

Ono & Tachimoto Expires January 10, 2006 [Page 11]

Internet-Draft End-to-middle security in SIP July 2005

(Undecipherable) error response from the proxy server, as follows:

493 Undecipherable alice@atlanta.example.com <--
ssl.atlanta.example.com

SIP/2.0 493 Undeciperable

Warning: 380 ssl.atlanta.example.com "Required to view ’text/plain’"
Via: SIP/2.0/TCP client.atlanta.example.com:5060;branch=z9hG4bK74bf9
;jreceived=192.0.2.101

From: Alice <sip:alice@atlanta.example.com>;tag=9fxced76sl

To: Bob <sip:bob@biloxi.example.com>;tag=8321234356

Call-ID: 3848276298220188511@atlanta.example.com

CSeqg: 1 MESSAGE

Content-Type: application/pkix-cert

Content-Length:

<certificate>

In the following example, a UA needs the SDP in an INVITE request to
be confidential and it allows a proxy server to view the SDP. It
also needs to reuse the CEK of the encrypted data in the subsequent
request messages.

Ono & Tachimoto Expires January 10, 2006 [Page 12]

Internet-Draft End-to-middle security in SIP July 2005

INVITE alice@atlanta.example.com —--> ssl.atlanta.example.com

INVITE sip:bob@biloxi.example.com SIP/2.0

Via: SIP/2.0/TCP client.atlanta.example.com:5060;branch=z9hG4bK74bf9

Max-Forwards: 70

From: Alice <sip:alice@atlanta.example.com>;tag=9fxced76sl

To: Bob <sip:bob@biloxi.example.com>

Call-ID: 3848276298220188511@atlanta.example.com

CSeqg: 1 INVITE

Date: Fri, 20 June 2003 13:02:03 GMT

Contact: <sip:alice@client.atlanta.example.com;transport=tcp>

Proxy-Required-Body: ssl.atlanta.example.com;
cid=1234@atlanta.example.com

Content-Type: application/pkcs7-mime; smime-type=enveloped-data;
name=smime.p7m

Content-Transfer-Encoding: binary

Content-ID: 1234fatlanta.example.com

Content-Disposition: attachment; filename=smime.p7m;handling=required

Content-Length:

hhkhkkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhhkhhkhkhkhhkhkhkhkhhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhhkhkhkhkhkkhkkkhkkhkkkkx
(encryptedContentInfo) *
Content-Type: application/sdp
Content-Length: 151

* ook ok ok

v=0
o=alice 2890844526 2890844526 IN IP4 client.atlanta.example.com*
s=—

c=IN IP4 192.0.2.101

t=0 0

m=audio 49172 RTP/AVP 0

a=rtpmap:0 PCMU/8000

RecipientInfo[0] for ssl.atlanta.example.com public key
RecipientInfo[l] for Bob’s public key

(unprotectedAttrs
CEKReference

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
B R R R

*
*
*
*
*
*
(recipientInfos) *
*
*
*
*
*
*

When the proxy server successfully views the SDP, and the UAS
responds with a 200 OK. The 200 OK is to be encrypted as follows:

Ono & Tachimoto Expires January 10, 2006 [Page 13]

Internet-Draft End-to-middle security in SIP July 2005

200 OK alice@atlanta.example.com <-- ssl.atlanta.example.com

SIP/2.0 200 OK

Via: SIP/2.0/TCP client.atlanta.example.com:5060;branch=z9hG4bK74bf9
;received=192.0.2.101

From: Alice <sip:alice@atlanta.example.com>;tag=9fxced76sl

To: Bob <sip:bob@biloxi.example.com>;tag=8321234356

Call-ID: 3848276298220188511@atlanta.example.com

CSeqg: 1 INVITE

Contact: <sip:bob@client.biloxi.example.com;transport=tcp>

Content-Type: application/pkcs7-mime; smime-type=enveloped-data;

name=smime.p7m
Content-Transfer-Encoding: binary
Content-ID: 1234@atlanta.example.com

LR EE RS SRS SRS SRS EE SRS SRS E SRR R SRR SRS RS E SRR EREEEEEEEEEEEEES]
(encryptedContentInfo) *
Content-Type: application/sdp *
Content-Length: 147 *

*
v=0 *

o=alice 2890844526 2890844526 IN IP4 client.atlanta.example.com*
s=— *
c=IN IP4 192.0.2.201
t=0 0

m=audio 3456 RTP/AVP 0
a=rtpmap:0 PCMU/8000

(recipientInfos)
RecipientInfo[0] for Alice’s public key

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
B R R R R

*
*
*
*
*
*
*
*

7.2 Message Examples of End-to-Middle Integrity

In the following example, a UA needs the integrity of message content
in a MESSAGE request to be validated by a proxy server before it
views message content. Even though the Content-Length has no digit,
the appropriate length is to be set.

Ono & Tachimoto Expires January 10, 2006 [Page 14]

Internet-Draft

Ono & Tachimoto

End-to-middle security in SIP July 2005

MESSAGE alice@atlanta.example.com --> ssl.atlanta.example.com

MESSAGE sip:bob@biloxi.example.com SIP/2.0

Via: SIP/2.0/TCP client.atlanta.example.com:5060;branch=z9hG4bK74bf9

Max-Forwards: 70

Route: <sip:ssl.atlanta.example.com;lr>

From: Alice <sip:alice@atlanta.example.com>;tag=9fxced76sl

To: Bob <sip:boblbiloxi.example.com>

Call-ID: 3848276298220188511@atlanta.example.com

CSeq: 1 MESSAGE

Date: Fri, 20 June 2003 13:02:03 GMT

Proxy-Required-Body: ssl.atlanta.example.com;

cid=1234@atlanta.example.com

Content-Type: multipart/signed;protocol="application/pkcs7-signature"
;micalg=shal;boundary=boundaryl

Content-Length:

—-boundaryl
Content-Type: text/plain
Content-Length:

Hello.

This is protected with the signature.

—-boundaryl

Content-Type: application/pkcs7-signature; name=smime.p7s
Content-Transfer-Encoding: binary
Content-ID:1234Qatlanta.example.com

Content-Disposition: attachment;
filename=smime.p7s;handling=required

[binary datal
—-boundaryl--

If the proxy server successfully validates the integrity of the
message body, the UAC normally receives a 200 OK from the UAS.
However, 1f a proxy server does not receive a signature for the whole
message body, the UAC receives a 495 (Signature Required) error
response from the proxy server, as follows:

Expires January 10, 2006 [Page 15]

Internet-Draft

8.

8.

8.

Ono & Tachimoto

End-to-middle security in SIP July 2005

495 Signature Required alicelfatlanta.example.com <--
ssl.atlanta.example.com

SIP/2.0 495 Signature Required

Via: SIP/2.0/TCP client.atlanta.example.com:5060;branch=z9hG4bK74bf9
jreceived=192.0.2.101

From: Alice <sip:alice@atlanta.example.com>;tag=9fxced76sl

To: Bob <sip:bob@biloxi.example.com>;tag=8321234356

Call-ID: 3848276298220188511@atlanta.example.com

CSeq: 1 MESSAGE

Content-Length: 0

Security Considerations
1 Impersonating a Proxy Server

In the discovery mechanism in Section 4, a UA receives a 493
(Undecipherable) error response with the public key certificate of
the proxy server requesting the disclosure of the message body. The
public key certificate in the error response is vulnerable to be
forged by a malicious user.

To make sure that the response is sent by a proper proxy server, a UA
needs to authenticate the response. Since the UA is not always
adjacent to the proxy server, the UA cannot directly authenticate the
proxy server by security mechanisms of the transport layer or the
below. A UA SHOULD verify the chains to a trusted certificate
authority of the public key certificate.

2 Tampering with a Message Body

This document describes a mechanism to encrypt data for multiple
recipients, such as multiple proxy servers, or a recipient UA and
proxy servers. A piece of encrypted data is decipherable and
vulnerable to tampering by proxy servers at the previous hops.

In order to prevent such tampering, the UA SHOULD protect the data
integrity before encryption, when the encrypted data is meant to be
shared with multiple proxy servers, or to be shared with the UAS and
selected proxy servers. The UA SHOULD generate S/MIME CMS SignedData
and then SHOULD generate the EnvelopedData to encrypt attached data
with a digital signature. The recipient entity SHOULD verify the
signature to see if the encrypted data has been modified after
decryption by an entity listed in the "recipientInfos" field.

Expires January 10, 2006 [Page 16

Internet-Draft

8.

10.

11.

11.

Ono & Tachimoto

End-to-middle security in SIP July 2005

3 Tampering with the Label of the Target Content

This document also describes a new SIP header for labeling a message
body for a proxy server. If a malicious user or proxy server
modified/added/deleted the label, the specified message body is not
inspected by the specified proxy server, and some services requiring
its content can not be provided. Or a proxy server will conduct an
unnecessary processing on message bodies such as unpacking MIME
structure, and/or signature verification. This is a possible cause
for a Denial-of-Services attack to a proxy server.

To prevent such attacks, data integrity for the label is needed. UAs
and proxy servers SHOULD use TLS mechanism to communicate with each
other. Since a proxy server trusted to provide SIP routing is
basically trusted to process SIP headers other than those related to
routing, hop-by-hop security is reasonable to protect the label. 1In
order to further protect the integrity of the label, UAs MAY generate
a "message/sipfrag" body and attach a digital signature for the whole
body.

IANA Considerations

This document defines a new SIP header, "Proxy-Required-Body", of
which the syntax is shown in Section 6. This document also defines a
new SIP response-code, 495 "Signature Required", and a new Warn-code,
380 "Required to view Content-Type", as described in Section 4.

Acknowledgments
Thanks to Rohan Mahy and Cullen Jennings for their initial support of
this concept and to many people for useful comments, especially Jon
Peterson, Jonathan Rosenberg, Eric Burger, and Russ Housely.
References

1 Normative References

[1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", RFC 2119, BCP 14, March 1997.

[2] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
Session Initiation Protocol", RFC 3261, June 2002.

[3] Ono, K. and S. Tachimoto, "Requirements for end-to-middle
security in the Session Initiation Protocol (SIP)",
draft-ietf-sipping-e2m-sec-reqgs-06 (work in progress),
March 2005.

Expires January 10, 2006 [Page 17]

Internet-Draft

[4] Ramsdell, B., "Secure/Multipurpose Internet Mail Extensions

(S/MIME) Version 3.1 Certificate Handling", RFC 3850, July 2004.

[5] Housley, R., "Cryptographic Message Syntax", RFC 2630,
June 1999.

[6] Crocker, D. and P. Overell, "Augmented BNF for Syntax
Specifications: ABNF", RFC 2234, November 1997.

11.2 Informative References

[7] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
Leach, P., Luotonen, A., and L. Stewart, "HTTP Authentication:
Basic and Digest Access Authentication", RFC 2617, June 1999.

[8] Andreasen, F., Baugher, M., and D. Wing, "Session Description
Protocol Security Descriptions for Media Streams",
draft-ietf-mmusic-sdescriptions-11 (work in progress),

June 2005.

[9] Peterson, J. and C. Jennings, "Enhancements for Authenticated

Identity Management in the Session Initiation Protocol (SIP)",

draft-ietf-sip-identity-05 (work in progress), May 2005.

[10] Hilt, V., Camarillo, G., and J. Rosenberg, "Session Initiation
Protocol (SIP) Session Policies - Document Format and Session-
Independent Delivery Mechanism",
draft-ietf-sipping-session-indep-policy-02 (work in progress),
February 2005.

[11] Campbell, Ed., B., Rosenberg, J., Schulzrinne, H., Huitema, C.,
and D. Gurle, "Session Initiation Protocol (SIP) Extension for
Instant Messaging", RFC 3428, December 2002.

[12] Farrell, S. and S. Turner, "Reuse of CMS Content Encryption
Keys", RFC 3185, October 2001.

[13] Ono, K. and S. Tachimoto, "Key reuse in S/MIME for SIP",
draft-ono-sipping-keyreuse-smime-00 (work in progress),
February 2004.

[14] Sparks, R., "Internet Media Type message/sipfrag", RFC 3420,
November 2002.

Ono & Tachimoto Expires January 10, 2006 [Page 18]

End-to-middle security in SIP July 2005

Internet-Draft End-to-middle security in SIP

Authors’ Addresses

Kumiko Ono

Network Service Systems Laboratories, NTT Corporation
Musashino-shi, Tokyo 180-8585

Japan

Email: ono.kumiko@lab.ntt.co.jp

Shinya Tachimoto

Network Service Systems Laboratories, NTT Corporation
Musashino-shi, Tokyo 180-8585

Japan

Email: tachimoto.shinya@lab.ntt.co.jp

Ono & Tachimoto Expires January 10, 2006

July 2005

[Page 19]

Internet-Draft End-to-middle security in SIP July 2005

Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.

Disclaimer of Validity

This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

Copyright (C) The Internet Society (2005). This document is subject
to the rights, licenses and restrictions contained in BCP 78, and
except as set forth therein, the authors retain all their rights.

Acknowledgment

Funding for the RFC Editor function is currently provided by the
Internet Society.

Ono & Tachimoto Expires January 10, 2006 [Page 20]

SIP J. Rosenberg
Internet-Draft Cisco Systems
Expires: January 15, 2006 July 14, 2005

Obtaining and Using Globally Routable User Agent (UA) URIs (GRUU) in the
Session Initiation Protocol (SIP)
draft-ietf-sip-gruu-04

Status of this Memo

By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware

have been or will be disclosed, and any of which he or she becomes
aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/lid-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on January 15, 2006.

Copyright Notice
Copyright (C) The Internet Society (2005).

Abstract
Several applications of the Session Initiation Protocol (SIP) require
a user agent (UA) to construct and distribute a URI which can be used
by anyone on the Internet to route a call to that specific UA
instance. A URI which routes to a specific UA instance is called a
Globally Routable UA URI (GRUU). This document describes an

extension to SIP for obtaining a GRUU from a server, and for
communicating a GRUU to a peer within a dialog.

Rosenberg Expires January 15, 2006 [Page 1

Internet-Draft GRUU Mechanism

Table of Contents

Introduction
Terminology .
Defining a GRUU
Use Cases
4.1 REFER
.2 Conferencing
4.3 Presence .
5. Overview of Operatlon
6. Creation of a GRUU
7. Obtaining a GRUU
1 Through Reglstratlons
7.1.1 User Agent Behavior
7.1.2 Registrar Behavior
2 Administratively
8. Using the GRUU
1
2
3
4

Sw N

S

.1
.1

Sending a Message Contalnlng a GRUU
Sending a Message to a GRUU .
Receiving a Request Sent to a GRUU
Proxy Behavior .

8.4.1 Request Targetlng

8.4.2 Record Routing

9. The opaque SIP URI Parameter

@ 0 0

10. Grammar
11. Requirements .
12. Example Call Flow
13. Security Considerations
14. IANA Considerations
14.1 Header Field Parameter
14.2 URI Parameters
14.3 Media Feature Tag
14.4 SIP Option Tag
15. Acknowledgements

16. References
16.1 Normative References
16.2 Informative References
Author’s Address e
A. Example GRUU Constructlon Algorithms
A.l Instance ID in opaque URI Parameter
A.2 Encrypted Instance ID and AOR .
Intellectual Property and Copyright Statements

Rosenberg Expires January 15, 2006

July 2005

dO oo s W

[Page 2]

Internet-Draft GRUU Mechanism July 2005

1.

Introduction

The Session Initiation Protocol, RFC 3261 [1] is used to establish
and maintain a dialog between a pair of user agents in order to
manage a communications session. Messages within the dialog are sent
from one user agent to another using a series of proxy hops called
the route set, eventually being delivered to the remote target - the
user agent on the other side of the dialog. This remote target is a
SIP URI obtained from the value of the Contact header field in INVITE
requests and responses.

RFC 3261 mandates that a user agent populate the Contact header field
in INVITE requests and responses with a URI that is global (meaning
that it can be used from any element connected to the Internet), and
that routes to the user agent which inserted it. RFC 3261 also
mandates that this URI be valid for requests sent outside of the
dialog in which the Contact URI was inserted.

In practice, these requirements have proven very difficult to meet.
Endpoints often have only an IP address and not a hostname that is
present in DNS, and this IP address is frequently a private address,
because the client is behind a NAT. Techniques like the Simple
Traversal of UDP Through NAT (STUN) [15] can be used to obtain IP
addresses on the public Internet. However, many firewalls will
prohibit incoming SIP requests from reaching a client unless they
first pass through a proxy sitting in the DMZ of the network. Thus
URIs using STUN-obtained IP addresses often do not work.

Because of these difficulties, most clients have actually been
inserting URIs into the Contact header field of requests and
responses with the form sip:<IP-address>. These have the property of
routing to the client, but they are generally only reachable from the
proxy to which the user is directly connected. This limitation does
not prevent normal SIP calls from proceeding, since the user’s proxy
can usually reach these private addresses, and the proxy itself is
generally reachable over the public network. However, this issue has
impacted the ability of several other SIP mechanisms and applications
to work properly.

An example of such an application is call transfer [24], based on the
REFER method [7]. Another application is the usage of endpoint-
hosted conferences within the conferencing framework [17]. Both of
these mechanisms require the endpoint to be able to construct a URI
that not only routes to that user agent, but is usable by other
entities anywhere on the Internet as a target for new SIP requests.

This specification formally defines a type of URI called a Globally
Routable User Agent URI (GRUU) which has the properties of routing to

Rosenberg Expires January 15, 2006 [Page 3

Internet-Draft GRUU Mechanism July 2005

the UA and being reachable from anywhere. Furthermore, it defines a
new mechanism by which a client can obtain a GRUU from its SIP
provider, allowing it to use that URI in the Contact header fields of
its dialog forming requests and responses. Since the GRUU is
provided by the user’s SIP provider, the GRUU properties can be
guaranteed by the provider. As a result, the various applications
which require the GRUU property, including transfer, presence, and
conferencing, can work reliably.

Terminology

In this document, the key words "MUST", "MUST NOT", "REQUIRED",
"SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
and "OPTIONAL" are to be interpreted as described in RFC 2119 [5] and
indicate requirement levels for compliant implementations.

This specification also defines the following additional terms:

contact: The term "contact", when used in all lowercase, refers to a
URI that is bound to an AOR or GRUU by means of a registration. A
contact is usually a SIP URI, and is bound to the AOR and GRUU
through a REGISTER request by appearing as the value of the
Contact header field.

remote target: The term "remote target" refers to a URI that a user
agent uses to identify itself for receipt of subsequent requests
mid-dialog. A remote target is established by placing a URI in
the Contact header field of a dialog forming request or response.

Contact header field: The term "Contact header field", with a
capitalized C, refers to the header field which can appear in
REGISTER requests and responses, redirects, or in dialog creating
requests and responses. Depending on the semantics, the Contact
header field sometimes conveys a contact, and sometimes conveys a
remote target.

Defining a GRUU

URIs have properties. Those properties are granted to the URI based
on the policies of the domain that owns the URI, and those properties
are not visible by inspection of the URI. Some of the properties
that a domain can confer upon a URI are:

The AOR property: A URI has the Address of Record (AOR) property if a
domain will allow it to appear in the To header field of REGISTER
request.

Rosenberg Expires January 15, 2006 [Page 4]

Internet-Draft GRUU Mechanism July 2005

The alias property: A URI is an alias if its treatment by the domain
is identical to another URI.

The service treatment property: A URI has the service treatment
property if the domain will apply applications, features, and
services to calls made by, or made to, that URI, possibly based on
associating that URI with a user that has "subscribed" to various
features.

The anonymous property: A URI has the anonymous property when it is
not possible, by inspection of the URI, to discern the user with
whom the URI is associated.

The identity property: A URI is considered an identity when it is one
that the domain will authorize as a valid value in the From header
field of a request, such that an authentication service will sign
a request with that URI [19].

This specification focuses on a property, called the Globally
Routable User Agent URI (GRUU) property. A URI possesses this
property when the following is true:

Global: It can be used by any UAC connected to the Internet. 1In that
regard, it is like the address-of-record (AOR) property. A URI
with the AOR property (for example, sip:joe@example.com), is meant
to be used by anyone to reach that user. The same is true for a
URI with the GRUU property.

Routes to a Single Instance: A request sent to that URI will be
routed to a specific UA instance. In that regard, it is unlike
the address-of-record property. When a request is sent to a URI
with the AOR property, routing logic is applied in proxies to
deliver the request to one or more UAs. That logic can result in
a different routing decision based on the time-of-day, or the
identity of the caller. However, when a request is made to a URI
with the GRUU property, the routing logic is dictated by the GRUU
property. The request has to be delivered to a very specific UA
instance. That UA instance has to be the same UA instance for all
requests sent to that URI.

Long Lived: The URI with the GRUU property persists for relatively
long periods of time, ideally being valid for the duration of
existence of the AOR itself. This property cannot be completely
guaranteed, but providers are supposed to do their best to make
sure that a GRUU remains viable indefinitely.

A URI can have any combination of these properties. It is the
responsibility of the domain which mints the URI to determine what

Rosenberg Expires January 15, 2006 [Page 5

Internet-Draft GRUU Mechanism July 2005

properties are conferred upon that URI. This specification imposes
requirements on a domain that mints a URI with the GRUU property.

For convenience, a URI that possesses the GRUU property is also
referred to as a GRUU.

Use Cases

There are several use cases where the GRUU properties are truly
needed in order for a SIP application to operate.

.1 REFER

Consider a blind transfer application [24]. User A is talking to
user B. User A wants to transfer the call to user C. So, user A
sends a REFER to user C. That REFER looks like, in part:

REFER sip:C@example.com SIP/2.0

From: sip:Alexample.com;tag=99%asd

To: sip:CRexample.com

Refer-To: (URI that identifiers B’s UA)

The Refer-To header field needs to contain a URI that can be used by
user C to place a call to user B. However, this call needs to route
to the specific UA instance which user B is using to talk to user A.
If it didn’t, the transfer service would not execute properly. This
URI is provided to user A by user B. Because user B doesn’t know who
user A will transfer the call to, the URI has to be usable by anyone.
Therefore, it needs to be a GRUU.

.2 Conferencing

A similar need arises in conferencing [17]. In that framework, a
conference is described by a URI which identifies the focus of the
conference. The focus is a SIP UA that acts as the signaling hub for
the conference. Each conference participant has a dialog with the
focus. One case described in the framework is where a user A has
made a call to user B. User A puts user B on hold, and calls user C.
Now, user A has two separate dialogs for two separate calls - one to
user B, and one to user C. User A would like to conference them. To
do this, user A’s user agent morphs itself into a focus. It sends a
re-INVITE or UPDATE [4] on both dialogs, and provides user B and user
C with an updated remote target that now holds the conference URI.
The URI in the Contact header field also has a callee capabilities
[11] parameter which indicates that this URI is a conference URI.
User A proceeds to mix the media streams received from user B and
user C. This is called an ad-hoc conference.

Rosenberg Expires January 15, 2006 [Page 6

Internet-Draft GRUU Mechanism July 2005

At this point, normal conferencing features can be applied. That
means that user B can send another user, user D, the conference URI,
perhaps in an email. User D can send an INVITE to that URI, and join
the conference. For this to work, the conference URI used by user A
in its re-INVITE or UPDATE has to be usable by anyone, and it has to
route to the specific UA instance of user A that is acting as the
focus. If it didn’t, basic conferencing features would fail.
Therefore, this URI has to be a GRUU.

.3 Presence

In a SIP-based presence [25] system, the Presence Agent (PA)
generates notifications about the state of a user. This state is
represented with the Presence Information Document Format (PIDF)

[23]. 1In a PIDF document, a user is represented by a series of
tuples, each of which describes the services that the user has. Each
tuple also has a URI in the <contact> element, which is a SIP URI
representing that device. A watcher can make a call to that URI,
with the expectation that the call is routed to the service whose
presence is represented in the tuple.

In some cases, the service represented by a tuple may exist on only a
single user agent associated with a user. In such a case, the URI in
the presence document has to route to that specific UA instance.
Furthermore, since the presence document could be used by anyone who
subscribes to the user, the URI has to be usable by anyone. As a
result, it has to be a GRUU.

It is interesting to note that the GRUU may need to be constructed by
a presence agent, depending on how the presence document is computed
by the server.

Overview of Operation

This section is tutorial in nature, and does not specify any
normative behavior.

This extension allows a UA to obtain a GRUU, and to use a GRUU.

These two mechanisms are separate, in that a UA can obtain a GRUU in

any way it likes, and use the mechanisms in this specification to use
them. This specification defines two mechanisms for obtaining a GRUU
- through registrations, and through administrative operation. Only

the former requires protocol operations.

A UA can obtain a GRUU by generating a normal REGISTER request, as
specified in RFC 3261 [1]. This request contains a Supported header
field with the value "gruu", indicating to the registrar that the UA
supports this extension. The UA includes a "sip.instance" media

Rosenberg Expires January 15, 2006 [Page 7

Internet-Draft GRUU Mechanism July 2005

feature tag in the Contact header field of each contact for which a
GRUU is desired. This media feature tag contains a globally unique
ID that identifies the UA instance. If the domain that the user is
registering against also supports GRUU, the REGISTER responses will
contain the "gruu" parameter in each Contact header field. This
parameter contains a GRUU which the domain guarantees will route to
that UA instace. The GRUU is associated with the UA instace. Should
the client change its contact, but indicate that it represents the
same instance ID, the server would provide the same GRUU.
Furthermore, if the registration for the contact expires, and the UA
registers the contact at a later time with the same instance
identifier, the server would provide the same GRUU.

Since the GRUU is a URI like any other, it can be handed out by a UA
by placing it in any header field which can contain a URI. A UA will
place the GRUU into the Contact header field of dialog creating
requests and responses it generates; RFC 3261 mandates that the
Contact header field have the GRUU property, and this specification
provides a reliable way for a UA to obtain one. In other words,
clients use the GRUU as a remote target. However, since the remote
target used by clients to date has typically not had the GRUU
properties, implementations have adapted their behaviors (oftentimes
in proprietary ways) to compensate. To facilitate a transition away
from these behaviors, it is necessary for a UA receiving the message
to know whether the remote target is a GRUU or not. To make this
determination, the UA looks for the presence of the Supported header
field in the request or response. If it is present with a value of
"gruu", it means that the remote target is a GRUU.

A domain can construct a GRUU in any way it chooses. However, it is
sometimes desirable to construct them in a way which allows for any
entity that receives the GRUU to determine the AOR for the subscriber
associated with the UA instance. To facilitate that, the GRUU can be
constructed by adding the "opaque" URI parameter to the subscriber’s
AOR. This parameter would contain the context needed for the domain
to recognize and treat the URI as a GRUU.

When a UA uses a GRUU, it has the option of adding the "grid" URI
parameter to the GRUU. This parameter is opaque to the proxy server
handling the domain. However, when the server maps the GRUU to the
contact bound to it, the server will add the grid parameter into the
registered contact, and use the result in the Request URI. As a
result, when the UA receives the request, the Request URI will
contain the grid parameter it placed in the corresponding GRUU.

The "grid" and "opaque" URI parameters play similar roles, but
complement each other. The "opaque" parameter is added by the owner
of the domain in order to ensure that the URI has the GRUU property.

Rosenberg Expires January 15, 2006 [Page 8

Internet-Draft GRUU Mechanism July 2005 Internet-Draft GRUU Mechanism July 2005

The "grid" parameter is added by the UA instance so that, when a number is encoded into each device. For software-based user agents,
request is received by that instance, it can determine the context of each installation represents a unique instance. As such, the
the request. identifier could be generated on installation and then stored on disk

for persistence.
6. Creation of a GRUU
A GRUU is associated, in a one-to-one fashion, with the combination

A GRUU is a URI that is created and maintained by a server of an AOR and instance ID. This combination is referred to as an

authoritative for the domain in which the GRUU resides. instance ID/AOR pair. For each GRUU, there is one instance ID/AOR

Independently of whether the GRUU is created as a result of a pair, and for each instance ID/AOR pair, there is one GRUU. The

registration or some other means, a server maintains certain instance ID/AOR pair serves to uniquely identify a user agent

information associated with the GRUU. This information, and its instance servicing a specific AOR. The AOR identifies a resource,

relationship with the GRUU, is modeled in Figure 2. such as a user or service within a domain, and the instance ID
identifies a specific UA instance servicing requests for that
resource.

fomm - + R +
| associated | It is important to understand that GRUU is associated with the

| |
| |1 with n| | instance ID/AOR pair, not Jjust the instance ID. For example, if a
| AOR [<m——mmmm | GRUU | user registered the contact sip:ua@pc.example.com to the AOR
| | sip:user@example.com, and included a +sip.instance="urn:foo:1"
| | parameter in the Contact header field, and also registered the
Fomm + to—m + contact sip:ua-112@pc.example.com with the same +sip.instance Contact
~1 is AN In header field parameter to a second AOR, say sip:boss@example.com,
| bound //0..1 | each of those UA instances would have a different GRUU, since they
is| to// |associated belong to different AORs. That is the reason why a single instance
bound | // |with ID can be associated with multiple GRUU; there would be one such
to] // | association for each AOR. The same goes for the association of AOR
| // | to GRUU; there would be one such association for each instance ID.

- + // o + In many ways, a GRUU is a parallel to an AOR. A URI cannot have both
| | the AOR property and the GRUU property. Just as a contact can be

| | bound to an AOR, a contact can be bound to a GRUU. Any number of

| contact |-~ >| Instance | contacts can be bound to an AOR, but only those contacts for a

| [1 has 0..1] D | particular instance are bound to the GRUU. As discussed in

| | Section 8.4.1 If there are more than one contacts of a particular

Fo—— + tom + instance bound to the AOR, only the most recently registered one is
used. Similarly, if there are more than one contacts of a particular
instance bound to the GRUU, only the most recently registered one is
used. Using only the most recently registered contact from an
instance ensures that, upon failure and reboot, an instance that
obtains and registers a new IP address immediately renders its
previous one inactive. Multiple active registrations from a single
Figure 2 instance is useful for certain high availability scenarios, and
mechanisms for achieving that using a GRUU are described in [18].

The instance ID plays a key role in this specification. It is an

identifier, represented as a URN, that uniquely identifies a SIP user The contacts that are bound to the GRUU are always the ones that have
agent amongst all other user agents associated with an AOR. For an instance ID associated with that GRUU. If none of the contacts

hardware-based user agents, the instance ID would typically be burned bound to the AOR have the instance ID associated with the GRUU, then
into the device in the factory, similar to the way a unique serial there are no contacts bound to the GRUU. 1If a contact should become

Rosenberg Expires January 15, 2006 [Page 9] Rosenberg Expires January 15, 2006 [Page 10

Internet-Draft GRUU Mechanism July 2005

registered to the AOR that has an instance ID equal to the one
associated with the GRUU, that contact also becomes bound to the
GRUU. 1If that contact should expire, it will no longer be bound to
the AOR, and similarly, it will no longer be bound to the GRUU. The
URI of the contact is irrelevant in determining whether it is bound
to a particular GRUU; only the instance ID and AOR are important.

This specification does not mandate a particular mechanism for
construction of the GRUU. Several example approaches are given in
Appendix A. However, the GRUU MUST exhibit the following properties:

o0 The domain part of the URI is an IP address present on the public
Internet, or, if it is a host name, the resolution procedures of
RFC 3263 [2], once applied, result in an IP address on the public
Internet.

o TWhen a request is sent to the GRUU, it routes to a server that can
make sure the request is delivered to the UA instance. For GRUU
created through registrations, this means that the GRUU has to
route to a proxy server with access to registration data.

o A server in the domain can determine that the URI is a GRUU.
o For each GRUU, both the SIP and SIPS versions MUST exist.

Section 8.4 defines additional behaviors that a proxy must exhibit on
receipt of a GRUU.

When a domain constructs a URI with the GRUU properties, it MAY
confer other properties upon this URI as a matter of domain policy.
Of course, the AOR property cannot also be provided, since the GRUU
and AOR properties are mututally exclusive. However, a domain can
elect to confer properties like identity, anonymity, and service
treatment. There is nothing in this specification that can allow the
recipient of the GRUU to determine which of these properties besides
the GRUU property itself have been conferred to the URI.

The service treatment property merits further discussion. Typically,
the services a proxy executes upon receipt of a request sent to a
GRUU will be a subset of those executed when a request is sent to the
AOR. For requests that are outside of a dialog, it is RECOMMENDED to
apply screening types of functions, both automated (such as black and
white list screening) and interactive (such as interactive voice
response (IVR) applications which confer with the user to determine
whether to accept a call). However, forwarding services, such as
call forwarding, SHOULD NOT be provided for requests sent to a GRUU.
The intent of the GRUU is to target a specific UA instance, and this
is incompatible with forwarding operations.

Rosenberg Expires January 15, 2006 [Page 11]

Internet-Draft GRUU Mechanism July 2005

Mid-dialog requests will also be sent to GRUUs, as they are included
as the remote-target in dialog forming requests and responses. In
those cases, however, a proxy SHOULD only apply services that are
meaningful for mid-dialog requests generally speaking. This excludes
screening functions, as well as forwarding ones.

The "opaque" URI parameter, defined in Section 9 provides a means for
a domain to construct a GRUU such that the AOR associated with the
GRUU is readily extractable from the GRUU. Unless the GRUU is meant
to also possess the anonymity property, it is RECOMMENDED that GRUUs
be constructed using this parameter.

Since the GRUU is associated with both the instance ID and AOR, for
any particular AOR there can be a potentially infinite number of
GRUU, one for each instance ID. However, the instance IDs are only
known to the network when an instance actually registers with one.

As a result, it is RECOMMENDED that a GRUU exist from the time a
contact with an instance ID is first registered to an AOR, until the
time that the AOR is no longer valid in the domain. In this context,
the GRUU exists if the domain, upon receiving a request for that
GRUU, recognizes it as a GRUU, can determine the AOR and instance ID
associated with it, and translate the GRUU to a contact if there is
one with that instance ID currently registered. This property of the
GRUU can be difficult to achieve through software failures and power
outages within a network, and for this reason, the requirement is at
RECOMMENDED strength, and not MUST.

Obtaining a GRUU

A GRUU can be obtained in many ways. This document defines two -
through registrations, and through administrative operation.

.1 Through Registrations

When a GRUU is associated with a user agent that comes and goes, and
therefore registers to the network to bind itself to an AOR, a GRUU
is provided to the user agent through SIP REGISTER messages.

.1.1 User Agent Behavior

.1.1.1 Generating a REGISTER Request

When a UA compliant to this specification generates a REGISTER
request (initial or refresh), it MUST include the Supported header
field in the request. The value of that header field MUST include
"gruu" as one of the option tags. This alerts the registrar for the
domain that the UA supports the GRUU mechanism.

Rosenberg Expires January 15, 2006 [Page 12]

Internet-Draft GRUU Mechanism July 2005

Furthermore, for each contact for which the UA desires to obtain a
GRUU, the UA MUST include a "sip.instance" media feature tag as a UA
characteristic [11]. As described in [11], this media feature tag
will be encoded in the Contact header field as the "+sip.instance"
Contact header field parameter. The value of this parameter MUST be
a URN [10]. [11] defines equality rules for callee capabilities
parameters, and according to that specification, the "sip.instance"
media feature tag will be compared by case sensitive string
comparison. This means that the URN will be encapsulated by angle
brackets ("<" and ">") when it is placed within the quoted string
value of the +sip.instance contact parameter. The case sensitive
matching rules apply only to the generic usages defined there and in
the caller preferences specification [22]. When the instance ID is
used in this specification, it is effectively "extracted" from the
value in the "sip.instance" media feature tag, and thus equality
comparisons are performed using the rules for URN equality specific
to the scheme in the URN. If the element performing the comparisons
does not understand the URN scheme, it performs the comparisons using
the lexical equality rules defined in RFC 2141. Lexical equality may
result in two URN being considered unequal when they are actually
equal. In this specific usage of URNs, the only element which
provides the URN is the SIP UA instance identified by that URN. As a
result, the UA instance SHOULD provide lexically equivalent URNs in
each registration it generates. This is likely to be normal behavior
in any case; clients are not likely to modify the value of the
instance ID so that it remains functionally equivalent to previous
registrations, but lexigraphically different.

This specification makes no normative recommendation on the specific
URN that is to be used in the "+sip.instance" Contact header field
parameter. However, the URI MUST be selected such that the instance
can be certain that no other instance registering against the same
AOR would choose the same URI value. Usage of a URN is a MUST since
it provides a persistent and unique name for the UA instance,
allowing it to obtain the same GRUU over time. It also provides an
easy way to guarantee uniquess within the AOR. However, this
specification does not require a long-lived and persistent instance
identifier to properly function, and in some cases, there may be
cause to use an identifier with weaker temporal persistence.

One URN that readily meets the requirements of this specification is
the UUID URN [26], which allows for non-centralized computation of a
URN based on time, unique names (such as a MAC address) or a random
number generator. An example of a URN that would not meet the
requirements of this specification is the national bibliographic
number [16]. Since there is no clear relationship between an SIP UA
instance and a URN in this namespace, there is no way a selection of
a value can be performed that guarantees that another UA instance

Rosenberg Expires January 15, 2006 [Page 13]

Internet-Draft GRUU Mechanism July 2005

doesn’t choose the same value.

If a UA instance is registering against multiple AOR, it is
RECOMMENDED that a UA instance provide a different contact URI for
each AOR. This is needed for the UA to determine which GRUU to use
as the remote target in responses to incoming dialog forming
requests, as discussed in Section 8.1.

Besides the procedures discussed above, the REGISTER request is
constructed identically to the case where this extension was not
understood. Specifically, the contact in the REGISTER request SHOULD
NOT contain the gruu Contact header field parameter, and the contact
URI itself SHOULD NOT contain the grid parameter defined below. Any
such parameters are ignored by the registrar, as the UA cannot
propose a GRUU for usage with the contact.

If a UA wishes to guarantee that the request is not processed unless
the domain supports and uses this extension, it MAY include a Require
header field in the request with a value that contains the "gruu"
option tag.

7.1.1.2 Processing the REGISTER Response

If the response is a 2xx, each Contact header field that contained
the "+sip.instance" Contact header field parameter may also contain a
"gruu" parameter. This parameter contains a SIP or SIPS URI that
represents a GRUU corresponding to the UA instance that registered
the contact. The URI will be a SIP URI if the To header field in the
REGISTER request contained a SIP URI, else it will be a SIPS URI if
the To header field in the REGISTER request contained a SIPS URI.

Any requests sent to the GRUU URI will be routed by the domain to the
contact with that instance ID. The GRUU will not normally change in
subsequent 2xx responses to REGISTER. Indeed, even if the UA lets
the contact expire, when it re-registers it at any later time, the
registrar will normally provide the same GRUU for the same address-
of-record and instance ID. However, as discussed above, this
property cannot be completely guaranteed, as network failures may
make it impossible to provide an identifier that persists for all
time. As a result, a UA MUST be prepared to receive a different GRUU
for the same instance ID/AOR pair in a subsequent registration
response.

A non-2xx response to the REGISTER request has no impact on any
existing GRUU previously provided to the UA. Specifically, if a
previously successful REGISTER request provided the UA with a GRUU, a
subsequent failed request does not remove, delete, or otherwise
invalidate the GRUU.

Rosenberg Expires January 15, 2006 [Page 14]

Internet-Draft GRUU Mechanism July 2005

.1.2 Registrar Behavior

A registrar MAY create a GRUU for a particular instance ID/AOR pair
at any time. Of course, if a UA requests a GRUU in a registration,
and the registrar has not yet created one, it will need to do so in
order to respond to the registration request. However, the registrar
can create the GRUU in advance of any request from a UA.

A registrar MUST create both the SIP and SIPS versions of the GRUU,
such that if the GRUU exists, both URI exist.

7.1.2.1 Processing a REGISTER Request

When a registrar compliant to this specification receives a REGISTER
request, it checks for the presence of the Require header field in
the request. If present, and if it contains the "gruu" option tag,
the registrar MUST follow the procedures in the remainder of this
section and Section 7.1.2.2 (that is, the procedures which result in
the creation of new GRUUs for contacts indicating an instance ID, and
the listing of GRUUs in the REGISTER response). If not present, but
a Supported header field was present with the "gruu" option tag, the
registrar SHOULD follow the procedures in the remainder of this
section and Section 7.1.2.2. If the Supported header field was not
present, or it if was present but did not contain the value "gruu",
the registrar SHOULD NOT follow the procedures in the remainder of
this section or Section 7.1.2.2.

As the registrar is processing the contacts in the REGISTER request
according to the procedures of step 7 in Section 10.3 of RFC 3261,
the registrar additionally checks whether each Contact header field
in the REGISTER message contains a "+sip.instance" header field
parameter. If present, the contact is processed further. If the
registrar had not yet created a GRUU for that instance ID/AOR pair,
it MUST do so at this time according to the procedures of Section 6.
If the contact contained a "gruu" Contact header field parameter, it
MUST be ignored by the registrar. A UA cannot suggest or otherwise
provide a GRUU to the registrar.

Registration processing then continues as defined in RFC 3261. If,
after that processing, that contact is bound to the AOR, it also
becomes bound to the GRUU associated with that instance ID/AOR pair.
If, after that processing, the contact was not bound to the AOR (due,
for example, to an expires value of zero), the contact is not bound
to the GRUU either. The registrar MUST store the instance ID along
with the contact.

When generating the 200 (OK) response to the REGISTER request, the
procedures of step 8 of Section 10.3 of RFC 3261 are followed.

Rosenberg Expires January 15, 2006 [Page 15]

Internet-Draft GRUU Mechanism July 2005

Furthermore, for each Contact header field value placed in the
response, if the registrar has stored an instance ID associated with
that contact, that instance ID is returned as a Contact header field
parameter, and furthermore, the server MUST add a "gruu" Contact
header field parameter. The value of the gruu parameter is a quoted
string containing the URI that is the GRUU for the associated
instance ID/AOR pair. If the To header field in the REGISTER request
had contained a SIP URI, the SIP version of the GRUU is returned. If
the To header field in the REGISTER request had contained a SIPS URI,
the SIPS version of the GRUU is returned.

The REGISTER response MUST contain a Require header field with the
value "gruu". This is because the client needs to extract its GRUU
from the REGISTER response, and utilize them as the remote target of
dialog initiating requests and responses.

Note that handling of a REGISTER request containing a Contact header
field with value "*" and an expiration of 0 still retains the meaning
defined in RFC 3261 - all contacts, not just ones with a specific
instance ID, are deleted. This removes their binding to the AOR and
to any GRUU.

Inclusion of a GRUU in the "gruu" Contact header field parameter of a
REGISTER response is separate from the computation and storage of the
GRUU. It is possible that the registrar has computed a GRUU for one
UA, but a different UA that queries for the current set of
registrations doesn’t understand GRUU. In that case, the REGISTER
response sent to that second UA would not contain the "gruu" Contact
header field parameter, even though the UA has a GRUU for that
contact.

7.1.2.2 Timing Out a Registration

When a registered contact expires, its binding to the AOR is removed
as normal. In addition, its binding to the GRUU is removed at the
same time.

7.2 Administratively

Administrative creation of GRUUs is useful when a UA instance is a
network server that is always available, and therefore doesn’t
register to the network. Examples of such servers are voicemail
servers, application servers, and gateways.

There are no protocol operations required to administratively create
a GRUU. The proxy serving the domain is configured with the GRUU,
and with the contact it should be translated to. It is not strictly
necessary to also configure the instance ID and AOR, since the

Rosenberg Expires January 15, 2006 [Page 16

Internet-Draft GRUU Mechanism July 2005 Internet-Draft GRUU Mechanism July 2005

translation can be done directly. However, they serve as a useful target, the UA MUST include a Supported header field that contains
tool for determining which resource and UA instance the GRUU is the option tag "gruu". However, it is not necessary for a UA to know
supposed to map to. whether or not its peer in the dialog supports this specification

before using one as a remote target.
In addition to configuring the GRUU and its associated contact in the

proxy serving the domain, the GRUU will also need to be configured When using the GRUU as a remote target, a UA MAY add the "grid" URI

into the UA instance associated with the GRUU. parameter to the GRUU. This parameter MAY take on any value
permitted by the grammar for the parameter. Note that there are no

It is also reasonable to model certain network servers as logically limitations on the size of this parameter. When a UA sends a request

containing both a proxy and a UA instance. The proxy receives the to the GRUU, the proxy for the domain that owns the GRUU will

request from the network, and passes it internally to the UA translate the GRUU in the Request-URI, replacing it with the URI

instance. In such a case, the GRUU routes directly to the server, bound to that GRUU. However, it will retain the "grid" parameter

and there is no need for a translation of the GRUU to a contact. The when this translation is performed. As a result, when the UA

server itself would construct its own GRUU. receives the request, the Request-URI will contain the "grid" created
by the UA. This allows the UA to effectively manufacture an infinite

8. Using the GRUU supply of GRUU, each of which differs by the value of the "grid"
parameter. When a UA receives a request that was sent to the GRUU,
8.1 Sending a Message Containing a GRUU it will be able to tell which GRUU was invoked by the "grid"

parameter.

A UA first obtains a GRUU using the procedures of Section 7, or by

other means outside the scope of this specification. An implication of this behavior is that all mid-dialog requests will
be routed through intermediate proxies. There will never be direct,

A UA can use the GRUU in the same way it would use any other SIP or UA to UA signaling. It is anticipated that this limitation will be

SIPS URI. However, a UA compliant to this specification MUST use a addressed in future specifications.

GRUU when populating the Contact header field of dialog-creating

requests and responses. In other words, a UA compliant to this Once a UA knows that the remote target provided by its peer is a

specification MUST use its GRUU as its remote target. This includes GRUU, it can use it in any application or SIP extension which

the INVITE request and its 2xx response, the SUBSCRIBE [6] request, requires a globally routable URI to operate. One such example is

its 2xx response, the NOTIFY request, and the REFER [7] request and assisted call transfer.

its 2xx response.

8.2 Sending a Message to a GRUU
If the UA instance has obtained multiple GRUUs (each for a different

AOR) through a registration, it MUST use the one corresponding to the There is no new behavior associated with sending a request to a GRUU.
AOR used to send or receive the request. For sending a request, this A GRUU is a URI like any other. When a UA receives a request or
means that the GRUU corresponds to the AOR present in the From header response, it can know that the remote target is a GRUU if the request
field, and furthermore the credentials used for authentication of the or response had a Supported header field that included the value
request correspond to the ones associated with that AOR. When "gruu". The UA can take the GRUU, and send a request to it, and then
receiving a request, the GRUU in the response corresponds to the AOR be sure that it is delivered to the UA instance which sent the

to which the original request was targeted. That AOR, however, will request or response.

be rewritten by the proxy to correspond to the UA’s registered

contact. It is for this reason that different contacts are needed If the GRUU contains the "opaque" URI parameter, a UA can obtain the
for each AOR that an instance registers against. In this way, when AOR for the user by stripping the parameter. The resulting URI is

an incoming request arrives, the Request URI can be examined. It the AOR. If the GRUU does not have the "opaque" URI parameter, there
will be equal to a registered contact. That contact can be used to is no mechanism defined for determining the AOR from the GRUU.

map directly to the AOR, and from there, the correct GRUU can be Extraction of the AOR from the GRUU is useful for call logs and other
selected. accounting functions, where it is desirable to know the user to whom

the request was directed.
In those requests and responses where the GRUU is used as the remote

Rosenberg Expires January 15, 2006 [Page 17] Rosenberg Expires January 15, 2006 [Page 18

Internet-Draft GRUU Mechanism July 2005

Since the instance ID is a callee capabilities parameter, a UA might
be tempted to send a request to the AOR of a user, and include an
Accept-Contact header field [22] which indicates a preference for
routing the request to a UA with a specific instance ID. Although
this would appear to have the same effect as sending a request to the
GRUU, it does not. The caller preferences expressed in the Accept-
Contact header field are just preferences. Its efficacy depends on a
UA constructing an Accept-Contact header field that interacts with
domain processing logic for an AOR, to cause it to route to a
particular instance. Given the variability in routing logic in a
domain (for example, time based routing to only selected contacts),
this doesn’t work for many domain routing policies. However, this
specification does not forbid a client from attempting such a
request, as there may be cases where the desired operation truly is a
preferential routing request.

.3 Receiving a Request Sent to a GRUU

When a UAS receives a request sent to its GRUU, the incoming request
URI will be equal to the contact that was registered (through
REGISTER or some other action) by that UA instance. If the user
agent had previously handed out its GRUU with a grid parameter, the
incoming request URI may contain that parameter. This indicates to
the UAS that the request is being received as a result of a request
sent by the UAC to that GRUU/grid combination. This specification
makes no normative statements about when to use a grid parameter, or
what to do when receiving a request made to a GRUU/grid combination.
Generally, any differing behaviors are a matter of local policy.

It is important to note that, when a user agent receives a request,
and the request URI does not have a grid parameter, the user agent

cannot tell whether the request was sent to the AOR or to the GRUU.
As such, the UAS will process such requests identically. If a user
agent needs to differentiate its behavior based on these cases, it

will need to use a grid parameter.

.4 Proxy Behavior

Proxy behavior is fully defined in Section 16 of RFC 3261. GRUU
processing impacts that processing in two places - request targeting
and record-routing.

.4.1 Request Targeting

When a proxy server receives a request, and the proxy owns the domain
in the Request URI, and the proxy is supposed to access a Location
Service in order to compute request targets (as specified in Section
16.5 of RFC 3261 [1]), the proxy examines the Request URI. If the

Rosenberg Expires January 15, 2006 [Page 19

Internet-Draft GRUU Mechanism July 2005

Request URI is an AOR against which there are multiple registered
contacts with the same instance ID parameter, the proxy MUST use only
the most recently registered contact for inclusion in the target set.
The contact that is the most recently registered is the one that has
been bound to the AOR is the shortest period of time. This
corresponds to the minimum value for the "duration-registered"
attribute from the registration event package [27]. It is important
to note that a refresh of the contact in a REGISTER message does not
reset the duration it has been registered to zero. For example, if a
softphone is started at 9am when a user logs into their computer, and
the softphone refreshes its registration every hour, by 1230pm the
contact has been registered for three and a half hours.

If the request URI is within the domain of the proxy, and the URI has
been constructed by the domain such that the proxy is able to
determine that it has the form of a GRUU for an AOR that is unknown
within the domain, the proxy rejects the request with a 404. If the
request URI is within the domain of the proxy, and the URI has been
constructed by the domain such that the proxy is able to determine
that it has the form of a GRUU for an AOR that known within the
domain, but the instance ID is unknown, the proxy SHOULD generate a
480.

If the GRUU does exist, handling of the GRUU proceeds as specified in
RFC 3261 Section 16. For GRUUs, the abstract location service
described in Section 16.5 is utilized, producing a set of zero or
more contacts, each of which is associated with the same instance ID.
If there are more than one contacts bound to the GRUU, the proxy MUST
select the one that has been most recently registered, as defined
above. This produces zero or one contacts. The request target MUST
be obtained by taking that one contact, and if the GRUU in the
Request URI contained a "grid" URI parameter, adding that parameter
to the request target. If the grid was already present in the
contact bound to the GRUU, it is overwritten in this process. If no
contacts were bound to the GRUU, the lookup of the GRUU in the
abstract location service will result in zero target URI, eventually
causing the proxy to reject the request with a 480 (Temorarily
Unavailable) response.

If the contact had been registered using a Path header field [3],
then that Path is used to construct the route set for reaching that
contact through the GRUU as well as through the AOR, using the
procedures specified in RFC 3327.

A proxy MAY apply other processing to the request, such as execution
of called party features, as discussed in Section 6.

A request sent to a GRUU SHOULD NOT be redirected. In many

Rosenberg Expires January 15, 2006 [Page 20]

Internet-Draft GRUU Mechanism July 2005

instances, a GRUU is used by a UA in order to assist in the traversal
of NATs and firewalls, and a redirection may prevent such a case from
working.

.4.2 Record Routing

As described above, a user agent uses its GRUU as a remote target.
This has an impact on the path taken by subsequent mid-dialog
requests. Depending on the desires of the proxies involved, this may
impact record route processing.

Two cases can be considered. The first is shown in Figure 3. 1In
this case, there is a single proxy in the user’s domain. An incoming
INVITE request arrives for the users AOR (1) and is forwarded to the
user agent at its registered contact Cl (2). The proxy inserts a
Record-Route header field into the proxied request, with a value of
R1. The user agent generates a 200 OK to the request, using its GRUU
Gl as the remote target.

(1) + (2): initial INVITE
(3) + (4): mid-dialog request

(1) 4-————————- + (2) oo +
****** > [I
| I | I

(3) | Proxy | (4) | User |
ffffff > | [———mmm > Agent |
| I | I
oo + fomm +

Figure 3

When a mid-dialog request shows up destined for the user agent
(message 3), it will arrive at the proxy in the following form:

INVITE G1
Route: R1

Since the top Route header field value identifies the proxy, the
proxy removes it. As there are no more Route header field values,
the proxy processes the request URI. However, the request URI is a
GRUU, and is therefore a domain under the control of the proxy. The
proxy will need to perform the processing of Section 8.4.1, which

Rosenberg Expires January 15, 2006 [Page 21]

Internet-Draft GRUU Mechanism July 2005

will result in the translation of the GRUU into the contact C1,
followed by transmission of the request to the user agent (message
4) .

This sequence of processing in the proxy is somewhat unusual, in that
mid-dialog requests (that is, requests with a Route header field that
a proxy inserted as a result of a Record-Route operation) do not
normally cause a proxy to have to invoke a location service to
process the request URI. It is for this reason that this is called
out here.

The previous case assumed that there was a single proxy in the
domain. In more complicated cases, there can be two or more proxies
within a domain on the initial request path. This is shown in
Figure 5. In this figure, there is a home proxy, to which requests
targeted to the AOR are sent. The home proxy executes the abstract
location service and runs user features. The edge proxy acts as the
outbound proxy for users, performs authentication, manages TCP/TLS
connections to the client, and does other functions associated with
the transition from the provider proxy network to the client. This
specific division of responsibilities between home and edge proxy is
just for the purposes of illustration; the discussion applies to a
disaggregation of proxy logic into any number of proxies. In such a
configuration, registrations from the user agent would pass through
the edge proxy, which would insert a Path header field [3] for
itself.

(1) + (2) + (3): initial INVITE

(4) - (9): mid-dialog request
(1) - + (2) +=——————————— + (3) +——————————— +
——==>| [===== > | === >
(4) | | (5) | | I |
——==> Home | === > Edge | | User |
| Proxy | (7) | Proxy | (8) | Agent |
Ll [E— > [=== > I
| - + o + - +
| I
\ \
o +
(6)
Figure 5
Rosenberg Expires January 15, 2006 [Page 22]

Internet-Draft GRUU Mechanism July 2005

When an incoming request arrives for the AOR (message 1), the home
proxy would look it up, discover the registered contact and Path, and
then send the request to the edge proxy as a result of the Route
header field inserted with the Path value. The home proxy record
routes with the URI Hl. The edge proxy would forward the request to
the request URI (which points to the client), and insert a Record-
Route header field value with the URI El1 (message 2). This request
is accepted by the user agent, which inserts its GRUU Gl as the
remote target.

When the peer in the dialog sends a mid-dialog request, it will have
the following form:

INVITE G1
Route: H1, E1l1

This request will arrive at the home proxy (due to H1 in the Route
header field) (message 4). The home proxy will forward it to the
edge proxy (due to El1 in the Route header field) (message 5). The
edge proxy, seeing no more Route header field values, sends the
request to the Request URI. This is a GRUU, and like an AOR, will
route to the home proxy. This causes the request to loop back around
(message 6). The home proxy performs the GRUU processing of

Section 8.4.1, causing the request to be forwarded to the edge proxy
a second time (this time, as a result of a Route header field value
obtained from the Path header in the registration) (message 7), and
then delivered to the client (message 8).

While this flow works, it is highly inefficient, as it causes each
mid-dialog request to spiral route. If this behavior is not
desirable. To prevent it, the following procedures SHOULD be
followed. When a client generates a REGISTER request, this request
passes through the edge proxy on its way to the home proxy. The
REGISTER request will contain the AOR of the user (in the To header
field) and also indicate whether or not the GRUU extension is
supported. The proxy can decide to insert itself on the Path on a
case by case basis. However, if it does so for one registration, it
SHOULD do so for all registrations for the same AOR. The value of
the Path header field inserted by the proxy SHOULD be constructed so
that it indicates whether or not the proxy inserted itself on the
Path for this AOR.

When a request arrives from the home proxy towards the client, the
proxy inspects the Route header field. This header field will
contain the URI the edge proxy had placed into the Path. If the
value indicates that the edge proxy had put itself on the Path for
the registration from this client, there is no need for the proxy to

Rosenberg Expires January 15, 2006 [Page 23]

Internet-Draft GRUU Mechanism July 2005

retain its record-route in the response. The proxy MAY remove its
record-route value from the 200 OK response in this case. If the

value indicates that the proxy had not put itself on the Path, it

would retain the Record-Route in the response.

Similarly, if a request arrives from the client towards the home
proxy, the edge proxy would look at the identity of the sender of the
request. If the proxy knows that it is placing itself on the Path
for registrations from that AOR, the edge proxy would insert a
Record-Route into the request, and then remove it in the response.
Similarly, if the identity of the sender of the request is one for
which the client has not put itself on the Path, the edge proxy would
keep its Record-Route in the response.

Removing its Record-Route value from the response will result in a
different route set as seen by the caller and callee; the callee
(which is the user agent in the figure) will have a route set entry
for its edge proxy, while the caller will not. The caller will have
a route set entry for its edge proxy, while the callee will not.

In such a case, a mid-dialog request that arrives at the home proxy
will be of the form:

INVITE G1
Route: H1

This does the "right thing" and causes the request to be routed from
the home proxy to the edge proxy to the client, without the
additional spiral.

The opaque SIP URI Parameter

This specification defines a new SIP URI parameter, "opaque". This
parameter is useful for constructing GRUUs, but is a generally
valuable tool for building URI that are linked to another URI in some
way.

The "opaque" parameter has no explicit semantics. It is merely a
repository of information whose interpretation is at the discretion
of the entity that creates the URI. This means that an element that
constructs a URI with the "opaque" parameter MUST ensure that it
routes back to itself or another element that can interpret the
content of the parameter. The "opaque" parameter can be viewed as a
form of cookie for this reason.

If the "opaque" parameter in the URI is removed, the resulting URI
MUST correspond to a valid resource in the domain to which the URI

Rosenberg Expires January 15, 2006 [Page 24]

Internet-Draft GRUU Mechanism July 2005

with the "opaque" parameter is associated. The nature of the
association is determined from the context in which the URI was
obtained. When used to construct a GRUU, it means that the URI
formed by stripping the "opaque" parameter MUST correspond to the AOR
associated with the GRUU. The recipient of a GRUU cannot determine
that it is a GRUU by direct examination of the URI. However, the
recipient may know if it received the GRUU in the Contact header
field of a SIP request or response that contained a Supported header
field with the option tag "gruu". If it knows its a GRUU through
such context, and the GRUU contains the "opaque" parameter, the UA
knows it can obtain the AOR by removing the "opaque" parameter.

Other possible uses of the "opaque" URI parameter include
constructing of service URIs for a user, such as their voicemail
inbox or personal conference bridge.

10. Grammar

This specification defines two new Contact header field parameters,
gruu and +sip.instance, and two new URI parameters, "grid" and
"opaque". The grammar for string-value is obtained from [11], and
the grammar for uric is defined in RFC 3986 [9].

contact-params = c-p-q / c-p-expires / c-p-gruu / cp-instance
/ contact-extension
c-p-gruu = "gruu" EQUAL DQUOTE (SIP-URI / SIPS-URI) DQUOTE
cp-instance = "+sip.instance" EQUAL LDQUOT "<"
instance-val ">" RDQUOT
uri-parameter = transport-param / user-param / method-param

/ ttl-param / maddr-param / lr-param / grid-param
/ opaque-param / other-param

grid-param = "grid=" pvalue ; defined in RFC3261
opaque-param = "opaque=" pvalue ; defined in RFC3261
instance-val = *uric ; defined in RFC 2396

11. Requirements

This specification was created in order to meet the following
requirements:

REQ 1: When a UA invokes a GRUU, it MUST cause the request to be
routed to the specific UA instance to which the GRUU refers.

Rosenberg Expires January 15, 2006 [Page 25]

Internet-Draft GRUU Mechanism July 2005

REQ 2: It MUST be possible for a GRUU to be invoked from anywhere on
the Internet, and still cause the request to be routed
appropriately. That is, a GRUU MUST NOT be restricted to use
within a specific addressing realm.

REQ 3: It MUST be possible for a GRUU to be constructed without
requiring the network to store additional state.

REQ 4: It MUST be possible for a UA to obtain a multiplicity of
GRUUs, each one of which routes to that UA instance. This is
needed to support ad-hoc conferencing, for example, where a UA
instance needs a different URI for each conference it is hosting.

REQ 5: When a UA receives a request sent to a GRUU, it MUST be
possible for the UA to know the GRUU which was used to invoke the
request. This is necessary as a consequence of requirement 4.

REQ 6: It MUST be possible for a UA to add opaque content to a GRUU,
which is not interpreted or altered by the network, and used only
by the UA instance to whom the GRUU refers. This provides a basic
cookie type of functionality, allowing a UA to build a GRUU with
state embedded within it.

REQ 7: It MUST be possible for a proxy to execute services and
features on behalf of a UA instance represented by a GRUU. As an
example, if a user has call blocking features, a proxy may want to
apply those call blocking features to calls made to the GRUU in
addition to calls made to the user’s AOR.

REQ 8: It MUST be possible for a UA in a dialog to inform its peer of
its GRUU, and for the peer to know that the URI represents a GRUU.
This is needed for the conferencing and dialog reuse applications
of GRUUs, where the URIs are transferred within a dialog.

REQ 9: When transferring a GRUU per requirement 8, it MUST be
possible for the UA receiving the GRUU to be assured of its
integrity and authenticity.

REQ 10: It MUST be possible for a server, authoritative for a domain,
to construct a GRUU which routes to a UA instance bound to an AOR
in that domain. 1In other words, the proxy can construct a GRUU
too. This is needed for the presence application.

12. Example Call Flow

The following call flow shows a basic registration and call setup,
followed by a subscription directed to the GRUU. It then shows a

Rosenberg Expires January 15, 2006 [Page 26]

Internet-Draft

failure of
conventions
message lin

The Callee
looks like:

Rosenberg

GRUU Mechanism

July 2005

the callee, followed by a re-registration. The
of [21] are used to describe representation of long

es.

Crashes, Reboots

er Proxy
| (1) REGISTER
R U !
[(2) 200 OK
| >
(3) INVITE |
———————————————————— >
| (4) INVITE
| mmmmm e >
| (5) 200 OK
[<ommmmmmm I
(6) 200 OK | \
S ! !
(7) ACK |
———————————————————— > |
| (8) ACK |
[>|
(9) SUBSCRIBE |
77777777777777777777 > [
| (10) SUBSCRIBE |
| = >|
| (11) 200 OK |
| <o !
(12) 200 OK |
D S |
| (13) NOTIFY
<= I
(14) NOTIFY |
<= - !
(15) 200 OK |
———————————————————— >
| (16) 200 OK
| m e >
|
| (17) REGISTER
R !
| (18) 200 OK
[= >|
supports the GRUU extension. As such,

Expires January 15,

2006

its REGISTER (1)

[Page 27]

Internet-Draft

Rosenberg

GRUU Mechanism July 2005

REGISTER sip:example.com SIP/2.0

Via: SIP/2.0/UDP 192.0.2.1;branch=z9%hG4bKnashds7

Max-Forwards: 70

From: Callee <sip:callee@example.com>;tag=a73kszlfl

Supported: gruu

To: Callee <sip:callee@example.com>

Call-ID: 1j9FpLxk3uxtm8tn@l192.0.2.1

CSeq: 1 REGISTER

Contact: <sip:callee@192.0.2.1>
;tsip.instance="<urn:uuid:f81d4fae-7dec-11d0-a765-00a0c9lebbf6>"

Content-Length: 0

The REGISTER response would look like:

SIP/2.0 200 OK

Via: SIP/2.0/UDP 192.0.2.1;branch=z9%hG4bKnashds7

From: Callee <sip:calleelexample.com>;tag=a73kszlfl

To: Callee <sip:callee@example.com> ;tag=b88sn

Require: gruu

Call-ID: 1j9FpLxk3uxtm8tn@l192.0.2.1

CSeq: 1 REGISTER

<allOneLine>

Contact: <sip:callee@192.0.2.1>
jgruu="sip:callee@example.com;

opaque=urn:uuid:f81ld4fae-7dec-11d0-a765-00a0c9lebbfo"
;tsip.instance="<urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91le6bf6>"
;jexpires=3600

</allOneLine>

Content-Length: 0

Note how the Contact header field in the REGISTER response contains
the gruu parameter with the URI sip:calleel
example.com;opaque=urn:uuid:f8ld4fae-7dec-11d0-a765-00a0c9lebbfb.
This represents a GRUU that translates to the contact
sip:callee@192.0.2.1.

The INVITE from the caller is a normal SIP INVITE. The 200 OK
generated by the callee (message 5), however, now contains a GRUU as
the remote target. The UA has also chosen to include a grid URI
parameter into the GRUU.

Expires January 15, 2006 [Page 28]

Internet-Draft GRUU Mechanism July 2005

SIP/2.0 200 OK

Via: SIP/2.0/UDP proxy.example.com;branch=z9hG4bKnaa8s
Via: SIP/2.0/UDP host.example.com;branch=z9hG4bK99%a
From: Caller <sip:caller@example.com>;tag=n88ah

To: Callee <sip:callee@example.com> ;tag=a0z8
Call-ID: 1j9FpLxk3uxtma7@host.example.com

CSeqg: 1 INVITE

Supported: gruu

Allow: INVITE, OPTIONS, CANCEL, BYE, ACK

<allOneLine>

Contact:

<sip:callee@example.com
;opaque=urn:uuid:f8ld4fae-7dec-11d0-a765-00a0c91lebbf6;grid=99a>
</allOnelLine>

Content-Length: --

Content-Type: application/sdp

[SDP Not shown]

At some point later in the call, the caller decides to subscribe to
the dialog event package [20] at that specific UA. To do that, it
generates a SUBSCRIBE request (message 9), but directs it towards the
remote target, which is a GRUU:

<allOneLine>
SUBSCRIBE sip:calleelexample.com;opaque=urn:uuid:f8
ld4fae-7dec-11d0-a765-00a0c91lebbf6;grid=99a
SIP/2.0
</allOneLine>
Via: SIP/2.0/UDP host.example.com;branch=z9hG4bK9zz8
From: Caller <sip:caller@example.com>;tag=kkaz-
To: Callee <sip:callee@example.com>
Call-ID: faif9alhost.example.com
CSeqg: 2 SUBSCRIBE
Supported: gruu
Event: dialog
Allow: INVITE, OPTIONS, CANCEL, BYE, ACK
Contact: <sip:caller@example.com;opaque=hdg7777ad7aflzig8sf7>
Content-Length: 0

In this example, the caller itself supports the GRUU extension, and
is using its own GRUU to populate its remote target.

This request is routed to the proxy, which proceeds to perform a
location lookup on the request URI. It is translated into the
contact for that instance, and then proxied there (message 10 below).
Note how the grid parameter is maintained.

Rosenberg Expires January 15, 2006 [Page 29]

Internet-Draft GRUU Mechanism July 2005

SUBSCRIBE sip:callee@192.0.2.1;grid=99a SIP/2.0

Via: SIP/2.0/UDP proxy.example.com;branch=z9hG4bK9555
Via: SIP/2.0/UDP host.example.com;branch=z9hG4bK9zz8
From: Caller <sip:caller@example.com>;tag=kkaz-

To: Callee <sip:calleelexample.com>

Call-ID: faif9alhost.example.com

CSeq: 2 SUBSCRIBE

Supported: gruu

Event: dialog

Allow: INVITE, OPTIONS, CANCEL, BYE, ACK

Contact: <sip:caller@example.com; opaque=hdg7777ad7aflzig8s£f7>
Content-Length: 0

At some point after message 16 is received, the callee’s machine
crashes and recovers. It obtains a new IP address, 192.0.2.2.
Unaware that it had previously had an active registration, it creates
a new one (message 17 below). Notice how the instance ID remains the
same, as it persists across reboot cycles:

REGISTER sip:example.com SIP/2.0

Via: SIP/2.0/UDP 192.0.2.2;branch=z9%hG4bKnasbba

Max-Forwards: 70

From: Callee <sip:calleelexample.com>;tag=ha8d777f0

Supported: gruu

To: Callee <sip:callee@example.com>

Call-ID: hf8asxzff8s7f@192.0.2.2

CSeq: 1 REGISTER

Contact: <sip:callee@192.0.2.2>
;tsip.instance="<urn:uuid:f81d4fae-7dec-11d0-a765-00a0c9lebbf6>"

Content-Length: 0

The registrar notices that a different contact, sip:callee@192.0.2.1,
is already associated with the same instance ID. It registers the
new one too and returns both in the REGISTER response. Both have the
same GRUU. However, only this new contact (the most recently
registered one) will be used by the proxy for population in the
target set. It then generates the following response:

Rosenberg Expires January 15, 2006 [Page 30]

Internet-Draft

13.

Rosenberg

GRUU Mechanism July 2005

SIP/2.0 200 OK

Via: SIP/2.0/UDP 192.0.2.2;branch=z9%hG4bKnasbba
From: Callee <sip:calleelexample.com>;tag=ha8d777£f0
To: Callee <sip:calleelexample.com>;tag=99£f8f7
Require: gruu

Call-ID: hf8asxzff8s7£@192.0.2.2

CSeqg: 1 REGISTER

<allOneLine>

Contact: <sip:callee@192.0.2.2>
;gruu="sip:callee@example.com; opaque=urn:
uuid:f81d4fae-7dec-11d0-a765-00a0c91le6bf6"
;+sip.instance="<urn:uuid:f81d4fae-7dec-11d0-a765-00a0c9le6bf6>"
;expires=3600

</allOnelLine>

Contact: <sip:callee@192.0.2.1>
jgruu="sip:callee@Rexample.com; opaque=urn:
uuid:f81ld4fae-7dec-11d0-a765-00a0c9lebbf6"
;+tsip.instance="<urn:uuid:f81d4fae-7dec-11d0-a765-00a0c9lebbf6>"
;expires=400

</allOneLine>

Content-Length: 0

Security Considerations

GRUUs do not provide a solution for privacy. In particular, since
the GRUU does not change during the lifetime of a registration, an
attacker could correlate two calls as coming from the same source,
which in and of itself reveals information about the caller.
Furthermore, GRUUs do not address other aspects of privacy, such as
the addresses used for media transport. For a discussion of how
privacy services are provided in SIP, see RFC 3323 [14].

It is important for a UA to be assured of the integrity of a GRUU
when it is given one in a REGISTER response. If the GRUU is tampered
with by an attacker, the result could be denial of service to the UA.
As a result, it is RECOMMENDED that a UA use the SIPS URI scheme in
the Request-URI when registering.

The example GRUU construction algorithm in Appendix A.1 makes no
attempt to create a GRUU that hides the AOR and instance ID
associated with the GRUU. 1In general, determination of the AOR
associated with a GRUU is considered a good property, since it allows
for easy tracking of the target of a particular call. Learning the
instance ID provides little benefit to an attacker. To register or
otherwise impact registrations for the user, an attacker would need
to obtain the credentials for the user. Knowing the instance ID is
insufficient.

Expires January 15, 2006 [Page 31]

Internet-Draft

14.

14.

14.

14.

Rosenberg

GRUU Mechanism July 2005

The example GRUU construction algorithm in Appendix A.1l makes no
attempt to create a GRUU that prevents users from guessing a GRUU
based on knowledge of the AOR and instance ID. A user that is able
to do that will be able to direct a new request at a particular
instance. However, this specification recommends that service
treatment be given to requests that are sent to a GRUU, including
screening features in particular. That treatment will make sure that
the GRUU does not provide a back door for attackers to contact a user
that has tried to block the attacker.

IANA Considerations

This specification defines a new Contact header field parameter, two
SIP URI parameters, a media feature tag and a SIP option tag.

1 Header Field Parameter

This specification defines a new header field parameter, as per the
registry created by [12]. The required information is as follows:

Header field in which the parameter can appear: Contact

Name of the Parameter gruu

RFC Reference RFC XXXX [[NOTE TO IANA: Please replace XXXX with the
RFC number of this specification.]]

2 URI Parameters

This specification defines two new SIP URI parameters, as per the
registry created by [13].

Name of the Parameter grid

RFC Reference RFC XXXX [[NOTE TO IANA: Please replace XXXX with the
REC number of this specification.]]

Name of the Parameter opaque

RFC Reference RFC XXXX [[NOTE TO IANA: Please replace XXXX with the
RFC number of this specification.]]

3 Media Feature Tag

This section registers a new media feature tag, per the procedures
defined in RFC 2506 [8]. The tag is placed into the sip tree, which

Expires January 15, 2006 [Page 32]

Internet-Draft

14.

Rosenberg

GRUU Mechanism July 2005

is defined in [11].
Media feature tag name: sip.instance
ASN.1 Identifier: New assignment by IANA.

Summary of the media feature indicated by this tag: This feature tag
contains a string containing a URI, and ideally a URN, that
indicates a unique identifier associated with the UA instance
registering the Contact.

Values appropriate for use with this feature tag: String.

The feature tag is intended primarily for use in the following

applications, protocols, services, or negotiation mechanisms: This
feature tag is most useful in a communications application, for
describing the capabilities of a device, such as a phone or PDA.

Examples of typical use: Routing a call to a specific device.

Related standards or documents: RFC XXXX [[Note to IANA: Please
replace XXXX with the RFC number of this specification.]]

Security Considerations: This media feature tag can be used in ways
which affect application behaviors. For example, the SIP caller
preferences extension [22] allows for call routing decisions to be
based on the values of these parameters. Therefore, if an
attacker can modify the values of this tag, they may be able to
affect the behavior of applications. As a result of this,
applications which utilize this media feature tag SHOULD provide a
means for ensuring its integrity. Similarly, this feature tag
should only be trusted as valid when it comes from the user or
user agent described by the tag. As a result, protocols for
conveying this feature tag SHOULD provide a mechanism for
guaranteeing authenticity.

4 SIP Option Tag

This specification registers a new SIP option tag, as per the
guidelines in Section 27.1 of RFC 3261.

Name: gruu
Description: This option tag is used to identify the Globally
Routable User Agent URI (GRUU) extension. When used in a

Supported header, it indicates that a User Agent understands the
extension, and has included a GRUU in the Contact header field of

Expires January 15, 2006 [Page 33]

Internet-Draft

15.

16.

16.

Rosenberg

GRUU Mechanism July 2005

its dialog initiating requests and responses. When used in a
Require header field of a REGISTER request, it indicates that the
registrar should assign a GRUU to the Contact URI.

Acknowledgements

The author would like to thank Rohan Mahy, Paul Kyzivat, Alan
Johnston, and Cullen Jennings for their contributions to this work.

References
1 Normative References
[1] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:

Session Initiation Protocol", RFC 3261, June 2002.

[2] Rosenberg, J. and H. Schulzrinne, "Session Initiation Protocol
(SIP): Locating SIP Servers", RFC 3263, June 2002.

[3] Willis, D. and B. Hoeneisen, "Session Initiation Protocol (SIP)
Extension Header Field for Registering Non-Adjacent Contacts",

RFC 3327, December 2002.

[4] Rosenberg, J., "The Session Initiation Protocol (SIP) UPDATE
Method", RFC 3311, October 2002.

[5] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997.

[6] Roach, A., "Session Initiation Protocol (SIP)-Specific Event
Notification", RFC 3265, June 2002.

[7] Sparks, R., "The Session Initiation Protocol (SIP) Refer
Method", RFC 3515, April 2003.

[8] Holtman, K., Mutz, A., and T. Hardie, "Media Feature Tag
Registration Procedure", BCP 31, RFC 2506, March 1999.

[9] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986,
January 2005.

[10] Moats, R., "URN Syntax", RFC 2141, May 1997.

[11] Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Indicating
User Agent Capabilities in the Session Initiation Protocol

Expires January 15, 2006 [Page 34]

Internet-

16.2 1Inf

[14]

[15]

Rosenberg

Draft GRUU Mechanism July 2005

(SIP)", RFC 3840, August 2004.

Camarillo, G., "The Internet Assigned Number Authority (IANA)
Header Field Parameter Registry for the Session Initiation
Protocol (SIP)", BCP 98, RFC 3968, December 2004.

Camarillo, G., "The Internet Assigned Number Authority (IANA)
Uniform Resource Identifier (URI) Parameter Registry for the
Session Initiation Protocol (SIP)", BCP 99, RFC 3969,
December 2004.

ormative References

Peterson, J., "A Privacy Mechanism for the Session Initiation
Protocol (SIP)", RFC 3323, November 2002.

Rosenberg, J., Weinberger, J., Huitema, C., and R. Mahy, "STUN
- Simple Traversal of User Datagram Protocol (UDP) Through
Network Address Translators (NATs)", RFC 3489, March 2003.

Hakala, J., "Using National Bibliography Numbers as Uniform
Resource Names", RFC 3188, October 2001.

Rosenberg, J., "A Framework for Conferencing with the Session
Initiation Protocol",
draft-ietf-sipping-conferencing-framework-05 (work in
progress), May 2005.

Jennings, C. and R. Mahy, "Managing Client Initiated
Connections in the Session Initiation Protocol (SIP)",
draft-ietf-sip-outbound-00 (work in progress), July 2005.

Peterson, J. and C. Jennings, "Enhancements for Authenticated
Identity Management in the Session Initiation Protocol (SIP)",
draft-ietf-sip-identity-05 (work in progress), May 2005.

Rosenberg, J., "An INVITE Inititiated Dialog Event Package for
the Session Initiation Protocol (SIP)",
draft-ietf-sipping-dialog-package-06 (work in progress),

April 2005.

Sparks, R., "Session Initiation Protocol Torture Test
Messages", draft-ietf-sipping-torture-tests-07 (work in
progress), May 2005.

Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Caller

Preferences for the Session Initiation Protocol (SIP)",
RFC 3841, August 2004.

Expires January 15, 2006 [Page 35]

Internet-Draft GRUU Mechanism July 2005

[23] Sugano, H., Fujimoto, S., Klyne, G., Bateman, A., Carr, W., and
J. Peterson, "Presence Information Data Format (PIDF)",
RFC 3863, August 2004.

[24] Sparks, R. and A. Johnston, "Session Initiation Protocol Call
Control - Transfer", draft-ietf-sipping-cc-transfer-04 (work in
progress), April 2005.

[25] Rosenberg, J., "A Presence Event Package for the Session
Initiation Protocol (SIP)", RFC 3856, August 2004.

[26] Leach, P., Mealling, M., and R. Salz, "A Universally Unique
IDentifier (UUID) URN Namespace", RFC 4122, July 2005.

[27] Rosenberg, J., "A Session Initiation Protocol (SIP) Event
Package for Registrations", RFC 3680, March 2004.

Author’s Address

Jonathan Rosenberg
Cisco Systems

600 Lanidex Plaza
Parsippany, NJ 07054
Us

Phone: +1 973 952-5000
Email: jdrosen@cisco.com
URI: http://www.jdrosen.net

Appendix A. Example GRUU Construction Algorithms
The mechanism for constructing a GRUU is not subject to
specification. This appendix provides two examples that can be used
by a registar. Others are, of course, permitted, as long as they
meet the constraints defined for a GRUU.

A.l1 1Instance ID in opaque URI Parameter
The most basic approach for constructing a GRUU is to utilize the
"opaque" URI parameter. The user and domain portions of the URI are
equal to the AOR, and the "opaque" parameter is populated with the
instance ID.

A.2 Encrypted Instance ID and AOR

In many cases, it will be desirable to construct the GRUU in such a
way that it will not be possible, based on inspection of the URI, to

Rosenberg Expires January 15, 2006 [Page 36]

Internet-Draft GRUU Mechanism July 2005

determine the Contact URI that the GRUU translates to. It may also
be desirable to construct it so that it will not be possible to
determine the instance ID/AOR pair associated with the GRUU. Whether
or not a GRUU should be constructed with this property is a local
policy decision.

With these rules, it is possible to construct a GRUU without
requiring the maintenance of any additional state. To do that, the
URI would be constructed in the following fashion:

user-part = "GRUU" | BASE64 (E(K, (salt | "™ " | AOR | " "
instance ID)))

Where E (K,X) represents a suitable encryption function (such as AES
with 128 bit keys) with key K applied to data block X, and the "|"
operator implies concatenation. The single space (" ") between
components is used as a delimeter, so that the components can easily
be extracted after decryption. Salt represents a random string that
prevents a client from obtaining pairs of known plaintext and
ciphertext. A good choice would be at least 128 bits of randomness
in the salt.

This mechanism uses the user-part of the SIP URI to convey the
encrypted AOR and instance ID. The user-part is used instead of the
"opaque" URI parameter because of the desired anonymity properties.

The benefit of this mechanism is that a server need not store
additional information on mapping a GRUU to its corresponding
contact. The user part of the GRUU contains the instance ID and AOR.
Assuming that the domain stores registrations in a database indexed
by the AOR, the proxy processing the GRUU would look up the ACR,
extract the currently registered contacts, and find the one matching
the instance ID encoded in the request URI. The contact whose
instance ID is that instance ID is then used as the translated
version of the GRUU. Encryption is needed to prevent attacks whereby
the server is sent requests with faked GRUU, causing the server to
direct requests to any named URI. Even with encryption, the proxy
should validate the user part after decryption. 1In particular, the
AOR should be managed by the proxy in that domain. Should a UA send
a request with a fake GRUU, the proxy would decrypt and then discard
it because there would be no URI or an invalid URI inside.

While this approach has many benefits, it has the drawback of
producing fairly long GRUUs.

Rosenberg Expires January 15, 2006 [Page 37]

Internet-Draft GRUU Mechanism July 2005

Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.

Disclaimer of Validity

This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement
Copyright (C) The Internet Society (2005). This document is subject
to the rights, licenses and restrictions contained in BCP 78, and
except as set forth therein, the authors retain all their rights.
Acknowledgment

Funding for the RFC Editor function is currently provided by the
Internet Society.

Rosenberg Expires January 15, 2006 [Page 38]

SIP WG C. Jennings, Ed.
Internet-Draft Cisco Systems
Expires: January 12, 2006 R. Mahy, Ed.

SIP Edge LLC
July 11, 2005

Managing Client Initiated Connections in the Session Initiation Protocol
(SIP)
draft-ietf-sip-outbound-00

Status of this Memo

By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware

have been or will be disclosed, and any of which he or she becomes
aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/lid-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on January 12, 2006.

Copyright Notice
Copyright (C) The Internet Society (2005).

Abstract
Session Initiation Protocol (SIP) allows proxy servers to initiate
TCP connections and send asynchronous UDP datagrams to User Agents in
order to deliver requests. However, many practical considerations,
such as the existence of firewalls and NATs, prevent servers from

connecting to User Agents in this way. Even when a proxy server can
open a TCP connection to a User Agent, most User Agents lack a

Jennings & Mahy Expires January 12, 2006 [Page 1]

Inter

ce

de

th

hi

Table

Jenni

net-Draft Client Initiated Connections in SIP

rtificate suitable to act as a TLS server.

This specification

July 2005

fines behaviors for user agents, registrars and proxy servers that
allow requests to be delivered on existing connections established by
e User Agent. It also defines keep alive behaviors needed to keep
NAT bindings open and specifies the usage of multiple connections for

gh availability systems.
of Contents

Introduction

Conventions and Termlnology
2.1 Definitions
Overview .
.1 Summary of Mechanlsm
2 Single Registrar and UA
3 Multiple Connections from a User Agent
4 Edge Proxies
5 Keep Alive Technlques
User Agent Mechanisms
1
4
2
3
4

wWwwww

Forming Flows
1.1 Instance-ID Selectlon
Detecting Flow Failure
Flow Failure Recovery .
Registration by other other 1nstances
Registrar Mechanisms
.1 Processing Register Requests
.2 Forwarding Requests
Edge Proxy Mechanisms
6.1 Processing Register Requests
6.2 Forwarding Requests
Mechanisms for All Servers
Example Message Flow
Grammar .
IANA Con51deratlons
Security Considerations
Open Issues
Requirements
Changes from 01 Ver51on
Changes from 00 Version
Acknowledgments
References
17.1 Normative References
17.2 Informative References
Authors’ Addresses

NSNS

(G E;}

Intellectual Property and Copyrlght Statements

ngs & Mahy Expires January 12, 2006

OO J0o) Ul s W wWw

[Page 2]

Internet-Draft Client Initiated Connections in SIP July 2005

1.

2.

Jennings & Mahy

Introduction

There are many environments for SIP deployments in which the User
Agent (UA) can form a connection to a Registrar or Proxy but in which
the connections in the reverse direction to the UA are not possible.
This can happen for several reasons. Connection to the UA can be
blocked by a firewall device between the UA and the proxy or
registrar, which will only allow new connections in the direction of
the UA to the Proxy. Similarly there may be a NAT, which are only
capable of allowing new connections from the private address side to
the public side. It is worth noting that most UAs in the world are
deployed behind firewalls or NATs.

Most IP phones and personal computers get their network
configurations dynamically via a protocol such as DHCP. These
systems typically do not have a useful name in DNS, and they
definitely do not have a long-term, stable DNS name that is
appropriate for binding to a certificate. It is impractical for them
to have a certificate that can be used as a client-side TLS
certificate for SIP. However, these systems can still form TLS
connections to a proxy or registrar such that the UA authenticates
the server certificate, and the server authenticates the UA using a
shared secret in a digest challenge.

The key idea of this specification is that when a UA sends a REGISTER
request, the proxy can later use this same connection to forward any
requests that need to go to this UA. For a UA to receive incoming
requests, the UA has to connect to the server. Since the server
can’t connect to the UA, the UA has to make sure that a connection is
always active. This requires the UA to detect when a connection
fails. Since, such detection takes time and leaves a window of
opportunity for missed incoming requests, this mechanism allows the
UA to use multiple connections, referred to as "flows", to the proxy
or registrar and using a keep alive mechanism on each flow so that
the UA can detect when a flow has failed.

Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [2].

1 Definitions

Expires January 12, 2006 [Page 3]

Jennings & Mahy

Internet-Draft Client Initiated Connections in SIP July 2005

Edge Proxy: An Edge Proxy 1is any proxy that is located topologically
between the registering user agent and the registrar.

flow: A Flow is a network protocol layer connection between two hosts
that is represented by the network address of both ends and the
protocol. For TCP and UDP this would include the IP addresses and
ports of both ends and the protocol (TCP or UDP). With TCP, a
flow would often have to one to one correspondence with a single
file descriptor in the operating system.

flow-id: This refers to the value of a new header parameter value for
the contact header. When UA register multiple times, each
registration gets a unique flow-id value.

instance-id: This specification uses the word instance-id to refer to
the value of the "sip.instance" media feature tag in the Contact
header field. This is a URN that uniquely identifies the UA.

Overview

Several scenarios in which this technique is useful are discussed
below, including the simple collocated registrar and proxy, a user
agent desiring multiple connections to a resource (for redundancy for
example), and an system that uses Edge Proxies.

.1 Summary of Mechanism

The overall approach is fairly simple. Each UA has a unique
instance-id that stays the same for this UA even if the UA reboots or
is power cycled. Each UA can register multiple times. Each
registration includes the instance-id for the UA and a flow-id label
that is different for each connection.

UAs use a keep alive mechanism to keep their flow to the proxy or
registrar alive. For TCP, TLS, and other connection oriented
protocols this is a burst containing a single CRLF. For UDP it is a
STUN request sent over the flow. A UA can create more than one flow
using multiple registrations for the same AOR. The instance-id
parameter is used by the proxy to identify with which UA a flow is
associated. The flow-id is used by the proxy and registrar to tell
the difference between a UA re-registering and one that is
registering over an additional flow. The proxies keep track of the
flows used for successful registrations.

When a proxy goes to route a message to a UA for which it has a
binding, it can use any one of the flows on which a successful
registration has been completed. A failure on a particular flow can
be tried again on an alternate flow. Proxies can determine which
flows go to the same UA by looking at the instance-id. Proxies can
tell that a flow replaces a previous abandoned flow by looking at the
flow-id.

Expires January 12, 2006 [Page 4]

Internet-Draft Client Initiated Connections in SIP July 2005

.2 Single Registrar and UA

In this example there is single server acting as both a registrar and
Proxy.

Fom +
| Registrar |
| Proxy |
o o +
I
|
e
| User
| Agent |
tomm +

User Agents forming only a single connection continue to register
normally but include the instance-id as described in the GRUU [1]
specification and can also add a flow-id parameter to the Contact
header field value. The flow-id parameter is used to allow the
registrar to detect and avoid using invalid contacts when a UA
reboots, as described later in this section.

For clarity, here is an example. Bob’s UA creates a new TCP flow to
the registrar and sends the following REGISTER request.

REGISTER sip:example.com SIP/2.0

Via: SIP/2.0/UDP 192.0.2.1;branch=z9hG4bK-badlce-11-1036

Max-Forwards: 70

From: Bob <sip:boblexample.com>;tag=d879h76

To: Bob <sip:bobfexample.com>

Call-ID: 8921348ju72je840.204

CSeq: 1 REGISTER

Contact: <sip:1inel@192.168.0.2>; flow-id=1;
;tsip.instance="<urn:uuid:00000000-0000-0000-0000-000A95A0E128>"

Content-Length: 0

Implementors often ask why the value of the sip.instance is inside
angle brackets. This is a requirement of RFC 3840 [8] which
defines that media feature tags in SIP. Feature tags which are
strings are compared by case sensitive string comparison. To
differentiate these tags from tokens (which are not case
sensitive), case sensitive parameters such as the sip.instance
media feature tag are placed inside angle brackets.

The registrar challenges this registration to authenticate Bob. When
the registrar adds an entry for this contact under the AOR for Bob,

Jennings & Mahy Expires January 12, 2006 [Page 5

Internet-Draft Client Initiated Connections in SIP July 2005

the registrar also keeps track of the connection over which it
received this registration.

The registrar saves the instance-id (as defined in [1]) and flow-id
(as defined in Section 9) along with the rest of the Contact header.
If the instance-id and flow-id are the same as a previous
registration for the same AOR, the proxy uses the most recently
created registration first. This allows a UA that has rebooted to
replace its previous registration for each flow with minimal impact
on overall system load.

Later when Alice sends a request to Bob, his proxy selects target
set. The proxy forwards the request to elements in the target set
based on the proxies policy. The proxy looks at the the target set
and uses the instance-id to understand that two targets both end up
routing to the same UA. When the proxy goes for forward a request to
a given target, it looks and finds the flows that received this
registrations. The proxy then forwards the request on that flow
instead of trying to form a new flow to that contact. This allows
the proxy to forward a request to a particular contact down the same
flow that did the registration for this AOR. If the proxy had
multiple flows that all went to this UA, it could choose any one of
registration binding that it had for this AOR and had the same
instance-id as the selected UA. 1In general, if two registrations
have the same flow-id and instance-id, the proxy would favor the most
recently registered flow. This is so that if a UA reboots, the proxy
will prefer to use the most recent flow that goes to this UA instead
of trying one of the old flows which will presumably fail.

.3 Multiple Connections from a User Agent

In this example system, the logical proxy/registrar for the domain is
running on two hosts that share the appropriate state and can both
provide registrar and proxy functionality for the domain. The UA
will form connections to two of the physical hosts for the domain.

Jennings & Mahy Expires January 12, 2006 [Page 6

Internet-Draft Client Initiated Connections in SIP July 2005

| Domain |
| Logical Proxy/Reg |

[+ + : F

The UA is configured with a primary and backup registration URI. The
administrative domain that created these URIs MUST insure that the
two URIs resolve to separate hosts. These URI have normal SIP
processing so things like SRV can be used to do load balance across a
proxy farm.

The proxies can all use the Path header (as described in the next
section) to insure that a route to each connection is available to
each host, or the logical proxy can implement its own mechanism.

When a single server fails, all the UAs that have a registration with
it will detect this and try and reconnect. This can cause large
loads on the server and is referred to as the avalanche restart
problem. The multiple flows to many servers help reduce the load
caused by the avalanche restart. If a UA has multiple flows, and one
os the servers fails, it can delay some significant time before
trying to form a new connection to replace the flow to the server
that failed. By spreading out the time used for all the UA to
reconnect to a server, the load on the server is reduced.

Edge Proxies

Some SIP deployments use edge proxies such that the UA sends the
REGISTER to an edge proxy that then forwards the REGISTER to the
Registrar. The edge proxy includes a Path header [11] so that when
the registrar later forwards a request to this UA, the request is
routed through the edge proxy. There could be a NAT for FW between
the UA and the edge proxy and there could also be one between the
edge proxy and the Registrar. This second case typically happens
when the Edge proxy is in an enterprise the the registrar is at a
service provider.

Jennings & Mahy Expires January 12, 2006 [Page 7

Internet-Draft Client Initiated Connections in SIP July 2005

+————— +
|Registrar|
|Proxy |
- +
/ \
———————————————————————————— NAT/FW
/ \
fo—m—— + o +
|Edgel | |Edge2 |
o + 4-——— +
\ /
\ /
———————————————————————————— NAT/FW
\ /
\ /
e +
|User
|Agent |
R +

These systems can use effectively the same mechanism as described in
the previous sections but need to use the Path header. When the edge
proxy receives a registration, it needs to create an identifier value
that is unique to this flow (and not a subsequent flow with the same
addresses) and put this identifier in the path header. This is done
by putting the value in the user portion of a loose route in the path
header. If the registration succeeds, the edge proxy needs to map
future requests that are routed to the identifier value that was put
in the Path header to the associated flow.

Keep Alive Techniques

A keep alive mechanism needs to detect both failure of a connection
and changes to the NAT public mapping. When a residential NAT is
rebooted, the UA needs to understand that its bindings are no longer
valid and it needs to re-register. Simply sending keep alive packets
will not detect this failure when using UDP. With connection
oriented transports such as TCP or TLS, the keep alive will detect
failure after a NAT reboot. Connection oriented transport failures
are detected by having the UA periodically sends a CRLF over the
connection; if the connection has failed, a connection level error
will be reported to the UA. A CRLF can be considered the beginning
of the next message that will be sent, and therefore this approach is
backwards compatible with the core SIP specification.

Note: The TCP KEEP_ALIVE mechanism is not used because most
operating systems do not allow the time to be set on a per
connection basis. Linux, Solaris, 0OS X, and Windows all allow

Jennings & Mahy Expires January 12, 2006 [Page 8

Jennings & Mahy

Internet-Draft Client Initiated Connections in SIP July 2005

KEEP_ALIVEs to be turned on or off on a single socket using the
SO_KEEPALIVE socket options but can not change the duration of the
timer for an individual socket. The length of the timer typically
defaults to 7200 seconds. The length of the timer can be changed
to a smaller value by setting a kernel parameter but that affects
all TCP connections on the host and thus is not appropriate to
use.

The keep alive mechanism for UDP is quite different. The UA needs to
detect when the connection is working but also when the flow
definition has changed. A flow definition could change because a NAT
device in the network path reboots and the resulting public IP
address or port mapping for the UA changes. To detect this, STUN [5
requests are sent over the connection that is being used for the UDP
SIP traffic. The proxy or registrar acts as a STUN server on the SIP
signaling port.

Note: The STUN mechanism is very robust and allows the detection
of a changed IP address. It may also be possible to do this with
OPTIONS messages and rport; although this approach has the
advantage of being backwards compatible, it also increases the
load on the proxy or registrar server.

If the UA detects that the connection has failed or that the flow
definition has changed, it needs to re-register using a back-off
mechanism described in Section 4 in order to provide congestion
relief when a large number of agents simultaneously reboot.

User Agent Mechanisms

The UA behavior is divided up into sections. The first describes
what a client must do when forming a new connection, the second when
detecting failure of a connection, and the third on failure recovery.

.1 Forming Flows

UAs are configured one of more SIP URIs with which to register. A UA
MUST support sets with at least two URIs (primary and backup) and
SHOULD support sets with up to four URIs. For each URI in the
redundancy set, the UA MUST send a REGISTER with a loose route set to
the URI from the set. The UA MUST include the the instance-id as
described in the [1]. The UA MUST also add a distinct flow-id
parameter to the contact header. The UA SHOULD use a flow-id value
of 1 for the first URI in the set, and a flow-id value of 2 for the
second, and so on. Each one of these registrations will form a new
flow from the UA to the proxy.

Note that the UA needs to honor 503 responses to registrations as

Expires January 12, 2006 [Page 9]

Internet-Draft Client Initiated Connections in SIP July 2005

4.

4

Jennings & Mahy

described in RFC 3261 and RFC 3263. 1In particular implementers
should note that a 503 with a Retry-After is not considered a failure
to form the connection. The UA should wait the indicated amount of
time and retry the connection. A Retry-After header field value of 0
is valid and indicates the UA should retry the REGISTER immediately.
Implementations need to ensure that when retrying the REGISTER they
redo the DNS resolution process such that if multiple hosts are
reachable from the URI, there is a chance that the UA will select an
alternate host from the one it chose the previous time the URI was
resolved.

1.1 Instance-ID Selection

The instance-id needs to be a URN but there are many ways one can be
generated. A particularly simple way for both "hard" phones and
"soft" phones is to use a UUID as defined in [7]. A device like a
soft-phone, when first installed, should generate a UUID [7] and then
save this in persistent storage for all future use. For a device
such as a hard phone, which will only ever have a single SIP UA
present, the UUID can be generated at any time because it is
guaranteed that no other UUID is being generated at the same time on
that physical device. This means the value of the time component of
the UUID can be arbitrarily selected to be any time less than the
time when the device was manufactured. A time of 0 (as shown in the
example in Section 3.2) is perfectly legal as long as the device
knows no other UUIDs were generated at this time.

.2 Detecting Flow Failure

The UA needs to detect if a given flow has failed, and if it does
fail, follow the procedures in Section 4.1 to form a new flow to
replace the failed one.

User Agents that form flows with stream oriented protocols such as
TCP, TLS, or SCTP SHOULD periodically send a CRLF over the connection
to detect liveness of the flow. If when sending the CRLF, the
transport reports an error, then the connection is considered to have
failed. It is RECOMMENDED that a CRLF be sent if the flow has not
had any data sent or received in the previous 500 to 600 seconds.

The exact time in the 500 to 600 second range SHOULD be randomly
selected. These times MAY be configurable.

User Agents that form flows with datagram oriented protocols such as
UDP SHOULD check if the URI has the "stun" tag (defined in

Section 10) and, if the tag is present, then the UA needs to
periodically perform STUN [5] requests over the flow. The time
between STUN request SHOULD be a random number between 25 and 30
seconds. The times MAY be configurable. If the mapped address in

Expires January 12, 2006 [Page 10]

Internet-Draft Client Initiated Connections in SIP July 2005

the STUN response changes, the UA must treat this as a failure on the
flow.

Any time a SIP message is sent and the proxy does not respond, this
is also considered a failure, the flow is closed and the procedures
in Section 4.1 are followed to form a new flow.

.3 Flow Failure Recovery

When a flow to a particular URI in the proxy set fails, the UA needs
to form a new flow to replace it. The new flow MUST have the same
flow-id as the flow it is replacing. This is done in much the same
way as the forming flows described in Section 4.1; however, if there
is a failure in forming this flow, the UA needs to wait a certain
amount of time before retrying to form a flow to this particular URI
in the proxy set. The time to wait is computed in the following way.
If all of the flows to every URI in the proxy set have failed, the
base time is set to 30 seconds; otherwise, in the case where at least
one of the flows has not failed, the base time is set to 90 seconds.
The wait time is computed by taking the minimum of 1800 seconds, or
the base time multiplied by two to power of the number of consecutive
registration failures to that URI.

wait-time = min(1800, (30 * (2 * consecutive-failures))

These three times SHOULD be configurable in the UA. For example if
the base time was 30 seconds, and there had been three failures, then
the wait time would be min(1800,30*(273)) or 240 seconds. The delay
time is computed by selecting a uniform random time between 50 and
100 percent of the the wait time. The UA MUST wait for the value of
the delay time before trying another registration to form a new flow
for that URI.

To be explicitly clear on the boundary conditions, when the UA boots

it immediately tries to register. If this fails and no registration

on other flows had succeeded, the first retry would happen somewhere

between 30 and 60 seconds after the failure of the first registration
request.

.4 Registration by other other instances

A User Agent MUST NOT include an instance-id or flow-id in the
Contact header field of a registration if the registering UA is not
the same instance as the UA referred to by the target Contact. (This
practice is occasionally used to install forwarding policy into
registrars.)

Jennings & Mahy Expires January 12, 2006 [Page 11]

Internet-Draft Client Initiated Connections in SIP July 2005

Registrar Mechanisms

.1 Processing Register Requests

Registrars which implement this specification, processes REGISTER
requests as described in Section 10 of RFC 3261 with the following
change. Any time the registrar checks if a new contact matches an
existing contact in the location database, it MUST also check and see
if both the instance-id and flow-id match. If they do not match,
then the they are not the same contact. The registrar MUST be
prepared to receive some registrations that use instance-id and
flow-id and some that do not, simultaneously for the same AOR.

In addition to the normal information stored in the binding record,
some additional information MUST be stored for any registration that
contains a flow-id header parameter in the Contact header field
value. The registrar MUST store enough information to uniquely
identify the network flow over which the request arrived. For common
operating systems with TCP, this would typically just be the file
descriptor. For common operating systems with UDP this would
typically be the file descriptor for the local socket that received
the request and the IP address and port number of the remote side
that sent the request.

The registrar MUST also store all the Contact header field
information including the flow-id and instance-id and SHOULD also
store the time at which the binding was last updated. If the
registrar receives a re-registration, it MUST update the information
that uniquely identifies the network flow over which the request
arrived and the time the binding was last updated.

.2 Forwarding Requests

When a proxy uses the location service to look up a registration
binding and then proxies a request to a particular contact, it
selects a contact to use normally, with a few additional rules:

o The proxy MUST NOT populate the target set with more than one
contact with the same AOR and instance-id at a time. If a request
for a particular AOR and instance-id fails with a 410 response,
the proxy SHOULD replace the failed branch with another target
with the same AOR and instance-id, but a different flow-id.

o If two bindings have the same instance-id and flow-id, it MUST
prefer the contact that was most recently updated.

Note that if the request URI is a GRUU, the proxy will only select
contacts with the AOR and instance-id associated with the GRUU. The
rules above still apply to a GRUU. This allows a request routed to a

Jennings & Mahy Expires January 12, 2006 [Page 12]

Internet-Draft Client Initiated Connections in SIP July 2005

6.

6.

Jennings & Mahy

GRUU to first try one of the flows to a UA, then if that fails, try
another flow to the same UA instance.

Proxies MUST Record-Route so that mid dialog requests are routed over
the correct flow.

When the proxy forwards a request to a binding that contains a
flow-id, the proxy MUST send the request over the same network flow
that was saved with the binding. For TCP, the request MUST be sent
on the same TCP socket that received the REGISTER request. For UDP,
the request MUST be sent from the same local IP address and port over
which the registration was received to the same IP address and port
from which the REGISTER was received.

If a proxy or registrar receives a network error when sending a SIP
message over a particular flow, it MUST remove all the bindings that
use that flow (regardless of AOR). Similarly, if a proxy closes a

file descriptor, it MUST remove all the bindings that use that flow.

Edge Proxy Mechanisms
1 Processing Register Requests

When an edge proxy receives a registration request it MUST form a
flow identifier token that is unique to this network flow and use
this token as the user part of the URI that this proxy inserts into
the Path header. A trivial way to satisfy this requirement involves
storing a mapping between an incrementing counter and the connection
information, however this would require the edge proxy to keep an
impractical amount of state. It is unclear when this state could be
removed and the approach would have problems if the proxy crashed and
lost the value of the counter. Two stateless examples are provided
below. A proxy can use any algorithm it wants as long as the flow
token is unique to a flow.

Algorithm 1: The proxy generates a flow token for connection-oriented
transports by concatenating the file descriptor (or equivalent)
with the NTP time the connection was created, and base64 encoding
the result. This results in an approximately 16 octet identifier.
The proxy generates a flow token for UDP by concatenating the file
descriptor and the remote IP address and port, then base64
encoding the result.

Algorithm 2: When the proxy boots it selects a 20 byte crypto random
key called K that only the edge proxy knows. A byte array, called
S, 1s formed that contains the following information about the
flow the request was received on: an enumeration indicating the
protocol, the local IP address and port, the remote IP address and
port. The HMAC of S is computed using the key K and the HMAC-

Expires January 12, 2006 [Page 13]

Jennings & Mahy

Internet-Draft Client Initiated Connections in SIP July 2005

SHA1-80 algorithm, as defined in [9]. The concatenation of the
HMAC and S are base64 encoded, as defined in [10], and used as the
flow identifier. With IPv4 address, this will result in a 32
octet identifier.

.2 Forwarding Requests

When the edge proxy receives a request that is routed to a URI with a
flow identifier token that this proxy created, then the proxy MUST
forward the request over the flow that received the REGISTER request
that caused the flow identifier token to be created. For connection-
oriented transports, if the flow no longer exists the proxy SHOULD
send a 410 response to the request. The advantage to a stateless
approach to managing the flow information is that there is no state
on the edge proxy that requires clean up that has to be synchronized
with the registrar.

Algorithm 1: The proxy base64 decodes the user part of the Route
header. For TCP, if a connection specified by the file descriptor
is present and the creation time of the file descriptor matches
the creation time encoded in the Route header, then proxy forwards
the request over that connection. For UDP, the proxy forwards the
request from the encoded file descriptor to the source IP address
and port.

Algorithm 2: To decode the flow token take the flow identifier in the
user portion of the URI, and base64 decode it, then verity the
HMAC is correct by recomputing the HMAC and checking it matches.
If the HMAC is not correct, the proxy SHOULD send a 403 response.
If the HMAC was correct then the proxy should forward the request
on the flow that was specified by the information in the flow
identifier. If this flow no longer exists, the proxy SHOULD send
a 410 response to the request.

Edge Proxies MUST Record-Route with the same URI that was used in the
path so that mid dialog requests still are routed over the correct
flow.

Mechanisms for All Servers

A SIP device that receives UDP datagrams directly from a UA needs to
behave as specified in this section. Such devices would generally
include a Registrar and an Edge Proxy, as they both receive register
requests directly from a UA.

If the server receives UDP SIP requests on a given interface and
port, it MUST also provide a limited version of the STUN server on
the same interface and port. Specifically it MUST be capable of
receiving and responding to UDP STUN requests with the exception that

Expires January 12, 2006 [Page 14]

Internet-Draft Client Initiated Connections in SIP July 2005 Internet-Draft Client Initiated Connections in SIP July 2005

it does not need to support STUN requests with the changed port or Caller Backup Primary Callee
changed address flag set. This allows the STUN server to run with | | | (1) REGISTER
only one port and IP address. | | [<= |
I I | (2) 200 OK |
It is easy to distinguish STUN and SIP packets because the first | | | === > |
octet of a STUN packet has a value of 0 or 1 while the first octet of | | | (3) REGISTER
a SIP message never a 0 or 1. | | <=———= - - |
| | (4) 200 OK |
When a URI is created that refers to a SIP device that supports STUN | |- > |
as described in this section, the URI parameter "stun", as defined in | (5) INVITE | |
Section 10 SHOULD be added to the URI. This allows a UA to inspect |- > | |
the URI to decide if it should attempt to send STUN requests to this | | | (6) INVITE |
location. | | |- > |
I I | (7) 200 OK |
8. Example Message Flow | | | <==—————— |
I | (8) 200 OK | |
The following call flow shows a basic registration and an incoming | < - - - |
call. Part way through the call, the flow to the Primary proxy is | (9) ACK | |
lost. The BYE message for the call is rerouted to the callee via the |-—————— > | |
Backup proxy. When connectivity to the primary proxy is established, | | | (10) ACK |
the Callee registers again to replace the lost flow as shown in | | | = > |
message 15. | | CRASH X |
[(11) BYE | |
[> |
I | (12) BYE |
I |—m > |
| | (13) 200 OK
| [<
| (14) 200 OK | |
[<————mmmm | REBOOT | |
| | | (15) REGISTER
I | [<mmmmmmmmmm |
| | | (16) 200 OK |
I I

This call flow assumes that the Callee has been configured with a
proxy set of that consists of "sip:primary.example.com;lr;stun" and
"sip:backup.example.com; lr;stun". The Callee REGISTER in message (1
looks like:

Jennings & Mahy Expires January 12, 2006 [Page 15] Jennings & Mahy Expires January 12, 2006 [Page 16

Jennings & Mahy

Internet-Draft Client Initiated Connections in SIP July 2005

REGISTER sip:example.com SIP/2.0

Via: SIP/2.0/UDP 10.0.1.1;branch=z9%hG4bKnashds7

Max-Forwards: 70

From: Callee <sip:callee@example.com>;tag=a73kszlfl

To: Callee <sip:calleelexample.com>

Call-ID: 1j9FpLxk3uxtm8tn@l0.0.1.1

CSeqg: 1 REGISTER

Route: <sip:primary.example.com;lr>

Contact: <sip:callee@10.0.1.1>
;tsip.instance="<urn:uuid:0C67446E-F1A1-11D9-94D3-000A95A0E128>"
;flow-id=1

Content-Length: 0

In the message, note that the Route is set and the Contact header
field value contains the instance-id and flow-id. The response to
the REGISTER in message (2) would look like:

SIP/2.0 200 OK
Via: SIP/2.0/UDP 10.0.1.1;branch=z9hG4bKnashds7
From: Callee <sip:callee@example.com>;tag=a73kszlfl
To: Callee <sip:calleelexample.com> ;tag=b88sn
Call-ID: 1j9FpLxk3uxtm8tn@l0.0.1.1
CSeq: 1 REGISTER
Contact: <sip:callee@10.0.1.1>
;j+sip.instance="<urn:uuid:0C67446E-F1A1-11D9-94D3-000A95A0E128>"
;flow-id=1
;expires=3600
Content-Length: 0

The second registration in message 3 and 4 are similar other than the
Call-ID has changed, the flow-id is 2, and the route is set to the
backup instead of the primary. They look like:

REGISTER sip:example.com SIP/2.0

Via: SIP/2.0/UDP 10.0.1.1;branch=z9hG4bKnashds7

Max-Forwards: 70

From: Callee <sip:calleelexample.com>;tag=a73kszlfl

To: Callee <sip:calleelexample.com>

Call-ID: 1j9FpLxk3uxtm8tn-2@10.0.1.1

CSeqg: 1 REGISTER

Route: <sip:primary.example.com; lr>

Contact: <sip:callee@10.0.1.1>
;+sip.instance="<urn:uuid:0C67446E-F1A1-11D9-94D3-000A95A0E128>"
;flow-id=2

Expires January 12, 2006 [Page 17]

Internet-Draft Client Initiated Connections in SIP July 2005

10.

Jennings & Mahy

Content-Length: 0

SIP/2.0 200 OK

Via: SIP/2.0/UDP 10.0.1.1;branch=z9hG4bKnashds7

From: Callee <sip:callee@example.com>;tag=a73kszlfl

To: Callee <sip:calleel@example.com> ;tag=b88sn

Call-ID: 1j9FpLxk3uxtm8tn-2@10.0.1.1

CSeqg: 1 REGISTER

Contact: <sip:callee@10.0.1.1>
;tsip.instance="<urn:uuid:0C67446E-F1A1-11D9-94D3-000A95A0E128>"
; flow-id=1
;expires=3600

Contact: <sip:callee@10.0.1.1>
;tsip.instance="<urn:uuid:0C67446E-F1A1-11D9-94D3-000A95A0E128>"
; flow-id=2
;jexpires=3600

Content-Length: 0

The messages in the call flow are very normal. The only interesting
thing to note is that the INVITE has a:
Record-Route: <sip:example.com;lr>

The registrations in message 15 and 16 are the same as message 1 and
2 other than the Call-ID has changed.

Grammar
This specification defines a new Contact header field parameter,

flow-id. The grammar for DIGIT and EQUAL is obtained from RFC 3261
[31.

contact-params c-p-q / c-p-expires / c-p-flow / contact-extension
c-p-flow = "flow-id" EQUAL 1*DIGIT

The value of the flow-id MUST NOT be 0 and MUST be less than 2**31.
IANA Considerations

This specification defines a new Contact header field parameter

called flow-id in the "Header Field Parameters and Parameter Values"

sub-registry as per the registry created by [12] at

http://www.iana.org/assignments/sip-parameters. The required
information is:

Expires January 12, 2006 [Page 18]

Internet-Draft

11.

Jennings & Mahy

Client Initiated Connections in SIP July 2005

Header Field Parameter Name Predefined Reference

Values

Contact flow-id Yes [RFC AAAA]

[NOTE TO IANA: Please replace AAAA with
the RFC number of this specification.]

This specification defines a new value in the "SIP/SIPS URI
Parameters" sub-registry as per the registry created by [13] at
http://www.iana.org/assignments/sip-parameters. The required
information is:

Parameter Name Predefined Values Reference

stun No [RFC AAAA]
[NOTE TO IANA: Please replace ARAA with
the RFC number of this specification.]

Security Considerations

One of the key security concerns in this work is making sure that an
attacker cannot hijack the sessions of a valid user and cause all
calls destined to that user to be sent to the attacker.

The simple case 1s when there are no edge proxies. In this case, the
only time an entry can be added to the routing for a given AOR is
when the registration succeeds. SIP protects against attackers being
able to successfully register, and this scheme relies on that
security. Some implementers have considered the idea of just saving
the instance-id without relating it to the AOR with which it
registered. This idea will not work because an attacker’s UA can
impersonate a valid user’s instance-id and hijack that user’s calls.

The more complex case involves one or more edge proxies. The only
time an edge proxy will route over a particular flow is when it has
received a route header that has the instance-id information it has
created. An incoming request would have gotten this information from
the registrar. The registrar will only save this information for a
given AOR if the registration for the AOR has been successful; and
the registration will only be successful if the UA can correctly
authenticate. Even if an attacker has spoofed some bad information
in the path header sent to the registrar, the attacker will not be
able to get the registrar to accept this information for an AOR that
does not belong to the attacker. The registrar will not hand out

Expires January 12, 2006 [Page 19

Internet-Draft

12.

13.

14.

15.

Jennings & Mahy

Client Initiated Connections in SIP July 2005

this bad information to others, and others would not be misled into
contacting the attacker.

Open Issues

This specification requires Record Routing to force flows through
proxies. If all UA were required to implement GRUU, and all
deployments were mandated to use GRUU, and there could never be a
proxy behind a NAT or Firewall or deployed without a TLS certificate,
then it would not be necessary to require the Record Routing. Should
we do this?

The two algorithm for edge proxies are nearly identical with the
exception that one integrity protects the identifier so it can not be
tampered with. It is not clear if this integrity protection is
needed. The WG should determine if this integrity is need or not
then refine this specification.

Requirements
This specification was developed to meet the following requirements:

Must be able to detect that a UA supports these mechanisms.
Support UAs behind NATs.

Support TLS to a UA without a stable DNS name or IP.

Detect failure of connection and be able to correct for this.
Support many UAs simultaneously rebooting.

Support a NAT rebooting or resetting.

Support proxy farms with multiple hosts for scaling and
reliability purposes.

Minimize initial startup load on a proxy.

9. Support proxies that provide geographic redundancy.

10. Support architectures with edge proxies.

oUW N

[eo)

Changes from 01 Version
Changed the algorithm and timing for retries of re-registrations.

Changed to using sigcomp style URI parameter to detect it - UA should
attempt STUN to proxy.

Changed to use a configured set of backup proxies instead of playing
DNS games to try and figure out what backup proxies to use.

Changes from 00 Version

Changed the behavior of the proxy so that it does not automatically
remove registrations with the same instance-id and flow-id but

Expires January 12, 2006 [Page 20]

Internet-Draft

16.

17.

17.

Jennings & Mahy

Client Initiated Connections in SIP July 2005

instead just uses the most recently created registration first.
Changed the connection-id to flow-id.

Fixed expiry of edge proxies and rewrote mechanism section to be
clearer.

Acknowledgments

Jonathan Rosenberg provided many comments and useful text. Dave Oran
came up with the idea of using the most recent registration first in
the proxy. Alan Hawrylyshen helped with text on drafts that led to
this one. Additionally, many of the concepts here originated at a
connection reuse meeting at IETEF 60 that included the authors, Jon
Peterson, Jonathan Rosenberg, Alan Hawrylyshen, and Paul Kyzivat.
The TCP design team consisting of Chris Boulton, Scott Lawrence,
Rajnish Jain, Vijay K. Gurbani, and Ganesh Jayadevan provided input.
In addition, thanks to the following folks for useful comments:
Francois Audet, Flemming Andreasen, Dan Wing, Srivatsa Srinivasan,
and Lyndsay Campbell.

References
1 Normative References
[1] Rosenberg, J., "Obtaining and Using Globally Routable User Agent
(UA) URIs (GRUU) in the Session Initiation Protocol (SIP)",

draft-ietf-sip-gruu-04 (work in progress), July 2005.

[2] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997.

[3] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
Session Initiation Protocol", RFC 3261, June 2002.

[4] Rosenberg, J. and H. Schulzrinne, "Session Initiation Protocol
(SIP): Locating SIP Servers", RFC 3263, June 2002.

[5] Rosenberg, J., Weinberger, J., Huitema, C., and R. Mahy, "STUN -
Simple Traversal of User Datagram Protocol (UDP) Through Network
Address Translators (NATs)", RFC 3489, March 2003.

[6] Crocker, D. and P. Overell, "Augmented BNF for Syntax
Specifications: ABNF", RFC 2234, November 1997.

[7] Leach, P., Mealling, M., and R. Salz, "A Universally Unique
IDentifier (UUID) URN Namespace", RFC 4122, July 2005.

Expires January 12, 2006 [Page 21]

Internet-Draft

17.

Client Initiated Connections in SIP July 2005

[8] Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Indicating User
Agent Capabilities in the Session Initiation Protocol (SIP)",
RFC 3840, August 2004.

2 Informative References

[9] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-Hashing
for Message Authentication", RFC 2104, February 1997.

[10] Josefsson, S., "The Basel6, Base32, and Base64 Data Encodings",
RFC 3548, July 2003.

[11] Willis, D. and B. Hoeneisen, "Session Initiation Protocol (SIP)
Extension Header Field for Registering Non-Adjacent Contacts",
RFC 3327, December 2002.

[12] Camarillo, G., "The Internet Assigned Number Authority (IANA)
Header Field Parameter Registry for the Session Initiation
Protocol (SIP)", BCP 98, RFC 3968, December 2004.

[13] Camarillo, G., "The Internet Assigned Number Authority (IANA)
Uniform Resource Identifier (URI) Parameter Registry for the
Session Initiation Protocol (SIP)", BCP 99, RFC 3969,
December 2004.

[14] Mahy, R., "Connection Reuse in the Session Initiation Protocol
(SIP)", draft-ietf-sip-connect-reuse-03 (work in progress)
October 2004.

[15] Mahy, R., "Requirements for Connection Reuse in the Session
Initiation Protocol (SIP)",
draft-ietf-sipping-connect-reuse-reqs-00 (work in progress),
October 2002.

Authors’ Addresses

Jennings & Mahy

Cullen Jennings (editor)
Cisco Systems

170 West Tasman Drive
Mailstop SJC-21/2

San Jose, CA 95134

USA

Phone: +1 408 902-3341
Email: fluffyQcisco.com

Expires January 12, 2006 [Page 22]

Internet-Draft Client Initiated Connections in SIP July 2005 Internet-Draft Client Initiated Connections in SIP July 2005

Rohan Mahy (editor) Intellectual Property Statement

SIP Edge LLC

5617 Scotts Valley Drive, Suite 200 The IETF takes no position regarding the validity or scope of any

Scotts Valley, CA 95066 Intellectual Property Rights or other rights that might be claimed to

USA pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights

Email: rohan@ekabal.com might or might not be available; nor does it represent that it has

made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.

Disclaimer of Validity

This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement
Copyright (C) The Internet Society (2005). This document is subject
to the rights, licenses and restrictions contained in BCP 78, and
except as set forth therein, the authors retain all their rights.
Acknowledgment

Funding for the RFC Editor function is currently provided by the
Internet Society.

Jennings & Mahy Expires January 12, 2006 [Page 23] Jennings & Mahy Expires January 12, 2006 [Page 24

SIP Working Group 0. Levin
Internet-Draft Microsoft Corporation
Updates: 3515 (if approved) A. Johnston
Expires: January 6, 2006 MCI

July 5, 2005
Conveying Feature Tags with Session Initiation Protocol REFER Method
draft-ietf-sip-refer-feature-param-00
Status of this Memo

By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware
have been or will be disclosed, and any of which he or she becomes
aware will be disclosed, in accordance with Section 6 of BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress.”

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/lid-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on January 6, 2006.
Copyright Notice

Copyright (C) The Internet Society (2005).
Abstract

This document extends the SIP REFER method, defined in RFC 3515, to
convey feature parameters defined in RFC 3840.

1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

Levin & Johnston Expires January 6, 2006 [Page 1

Internet-Draft Feature Tags with SIP REFER July 2005

document are to be interpreted as described in RFC 2119 [1].

To simplify discussions of the REFER method and its extensions, three
new terms are being used throughout the document:

o REFER-Issuer: the UA issuing the REFER request

o REFER-Recipient: the UA receiving the REFER request

o REFER-Target: the UA designated in the Refer-To URI

2. Introduction

This document extends the SIP [2] REFER method defined in RFC 3515
[3] to be used with feature parameters defined in RFC 3840 [4].

Feature tags are used by a SIP User Agent (UA) to convey to another
UA information about capabilities and features. This information can
be shared by a UA using a number of mechanisms including registration
requests, OPTIONS responses, or shared in the context of a dialog by
inclusion with a remote target URI (Uniform Resource Identifier),
such as a Contact URI.

Feature tag information can be very useful to another UA. It is
especially useful prior to the establishment of a session. For
example, if a UA knows (through an OPTIONS query, for example) that
the remote UA supports both video and audio, the calling UA might
call offering video in its session description. Another example is
when a UA knows that a remote UA is acting as a focus and hosting a
conference. 1In this case, the UA might first subscribe to the
conference URI and find out details about the conference prior to
sending an INVITE to join.

This extension to the REFER method provides a mechanism by which the
REFER-Issuer can provide this useful information about the REFER-
Target capabilities and functionality to the REFER-Recipient by
including feature tags in the Refer-To header field in a REFER
request.

3. Definitions

The Refer-To BNF from RFC 3515:

Refer-To = ("Refer-To" / "r") HCOLON (name-addr / addr-spec)
* (SEMI generic-param)

is extended to:
Refer-To = ("Refer-To" / "r") HCOLON (name-addr / addr-spec)

* (SEMI refer-param)
refer-param = generic-param / feature-param

Levin & Johnston Expires January 6, 2006 [Page 2]

Internet-Draft

4.

4.

4.

4.

Levin & Johnston

Feature Tags with SIP REFER July 2005

where feature-param is defined in Section 9 of REFC 3840 [4].

Note that if any URI parameters are present, the entire URI must be
enclosed in "<" and ">". If no "<" and ">" are present, all
parameters after the URI are header parameters, not URI parameters.

Examples
1 isfocus Feature Tag Usage

The example below shows how the "isfocus" feature tag can be used by
REFER-Issuer to tell the REFER-Recipient that the REFER-Target 1is a

conference focus and, consequently, sending an INVITE will bring the
REFER-Recipient into the conference:

Refer-To: <sip:conf44fexample.com>;isfocus
2 Voice and Video Feature Tags Usage

The example below shows how a REFER-Issuer can tell the REFER-
Recipient that the REFER-Target supports audio and video and,
consequently, that a video and audio session can be established by
sending an INVITE to the REFER-Target:

Refer-To: "Alice’s Videophone" <sip:alice@vphone.example.com>
;audio;video

3 Example with URI parameters and multiple feature tags

The example below shows how the REFER-Issuer can tell the REFER-
Recipient that the REFER-Target is a voicemail server. Note that the
transport URI parameter is enclosed within the "<" and ">" so that it
is not interpreted as a header parameter.

Refer-To: <sip:alice-vmlexample.com;transport=tcp>
;actor="msg-taker";automata;audio
IANA Considerations
This document requires no actions by IANA. Note that this document
does not define any elements in the SIP Header Parameter Registry

[5], since it incorporates media feature parameters instead of SIP
header parameters.

Expires January 6, 2006 [Page 3]

Internet-Draft

6.

8.

8.

Levin & Johnston

Feature Tags with SIP REFER July 2005

Security Considerations

Feature tags can provide sensitive information about a user or a UA.
As such, RFC 3840 cautions against providing sensitive information to
another party. Once this information is given out, any use may be
made of it, including relaying to a third party as in this
specification.

As a result, it is NOT RECOMMENDED that all feature tag information
be passed using the mechanism described in this specification.
Instead, only feature tags that directly relate to a requested
operation should be used. For example, the "isfocus" feature tag has
clear operation semantics and utility. However, the "mobility" or
"class" feature tags have no obvious use in a REFER scenario and
should not be included unless their application is defined in the
future.

A feature tag provided by a REFER-Issuer can not be authenticated or
certified directly from the REFER request. As such, the REFER-
Recipient MUST treat the information as hint. If the REFER-Recipient
application logic or user’s action depends on the presence of the
expressed feature, the feature tag can be verified. For example, in
order to do so, the REFER-Recipient can directly send an OPTIONS
query to the REFER-Target over a secure (e.g. mutually authenticated
and integrity protected) connection. This protects the REFER-
Recipient against incorrect or malicious feature tags being sent.

A REFER-Issuer MUST NOT create or guess feature tags - instead a
feature tag included in a REFER SHOULD have been discovered in an
authenticated and secure method (such as an OPTIONS response or from
a remote target URI in a dialog) directly from the REFER-Target.

Acknowledgements

The authors would like to thank Jonathan Rosenberg for providing
helpful guidance to this work.

References
1 Normative References

[1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997.

[2] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,

Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
Session Initiation Protocol", RFC 3261, June 2002.

Expires January 6, 2006 [Page 4]

Internet-Draft Feature Tags with SIP REFER July 2005

[3] Sparks, R., "The Session Initiation Protocol (SIP) Refer
Method", RFC 3515, April 2003.

[4] Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Indicating User
Agent Capabilities in the Session Initiation Protocol (SIP)",
RFC 3840, August 2004.

8.2 Informative References

[5] Camarillo, G., "The Internet Assigned Number Authority (IANA)
Header Field Parameter Registry for the Session Initiation
Protocol (SIP)", BCP 98, RFC 3968, December 2004.

Authors’ Addresses

Orit Levin

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052
UsA

Phone: 425-722-2225

Email: oritl@microsoft.com

Alan Johnston

MCI

100 South 4th Street
St. Louis, MO 63102

Email: alan.johnston@mci.com

Levin & Johnston Expires January 6, 2006 [Page 5

Internet-Draft Feature Tags with SIP REFER July 2005

Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.

Disclaimer of Validity

This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement
Copyright (C) The Internet Society (2005). This document is subject
to the rights, licenses and restrictions contained in BCP 78, and
except as set forth therein, the authors retain all their rights.
Acknowledgment

Funding for the RFC Editor function is currently provided by the
Internet Society.

Levin & Johnston Expires January 6, 2006 [Page 6

SIP 0. Levin
Internet-Draft Microsoft Corporation
Expires: January 18, 2006 July 17, 2005

Suppression of Session Initiation Protocol REFER Method Implicit
Subscription
draft-ietf-sip-refer-with-norefersub-02

Status of this Memo

By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware

have been or will be disclosed, and any of which he or she becomes
aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress.”

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/lid-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on January 18, 2006.

Copyright Notice
Copyright (C) The Internet Society (2005).

Abstract
This specification defines a way to suppress an implicit subscription
with the Session Initiation Protocol (SIP) REFER method. A new SIP
option tag "norefersub" is defined to indicate support for this

extension. A new SIP header field "Refer-Sub" is defined to request
the usage of this extension.

Levin Expires January 18, 2006 [Page 1]

Internet-Draft

SIP REFER without Subscription

Table of Contents

2O 0 Jo Ul WN

10

Levin

Terminology

Introduction

Motivation

Definitions e e e e e e e e
Preventing Forking of REFER Requests
Example

IANA Considerations

Security Considerations
Acknowledgements

References

.1 Normative References
10.

2 Informational References
Author’s Address e e e e e e e e
Intellectual Property and Copyright Statements

Expires January 18, 2006

July 2005

WO W-J~1JO oo Ul b Www

[Page 2]

Internet-Draft SIP REFER without Subscription July 2005 Internet-Draft SIP REFER without Subscription July 2005

1. Terminology Another purpose of the NOTIFY is to inform the REFER-Issuer of the
progress of the SIP transaction that results from the REFER at the
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", REFER-Recipient. 1In the case where the REFER-Issuer is already aware
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this of the progress of the requested operation, such as when the REFER-
document are to be interpreted as described in RFC 2119 [1]. Issuer has an explicit subscription to the dialog event package at
the REFER-Recipient, the implicit subscription and resultant NOTIFY
To simplify discussions of the REFER method and its extensions, the traffic related to the REFER can create an unnecessary network
three terms below are being used throughout the document: overhead.
o REFER-Issuer: the UA issuing the REFER request
o REFER-Recipient: the UA receiving the REFER request 4. Definitions
o REFER-Target: the UA designated in the Refer-To URI
This document defines a new SIP header field: "Refer-Sub". This
2. Introduction header field is meaningful and MAY be used with a REFER request and
the corresponding 2XX response only. This header field set to
The REFER specification specifies that every REFER creates an "false" specifies that a REFER-Issuer requests that the REFER-
implicit subscription between the REFER-Issuer and the REFER- Recipient doesn’t establish an explicit subscription and the
Recipient. resultant dialog. Note that when using this extension, the REFER
remains a target refresh request (as in the default case - when the
This document defines a new SIP header field: "Refer-Sub" meaningful extension is not used).
within a REFER transaction only. This header field, when set to
"false", specifies that a REFER-Issuer requests that the REFER- This document adds the following entry to Table 2 of [2]. The
Recipient doesn’t establish an explicit subscription and the additions to this table are also provided for extension methods at
resultant dialog. the time of publication of this document. This is provided as a
courtesy to the reader and is not normative in any way:
This document defines a new option tag: "norefersub". This tag, when
included in the Supported header field, indicates that a User Agent Header field where proxy ACK BYE CAN INV OPT REG MSG
(UA) is capable of accepting a REFER request without creating an
implicit subscription when acting as a REFER-Recipient. Refer-Sub R, 2xx - - - - - - -
3. Motivation Header field where SUB NOT REF INF UPD PRA PUB
The REFER specification mandates that every REFER creates an implicit Refer-Sub R, 2xx - - o - - - -

subscription between the REFER-Issuer and the REFER-Recipient. This
subscription results in at least one NOTIFY being sent from the

REFER-Recipient to the REFER-Issuer. The REFER-Recipient may choose The Refer-Sub header field MAY be encrypted as part of end-to-end

to cancel the implicit subscription with this NOTIFY. The REFER- encryption.

Issuer may choose to cancel this implicit subscription with an

explicit SUBSCRIBE (Expires: 0) after receipt of the initial NOTIFY. The syntax of the header field follows the BNF defined below:

One purpose of requiring the implicit subscription and initial NOTIFY Refer-Sub = "Refer-Sub" HCOLON refer-sub-value extension-value
is to allow for the situation where the REFER request gets forked and refer-sub-value = "true" / "false"

the REFER-Issuer needs a way to see the multiple dialogs that may be extension-value = *(TEXT-UTF8char / UTF8-CONT / LWS)
established as a result of the forked REFER. This is the same

approach used to handle forking of SUBSCRIBE [4] requests. Where the The "Refer-Sub" header field set to "false" MAY be used by the REFER-
REFER-Issuer explicitly specifies that forking not occur, the Issuer only when the REFER-Issuer can be certain that the REFER
requirement that an implicit subscription be established is request will not be forked.

unnecessary.

If the REFER-Recipient supports the extension and is willing to

Levin Expires January 18, 2006 [Page 3] Levin Expires January 18, 2006 [Page 4

Internet-Draft SIP REFER without Subscription July 2005

process the REFER transaction without establishing an implicit
subscription, it MUST insert the "Refer-Sub" header field set to
"false" in the 2xx response to the REFER-Issuer. In this case no
implicit subscription is created. Consequently, no new dialog is
created if this REFER was issued outside any existing dialog.

If the REFER-Issuer inserts the "Refer-Sub" header field set to
"false", but the REFER-Recipient doesn’t grant the suggestion (i.e.
either does not include the "Refer-Sub" header field or includes the
"Refer-Sub" header field set to "true" in the 2xx response), an
implicit subscription is created as in default case.

This document also defines a new option tag, "norefersub". This tag,
when included in the Supported header field, specifies that a User
Agent (UA) 1is capable of accepting a REFER request without creating
an implicit subscription when acting as a REFER-Recipient.

If the capabilities of the REFER-Recipient are not known, using the
"norefersub" tag with the Require header field is NOT RECOMMENDED.
This is due to the fact that in the event the REFER-Recipient doesn’t
support the extension, in order to fallback to the normal REFER, the
REFER-Issuer will need to issue a new REFER transaction thus
resulting in additional round-trips.

The "norefersub" tag, when included in the Require header field
(always in conjunction with the "Refer-Sub" header field set to
"false"), specifies that the REFER-Recipient MUST process a REFER
transaction without establishing an explicit subscription. 1In this
case, 1f the REFER-Recipient either doesn’t support the extension or
is not willing to grant the request, the REFER request MUST be
rejected by sending "420 Bad Extension" response back to the REFER-
Issuer.

Preventing Forking of REFER Requests

The REFER specification allows for the possibility of forking a REFER
request which is sent outside of an existing dialog. 1In addition, a
proxy may fork an unknown method type. Should forking occur, the
sender of the REFER with "Refer-Sub" will not be aware as only a
single 2xx response will be forwarded by the forking proxy. As a
result, the responsibility is on the issuer of the REFER with "Refer-
Sub" to ensure that no forking will result.

The best way that the REFER-Issuer can ensure that REFER doesn’t get
forked is by only sending a REFER with "Refer-Sub" with a Request-URI

which has GRUU properties according to definitions of [5].

If this is not known, the other way to ensure that forking will not

Levin Expires January 18, 2006 [Page 5]

Internet-Draft SIP REFER without Subscription July 2005

occur is to ensure that there are no proxies between the REFER-Issuer
and the REFER-Recipient. This could be done by sending the REFER
with a Max-Forwards: 0 header field. Any proxy receiving this
request will return a "483 Too Many Hops" response, indicating that
it is not safe to use this extension.

Example

An example of REFER which suppresses the implicit subscription is
shown below:

REFER sip:pc-b@example.com SIP/2.0

Via: SIP/2.0/TCP issuer.example.com;branch=z9hG4bK-a-1
From: <sip:a@example.com>;tag=la

To: <sip:pc-b@example.com>

Call-ID: 1lQ@issuer.example.com

CSeq: 234234 REFER

Max-Forwards: 70

Refer-To: <sip:c@example.com;method=INVITE>
Refer-Sub: false

Supported: norefersub

Contact: sip:a@issuer.example.com
Content-Length: 0

IANA Considerations

This document registers a new SIP header field "Refer-Sub". This
header field is only meaningful for the REFER request defined in RFC
3515 [3] and the corresponding response. The following information
to be added to the header field sub-registry under
http://www.iana.org/assignments/sip-parameters:

o Header Name: Refer-Sub

o Compact Form: None

o Reference: [Substitute with this RFC number]

This document also registers a new SIP option tag, "norefersub". The
required information for this registration, as specified in RFC 3261
[2], is:

o Name: norefersub

o Description: This option tag specifies a User Agent ability of
accepting a REFER request without establishing an implicit
subscription (compared to the default case defined in RFC 3515
[31).

Security Considerations

The purpose of this SIP extension is to modify the expected behavior

Levin Expires January 18, 2006 [Page 6]

Internet-Draft SIP REFER without Subscription July 2005

of the REFER-Recipient. The change in behavior is for the REFER-
Recipient to not establish a dialog and to not send NOTIFY messages
back to the REFER-Issuer. As such, a malicious inclusion of a
"Refer-Sub" header field set to "false" reduces the processing and
state requirements on the recipient. As a result, its use in a
denial of service attack seems limited.

Should an intermediary maliciously insert a "Refer-Sub" header field
set to "false", two possibilities may occur. If the REFER-Recipient
does not support the extension, the REFER will fail with a "420 Bad
Extension" response. The REFER-Issuer will be confused as no "Refer-
Sub" was in the request, and the resulting request will fail. Should
the REFER-Recipient support the extension, the 2xx response will
contain the "Refer-Sub" header field set to "false". 1In any case,
the REFER-Recipient will not establish a new dialog and send NOTIFYs.
As a result the REFER-Recipient will not learn the outcome of the
operation on the Refer-To URI.

Should an intermediary maliciously remove a "Refer-Sub" header field
set to "false", the REFER-Recipient will try to sent notifications
over the "explicitly established" dialog. It may confuse the REFER-
Issuer, unless the Man in the Middle (MitM) has the motivation and
the ability to intercept the notifications.

To protect against these kinds of MitM attacks, integrity protection
should be used. For example, the REFER-Issuer could use S/MIME as
discussed in RFC 3261 [2] to protect against these kinds of attacks.
9. Acknowledgements
The SIP community would like to thank Sriram Parameswar for his ideas
being originally presented in draft-parameswar-sipping-norefersub-00
and served as the basis for this specification.
10. References

10.1 Normative References

[1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997.

[2] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
Session Initiation Protocol", RFC 3261, June 2002.

[3] Sparks, R., "The Session Initiation Protocol (SIP) Refer
Method", RFC 3515, April 2003.

Levin Expires January 18, 2006 [Page 7]

Internet-Draft SIP REFER without Subscription July 2005

[4] Roach, A., "Session Initiation Protocol (SIP)-Specific Event
Notification", RFC 3265, June 2002.

10.2 Informational References

[5] Rosenberg, J., "Obtaining and Using Globally Routable User Agent
(UA) URIs (GRUU) in the Session Initiation Protocol (SIP)",
draft-ietf-sip-gruu-04 (work in progress), July 2005.

Author’s Address

Orit Levin

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052
USA

Phone: 425-722-2225
Email: oritl@microsoft.com

Levin Expires January 18, 2006 [Page 8]

Internet-Draft SIP REFER without Subscription July 2005

Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.

Disclaimer of Validity

This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement
Copyright (C) The Internet Society (2005). This document is subject
to the rights, licenses and restrictions contained in BCP 78, and
except as set forth therein, the authors retain all their rights.
Acknowledgment

Funding for the RFC Editor function is currently provided by the
Internet Society.

Levin Expires January 18, 2006 [Page 9]

SIP J. Rosenberg
Internet-Draft Cisco Systems
Expires: January 19, 2006 July 18, 2005

Request Authorization through Dialog Identification in the Session
Initiation Protocol (SIP)
draft-ietf-sip-target-dialog-01

Status of this Memo

By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware

have been or will be disclosed, and any of which he or she becomes
aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/lid-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on January 19, 2006.
Copyright Notice

Copyright (C) The Internet Society (2005).
Abstract

This specification defines the Target-Dialog header field for the
Session Initiation Protocol (SIP), and the corresponding option tag,
tdialog. This header field is used in requests that create SIP
dialogs. It indicates to the recipient that the sender is aware of
an existing dialog with the recipient, either because the sender is
on the other side of that dialog, or because it has access to the
dialog identifiers. The recipient can then authorize the request
based on this awareness.

Rosenberg Expires January 19, 2006 [Page 1

Internet-Draft

Table of Contents

2O 0 Jo Ul WN

Rosenberg

Introduction A
Overview of Operation

UAC Behavior e e
User Agent Server Behavior
Proxy Behavior
Extensibility Considerations
Header Field Definition
Security Considerations
Example Call Flow

IANA Considerations

.1 Header Field
.2 SIP Option Tag

Acknowledgments
References

.1 Normative References
.2 Informative References

Author’s Address

Intellectual Property and Copyright Statements

Target Dialog

Expires January 19,

2006

July 2005

© 00 0 0 ~J Ul W

[Page 2]

Internet-Draft Target Dialog July 2005 Internet-Draft Target Dialog July 2005

1. Introduction user agent that sent the REFER is aware of those dialog identifiers
(this needs to be secured against eavesdroppers through the sips

The Session Initiation Protocol (SIP) [1] defines the concept of a mechanism, of course)
dialog as a persistent relationship between a pair of user agents.
Dialogs provide context, including sequence numbers, proxy routes, Another example is if two user agents share an INVITE dialog, and an
and dialog identifiers. Dialogs are established through the element on the path of the INVITE request wishes to track the state
transmission of SIP requests with particular methods. Specifically, of the INVITE. In such a case, it sends a SUBSCRIBE request to the
the INVITE, REFER [7], SUBSCRIBE and NOTIFY [2] requests all create GRUU of the user agent, asking for a subscription to the dialog event
dialogs. package. If the SUBSCRIBE request came from an element on the INVITE

request path, it should be authorized.

When a user agent receives a request that creates a dialog, it needs

to decide whether to authorize that request. For some requests, 2. Overview of Operation

authorization is a function of the identity of the sender, the

request method, and so on. However, many situations have been

identified in which a user agents’ authorization decision depends on Fo—————— + Fo—————— +

whether the sender of the request is currently in a dialog with that |

user agent, or whether the sender of the request is aware of a dialog |

the user agent has with another entity. | A | | B |
| I

One such example is call transfer, accomplished through REFER. If Fmmm + Fo—— +

user agents A and B are in an INVITE dialog, and user agent A wishes ” REFER . \

to transfer user agent B to user agent C, user agent A needs to send / . \

a REFER request to user agent B, asking user agent B to send an / . \

INVITE request to user agent C. User agent B needs to authorize this / . \

REFER. The proper authorization decision is that user agent B should / . \

accept the request if it came from a user with whom B currently has / v \

an INVITE dialog relationship. Current implementations deal with Fmm———— + tom— +
this by sending the REFER on the same dialog as the one in place
between user agents A and B. However, this approach has numerous
problems [9]. These problems include difficulty in determining the
lifecycle of the dialog and its usages, and difficulties in
determining which messages are associated with each application - + o +
usage. Instead, a better approach is for user agent A to send the
REFER request to user agent C outside of the dialog using its
Globally Routable User Agent URI (GRUU) [10]. 1In that case, a means
is needed for user agent B to authorize the REFER.

Another example is the application interaction framework [11]. 1In
that framework, proxy servers on the path of a SIP INVITE request can
place user interface components on the user agent that generated or Figure 1
received the request. To do this, the proxy server needs to send a
REFER request to the user agent, targeted to their GRUU, asking the Figure 1 shows the basic model of operation. User agent A sends an
user agent to fetch an HTTP resource containing the user interface INVITE to user agent B, traversing two servers, server A and server
component. In such a case, a means is needed for the user agent to B. Both servers act as proxies for this transaction. User B sends a
authorize the REFER. The appplication interaction framework 200 OK response to the INVITE. This 200 OK includes a Supported
recommends that the request be authorized if it was sent from an header field indicating support for both the GRUU specification
entity on the path of the original dialog. This can be done by (through the presence of the gruu option tag) and this specification
including the dialog identifiers in the REFER, which prove that the (through the presence of the tdialog option tag). The 200 OK

Rosenberg Expires January 19, 2006 [Page 3] Rosenberg Expires January 19, 2006 [Page 4

Internet-Draft Target Dialog July 2005

response establishes a dialog between the two user agents. Next,
server A wishes to REFER user agent B to fetch an HTTP resource. So,
it acts as a user agent and sends a REFER request to user agent B.
This REFER is addressed to the GRUU of user agent B, which server A
learned from inspecting the Contact header field in the 200 OK of the
INVITE request. This GRUU is a URI that can be used by any element
on the Internet, such as server A, to reach the specific user agent
instance that generated that 200 OK to the INVITE.

The REFER request generated by server A will contain a Target-Dialog
header field. This header field contains the dialog identifiers for
the INVITE dialog between user agents A and B, composed of the
Call-ID, local tag, and remote tag. Server A knew to include the
Target-Dialog header field in the REFER request because it knows that
user agent B supports it.

When the REFER request arrives at user agent B, it needs to make an
authorization decision. Because the INVITE dialog was established
using a sips URI, and because the dialog identifiers are
cryptographically random [1], no entity except for user agent A or
the proxies on the path of the initial INVITE request can know the
dialog identifiers. Thus, because the REFER request contains those
dialog identifiers, user agent B can be certain that the REFER
request came from either user agent A, the two proxies, or an entity
to whom the user agent or proxies gave the dialog identifiers. As
such, it authorizes the REFER request, and fetches the HTTP resource
identified by the URI of the Refer-To header field in the REFER
request.

UAC Behavior

A UAC SHOULD include a Target-Dialog header field in a request if the
following conditions are all true:

1. The request is to be sent outside of any existing dialog.

2. The user agent client believes that the request will not be
authorized by the user agent server unless the user agent client
can prove that it is aware of the dialog identifiers for some
other dialog. Call this dialog the target dialog.

3. The request does not otherwise contain information that indicates
that the UAC is aware of those dialog identifiers.

4. The user agent client knows that the user agent server supports
the Target-Dialog header field. It can know this if it has seen
a request or response from the user agent server within the
target dialog that contained a Supported header field which

Rosenberg Expires January 19, 2006 [Page 5

Internet-Draft Target Dialog July 2005

included the tdialog option tag.

If the fourth condition is not met, the UAC SHOULD NOT use this
specification. Instead, if it is currently within a dialog with the
UAS, it SHOULD attempt to send the request within the existing target
dialog.

The following are examples of use cases in which these conditions are
met:

o A REFER request 1s sent according to the principles of [11].
These REFER are sent outside of a dialog, and do not contain any
other information which indicates awareness of the target dialog.
[11] also mandates that the REFER be sent only if the UA indicates
support for the target dialog specification.

o User A is in separate calls with users B and user C. It decides to
start a three way call, and so morphs into a focus [14]. User B
would like to learn the other participants in the conference. So,
it sends a SUBSCRIBE request to user A (who is now acting as the
focus) for the conference event package [13]. It is sent outside
of the existing dialog between user B and the focus, and would be
authorized by A if user B could prove that it knows the dialog
identifiers for its existing dialog with the focus. Thus, the
Target-Dialog header field would be include in the SUBSCRIBE.

The following are examples of use cases in which these conditions are
not met:

o A server acting as a proxy is a participant in an INVITE dialog
that establishes a session. The server would like to use the
Keypad Markup Language (KPML) event package [15] to find out about
keypresses from the originating user agent. To do this, it sends
a SUBSCRIBE request. However, the Event header field of this
SUBSCRIBE contains event parameters which indicate the target
dialog of the subscription. As such, the request can be
authorized without additional information.

o A server acting as a proxy 1s a participant in an INVITE dialog
that establishes a session. The server would like to use the
dialog event package [12] to find out about keypresses from the
originating user agent. To do this, it sends a SUBSCRIBE request.
However, the Event header field of this SUBSCRIBE contains event
parameters which indicate the target dialog of the subscription.
As such, the request can be authorized without additional
information.

Specifications which intend to make use of the Target-Dialog header

Rosenberg Expires January 19, 2006 [Page 6

Internet-Draft Target Dialog July 2005

field SHOULD discuss speific conditions in which it is to be
included.

Assuming it is to be included, the value of the call-id production in
the Target-Dialog header field MUST be equal to the Call-ID of the
target dialog. The "remote-tag" header field parameter MUST be
present, and MUST contain the tag that would be viewed as the remote
tag from the perspective of the recipient of the new request. The
"local-tag" header field parameter MUST be present, and MUST contain
the tag that would be viewed as the local tag from the perspective of
the recipient of the new request.

The request sent by the UAC SHOULD include a Require header field
that includes the tdialog option tag. This request should, in
principle, never fail with a 420 (Bad Extension) response, because
the UAC would not have sent the request unless it believed the UAS
supported the extension. If a Require header field was not included,
and the UAS didn’t support the extension, it would normally reject
the request becaust it was unauthorized, probably with a 403.
However, without the Require header field, the UAC would not be able
to differentiate a 403 that arrived because the UAS didn’t actually
understand the Target-Dialog header field (in which case the client
should send the request within the target dialog if it can), from a
403 that arrived because the UAS understood the Target-Dialog header
field, but elected not to authorize the request despite the fact that
the UAC proved its awareness of the target dialog (in which case the
client should not resend the request within the target dialog, even
if it could).

User Agent Server Behavior

If a user agent server receives a dialog-creating request, and wishes
to authorize the request, and that authorization depends on whether
or not the sender has knowledge of an existing dialog with the UAS,
and information outside of the Target-Dialog header field does not
provide proof of this knowledge, the UAS SHOULD check the request for
the existence of the Target-Dialog header field. If this header
field is not present, the UAS MAY still authorize the request based
on other means.

If the header field is present, and the value of the call-id
production, the "remote-tag" and "local-tag" values match the
Call-ID, remote tag and local tag of an existing dialog, and the
dialog that they match was established using a sips URI, the UAS
SHOULD authorize the request if it would authorize any entity on the
path of the request that created that dialog, or any entity trusted
by an entity on the path of the request that created that dialog.

Rosenberg Expires January 19, 2006 [Page 7

Internet-Draft Target Dialog July 2005

If the dialog identifiers match, but they match a dialog not created
with a sips URI, the UAS MAY authorize the request if it would
authorize any entity on the path of the request that created that
dialog, or any entity trusted by an entity on the path of the request
that created that dialog. However, in this case, any eavesdropper on
the original dialog path would have access to the dialog identifiers,
and thus the authorization strength is reduced to MAY.

If the dialog identifiers don’t match, or if they don’t contain both
a "remote-tag" and "local-tag" parameter, the header field MUST be
ignored, and authorization MAY be determined by other means.

Proxy Behavior
Proxy behavior is unaffected by this specification.
Extensibility Considerations

This specification depends on a user agent client knowing, ahead of
sending a request to a user agent server, whether or not that user
agent server supports the Target-Dialog header field. As discussed
in Section 3, the UAC can know this because it saw a request or
response sent by that UAS within the target dialog that contained the
Supported header field whose value included the tdialog option tag.

Because of this requirement, it is especially important that user
agents compliant to this specification include a Supported header
field in all dialog forming requests and responses. Inclusion of the
Supported header fields in requests is at SHOULD strength within RFC
3261. This specification does not alter that requirement. However,
implementors should realize that, unless the tdialog option tag is
placed in the Supported header field of requests and responses, this
extension is not likely to be used, and instead, the request is
likely to be resent within the existing target dialog (assuming the
sender is the UA on the other side of the target dialog). As such,
the conditions in which the SHOULD would not be followed would be
those rare cases in which the UA does not want to enable usage of
this extension.

Header Field Definition

The grammar for the Target-Dialog header field is defined as follows:

Target-Dialog "Target-Dialog" HCOLON call-id * (SEMI

td-param)
td-param = remote-param / local-param / generic-param
remote-param = "remote-tag" EQUAL token
Rosenberg Expires January 19, 2006 [Page 8

Internet-Draft Target Dialog July 2005 Internet-Draft Target Dialog July 2005

local-param = "local-tag" EQUAL token user interface component. To do that, it sends a REFER request to
A’s GRUU. The flow for this is shown in Figure 5. The conventions
Figure 3 and Figure 4 are an extension of Tables 2 and 3 in RFC 3261 of [16] are used to describe representation of long message lines.
[1] for the Target-Dialog header field. The column "INF" is for the
INFO method [3], "PRA" is for the PRACK method [4], "UPD" is for the
UPDATE method [5], "SUB" is for the SUBSCRIBE method [2], "NOT" is A Server-A Server-B B
for the NOTIFY method [2], "MSG" is for the MESSAGE method [6], "REF" | (1) INVITE | |
is for the REFER method [7], and "PUB" is for the PUBLISH method [8]. | —————— >| | |
| | (2) INVITE | |
| | === >| |
Header field where proxy ACK BYE CAN INV OPT REG PUB | | | (3) INVITE |
| | | === >|
Target-Dialog R ar - - o - - - | | | (4) 200 OK
| | [<mmmmmmmm |
Figure 3: Allowed Methods for Target-Dialog | | (5) 200 OK | |
| [<mmmmmm | |
| (6) 200 OK | | |
[S | | |
Header field where proxy PRA UPD SUB NOT INF MSG REF | (7) ACK | | |
Target-Dialog R ar - o - - - ¢} |- >
| | (8) REFER | |
Figure 4: Allowed Methods for Target-Dialog | | <——mmmm—— | |
| (9) REFER | | |
[<mmmmmmm | | |
8. Security Considerations | (10) 200 OK | |
| === >| | |
The Target-Dialog header field is used to authorize requests based on | | (11) 200 OK | |
the fact that the sender of the request has access to information | | === > | |
that only certain entities have access to. In order for such an
authorization decision to be secure, two conditions have to be met.
Firstly, no eavesdroppers can have access to this information. That Figure 5
requires the original SIP dialog to be established using a sips URI,
which provides TLS on each hop. With a sips URI, only the user First, the caller sends an INVITE, as shown in message 1.

agents and proxies on the request path will be able to know the
dialog identifiers. The second condition is that the dialog
identifiers be sufficiently random that they cannot be guessed. RFC
3261 requires global uniquess for the Call-ID and 32 bits of
randomness for each tag (there are two tags for a dialog). Given the
short duration over which a typical dialog exists (perhaps as long as
a day), this amount of randomness appears adequate to prevent
guessing attacks.

9. Example Call Flow
In this example, user agent A and user agent B establish an INVITE
initiated dialog through Server-A and Server-B, each of which acts as

a proxy for the INVITE. Server B would then like to use the app
interaction framework [11] to request user agent A to fetch an HTML

Rosenber Expires January 19, 2006 [Page 9] Rosenber Expires January 19, 2006 [Page 10
9 P y g 9 P y g

Internet-Draft

Target Dialog July 2005

INVITE sips:B@example.com SIP/2.0

Via: SIP/2.0/TLS host.example.com;branch=z9hG4bK9zz8
From: Caller <sip:A@example.com>;tag=kkaz-

To: Callee <sip:B@example.org>

Call-ID: fa77as7dad8-sd98ajzz@host.example.com

CSeq: 1 INVITE

Max-Forwards: 70

Supported: gruu, tdialog

Allow: INVITE, OPTIONS, BYE, CANCEL, ACK, REFER
Accept: application/sdp, text/html

<allOneLine>

Contact: <sips:Alexample.com;opaque=urn:uuid:£f81d4f
ae-7dec-11d0-a765-00a0c91ebbf6;grid=99a>; schemes="http, sip, sips"
</allOnelLine>

Content-Length: ...

Content-Type: application/sdp

—-SDP not shown--

The INVITE indicates that the caller supports GRUU (note its presence
in the Contact header field of the INVITE) and the Target-Dialog
header field. This INVITE is forwarded to the callee (messages 2-3),
which generates a 200 OK response that is forwarded back to the
caller (message 4-5). Message 5 might look like:

SIP/2.0 200 OK

Via: SIP/2.0/TLS host.example.com;branch=z9hG4bK9zz8
From: Caller <sip:A@example.com>;tag=kkaz-

To: Callee <sip:B@example.org>;tag=6544

Call-ID: fa77as7dad8-sd98ajzzlhost.example.com

CSeqg: 1 INVITE

Contact: <sips:B@pc.example.org>

Content-Length: ...

Content-Type: application/sdp

—--SDP not shown--
In this case, the called party does not support GRUU or the Target-

Dialog header field. The caller generates an ACK (message 7).
Server B then decides to send a REFER to user A:

Rosenberg Expires January 19, 2006 [Page 11]

Internet-Draft

10.

10.

10.

Target Dialog July 2005

<allOneLine>
REFER sips:A@example.com;opaque=urn:uuid:f81d4f
ae-T7dec-11d0-a765-00a0c91lebbf6;grid=99%a SIP/2.0
</allOnelLine>
Via: SIP/2.0/TLS serverB.example.org;branch=z9hG4bK9zz10
From: Server B <sip:serverB.example.org>;tag=mreysh
<allOneLine>
To: Caller <sips:Afexample.com;opaque=urn:uuid:f£81d4f
ae-7dec-11d0-a765-00a0c91ebbf6; grid=99a>
</allOneLine>
Target-Dialog: fa77as7dad8-sd98ajzzlhost.example.com
;local-tag=kkaz-
; remote-tag=6544
Refer-To: http://serverB.example.org/ui-component.html
Call-ID: 86d65asfklzl18f7asdr@host.example.com
CSeq: 1 REFER
Max-Forwards: 70
Require: tdialog
Allow: INVITE, OPTIONS, BYE, CANCEL, ACK, NOTIFY
Event: refer
Contact: <sips:serverB.example.org>
Content-Length: 0

This REFER will be delivered to server A because it was sent to the
GRUU. From there, it is forwarded to user agent A (message 9), and
authorized because of the presence of the Target-Dialog header field.

IANA Considerations

This specification registers a new SIP header field and a new option
tag according to the processes of RFC 3261 [1].

1 Header Field

RFC Number: RFC XXXX [Note to IANA: Fill in with the RFC number of
this specification.]

Header Field Name: Target-Dialog

Compact Form: none

2 SIP Option Tag

This specification registers a new SIP option tag per the guidelines
in Section 27.1 of RFC 3261.

Rosenberg Expires January 19, 2006 [Page 12]

Internet-Draft

11.

Target Dialog July 2005

Name: tdialog

Description: This option tag is used to identify the target dialog

header field extension. When used in a Require header field, it
implies that the recipient needs to support the Target-Dialog
header field. When used in a Supported header field, it implies
that the sender of the message supports it.

Acknowledgments

This specification is based on a header field first proposed by
Robert Sparks in the dialog usage draft. John Elwell provided
helpful comments.

12. References
12.1 Normative References
[1] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
Session Initiation Protocol", RFC 3261, June 2002.
[2] Roach, A., "Session Initiation Protocol (SIP)-Specific Event
Notification", RFC 3265, June 2002.
[3] Donovan, S., "The SIP INFO Method", RFC 2976, October 2000.
[4] Rosenberg, J. and H. Schulzrinne, "Reliability of Provisional
Responses in Session Initiation Protocol (SIP)", RFC 3262,
June 2002.
[5] Rosenberg, J., "The Session Initiation Protocol (SIP) UPDATE
Method", RFC 3311, October 2002.
[6] Campbell, B., Rosenberg, J., Schulzrinne, H., Huitema, C., and
D. Gurle, "Session Initiation Protocol (SIP) Extension for
Instant Messaging", RFC 3428, December 2002.
[7] Sparks, R., "The Session Initiation Protocol (SIP) Refer
Method", RFC 3515, April 2003.
[8] Niemi, A., "Session Initiation Protocol (SIP) Extension for
Event State Publication", RFC 3903, October 2004.
Rosenberg Expires January 19, 2006 [Page 13]

Internet-

12.2 Inf

[12]

[13]

[14]

[15]

Rosenberg

Draft Target Dialog July 2005

ormative References

Sparks, R., "Multiple Dialog Usages in the Session Initiation
Protocol", draft-sparks-sipping-dialogusage-00 (work in
progress), July 2004.

Rosenberg, J., "Obtaining and Using Globally Routable User
Agent (UA) URIs (GRUU) in the Session Initiation Protocol
(SIP)", draft-ietf-sip-gruu-03 (work in progress),
February 2005.

Rosenberg, J., "A Framework for Application Interaction in the
Session Initiation Protocol (SIP)",
draft-ietf-sipping-app-interaction-framework-04 (work in
progress), February 2005.

Rosenberg, J., "An INVITE Inititiated Dialog Event Package for
the Session Initiation Protocol (SIP)",
draft-ietf-sipping-dialog-package-06 (work in progress),

April 2005.

Rosenberg, J., "A Session Initiation Protocol (SIP) Event
Package for Conference State",
draft-ietf-sipping-conference-package-12 (work in progress),
July 2005.

Rosenberg, J., "A Framework for Conferencing with the Session
Initiation Protocol",
draft-ietf-sipping-conferencing-framework-05 (work in
progress), May 2005.

Burger, E., "A Session Initiation Protocol (SIP) Event Package
for Key Press Stimulus (KPML)", draft-ietf-sipping-kpml-07
(work in progress), December 2004.

Sparks, R., "Session Initiation Protocol Torture Test
Messages", draft-ietf-sipping-torture-tests-07 (work in
progress), May 2005.

Expires January 19, 2006 [Page 14]

Internet-Draft Target Dialog

Author’s Address

Jonathan Rosenberg
Cisco Systems

600 Lanidex Plaza
Parsippany, NJ 07054
us

Phone: +1 973 952-5000

Email: jdrosen@cisco.com
URI: http://www.jdrosen.net

Rosenberg Expires January 19,

2006

July 2005

[Page 15]

Internet-Draft Target Dialog July 2005

Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any

Intellectual Property Rights or other rights that might be claimed to

pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has

made any independent effort to identify any such rights. Information

on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an

attempt made to obtain a general license or permission for the use of

such proprietary rights by implementers or users of this

specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.

Disclaimer of Validity

This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS

OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement
Copyright (C) The Internet Society (2005). This document is subject
to the rights, licenses and restrictions contained in BCP 78, and
except as set forth therein, the authors retain all their rights.
Acknowledgment

Funding for the RFC Editor function is currently provided by the
Internet Society.

Rosenberg Expires January 19, 2006 [Page 16

SIP
Int
Exp

Cer

Sta

Cop

Abs

Jen

C. Jennings
Cisco Systems
J. Peterson
NeuStar, Inc.
July 17, 2005

ernet-Draft
ires: January 18, 2006

tificate Management Service for The Session Initiation Protocol (SIP)
draft-ietf-sipping-certs-02

tus of this Memo

By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware

have been or will be disclosed, and any of which he or she becomes
aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress.”

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/lid-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on January 18, 2006.
yright Notice

Copyright (C) The Internet Society (2005).

tract

This draft defines a Credential Service that allows SIP User Agents
to use a SIP package to discover the certificates of other users.
This mechanism allows user agents that want to contact a given
Address-of-Record (AOR) to retrieve that AOR’s certificate by
subscribing to the Credential Service. The Credential Service also
allows users to store and retrieve their own certificates and private
keys.

nings & Peterson Expires January 18, 2006 [Page 1

Internet-Draft

SIP Certificates July

Table of Contents

oUW N

B B N I RS RS B B S

Q0 0O 0O O CO 0O CO 0O GO OO 0O CO QO CO QO

10.

Jennings & Peterson

0 J oUW N

0 oYU W N

o

.1
.1
.1
.1

oY U s W N

2005

Introduction 4
Definitions 4
Overview . 4
UA Behavior w1th Certlflcates 7
UA Behavior with Credentials 8
Credential Service Behavior . . 9
Event Package Formal Definition for "certlflcate" 9
Event Package Name 9
Event Package Parameters 9
SUBSCRIBE Bodies 9
Subscription Duration 10
NOTIFY Bodies 10
Subscriber Generatlon of SUBSCRIBE Requests 10
Notifier Processing of SUBSCRIBE Requests 10
Notifier Generation of NOTIFY Requests 11
Subscriber Processing of NOTIFY Requests 11

0 Handling of Forked Requests 11
1 Rate of Notifications 11
2 State Agents and Lists 12
3 Behavior of a Proxy Server . 12
Event Package Formal Definition for "credentlal" 12
Event Package Name 12
Event Package Parameters 12
SUBSCRIBE Bodies 12
Subscription Duration 12
NOTIFY Bodies 13
Subscriber Generatlon of SUBSCRIBE Requests 13
Notifier Processing of SUBSCRIBE Requests 14
Notifier Generation of NOTIFY Requests 14
Generation of PUBLISH Requests . 14

0 Notifier Processing of PUBLISH Requests 15
1 Subscriber Processing of NOTIFY Requests 15
2 Handling of Forked Requests 16
3 Rate of Notifications 16
4 State Agents and Lists 16
5 Behavior of a Proxy Server 16
Examples 16
Encrypted Page Mode IM Message . 16
Setting and Retrieving UA Credentlals 17
Security Considerations 18
Certificate Revocation 20
Certificate Replacement . 21
Trusting the Identity of a Certlflcate 21
Conformity to the SACRED Framework 22
Crypto Profiles . 22
User Certificate Generatlon 23
Expires January 18, 2006 [Page 2]

Internet-Draft

Jennings & Peterson

SIP Certificates

.7 Compromised Authentication Service

IANA Considerations

.1 Certificate Event Package
.2 Credential Event Package
.3 PKCS#8

Acknowledgments
References

.1 Normative References
.2 Informational References

Authors’ Addresses e e e e e e e e
Intellectual Property and Copyright Statements

Expires January 18, 2006

July 2005

[Page 3]

Internet-Draft

1.

Jennings & Peterson

SIP Certificates July 2005

Introduction

SIP [6] provides a mechanism [18] for end-to-end encryption and
integrity using S/MIME [17]. Several security properties of SIP
depend on S/MIME, and yet it has not been widely deployed.

Certainly, one reason is the complexity of providing a reasonable
certificate distribution infrastructure. This specification proposes
a way to address discovery, retrieval, and management of certificates
for SIP deployments. It follows the Sacred Framework RFC 3760 [7]
for management of the credentials. Combined with the SIP Identity
[2] specification, this specification allows users to have
certificates that are not signed by any well known certificate
authority while still strongly binding the user’s identity to the
certificate. This mechanism allows SIP User Agents such as IP phones
to enroll and get their credentials without any more configuration
information than they commonly have today. The end user expends no
extra effort.

Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [5].

Certificate: An X.509v3 [15] style certificate containing a public
key and a list of identities in the SubjectAltName that are bound
to this key. The certificates discussed in this draft are
generally self signed and use the mechanisms in the SIP Identity
[2] specification to vouch for their validity, but certificates
that are signed by a certificate authority can also be used with
all the mechanisms in this draft.

Credential: For this document, credential means the combination of a
certificate and the associated private key.

password phrase: A password used to encrypt a PKCS#8 private key.

Overview

The general approach is to provide a new SIP service referred to as a
"credential service" that allows SIP User Agents (UAs) to subscribe
to other users’ certificates using a new SIP event package [4]. The
certificate is delivered to the subscribing UA in a corresponding SIP
NOTIFY request. The identity of the certificate can be vouched for
using the Authentication Service from the SIP Identity [2]
specification, which uses the domain’s certificate to sign the NOTIFY
request. The credential service can manage public certificates as
well as the user’s private keys. Users can update their credentials,
as stored on the credential service, using a SIP PUBLISH [3] request.
The UA authenticates to the credential service using a shared secret

Expires January 18, 2006 [Page 4]

Internet-Draft SIP Certificates July 2005

when a UA is updating a credential. Typically the shared secret will
be the same one that is used by the UA to authenticate a REGISTER
request with the Registrar for the domain (usually with SIP Digest
Authentication).

The following figure shows Bob publishing his credentials from one of
his User Agents (e.g. his laptop software client), retrieving his
credentials from another of his User Agents (e.g. his mobile phone),
and then Alice retrieving Bob’s certificate and sending a message to
Bob. SIP 200-class responses are omitted from the diagram to make the
figure easier to understand.

example.com domain

Alice Proxy Auth Cred Bobl Bob2
| | | | TLS Handshake | |
[Bob generates] | < —— ——>|
[credentials and] | PUBLISH (credential) |
[publishes them] [<mmmmmmm e |

I
\
|
|
\
[
I
I \
s

[Bob later gets]
[back his own] SUBSCRIBE
[credentials] (credential)
[at another 1 < |
[User Agent] SUBSCRIBE+Digest |
I | <ommmmmm e |
| | NOTIFY |
\ ! S >
| | | Bob Decrypts key |
I | | |
I | | |
SUBSCRIBE (certificate) | Alice fetches
[———— >| === >|-———= > | Bob’s cert |
| | |INOTIFY| |
| NOTIFY+Identity [<-—--- |
[<m=mmmm— Fm———— | | Alice uses cert |
| | | | to encrypt |
| MESSAGE | | | message to Bob
| ———— >|————— o o >

Bob’s UA (Bob2) does a TLS [11] handshake with the credential server

Jennings & Peterson Expires January 18, 2006 [Page 5

Internet-Draft SIP Certificates July 2005

to authenticate that the UA is connected to the correct credential
server. Then Bob’s UA publishes his newly created or updated
credentials. The credential server digest challenges the UA to
authenticate that the UA knows Bob’s shared secret. Once the UA is
authenticated, the credential server stores Bob’s credentials.

Another of Bob’s User Agents (Bobl) wants to fetch its current
credentials. It does a TLS [11] handshake with the credential server
to authenticate that the UA is connected to the correct credential
server. Then Bob’s UA subscribes for the credentials. The
credential server digest challenges the UA to authenticate that the
UA knows Bob’s shared secret. Once the UA is authenticated, the
credential server sends a NOTIFY that contains Bob’s credentials.
The private key portion of the credential may have been encrypted
with a secret that only Bob’s UA (and not the credential server)
knows. In this case, once Bob’s UA decrypts the private key it will
be ready to go. Typically Bob’s UA would do this when it first
registered on the network.

Some time later Alice decides that she wishes to discover Bob’s
certificate so that she can send him an encrypted message or so that
she can verify the signature on a message from Bob. Alice’s UA sends
a SUBSCRIBE message to Bob’s AOR. The proxy in Bob’s domain routes
this to the credential server via an authorization service. The
credential server returns a NOTIFY that contains Bob’s public
certificate in the body. This is routed through an authentication
service that signs that this message really can validly claim to be
from the AOR "sip:bob@example.com". Alice’s UA receives the
certificate and can use it to encrypt a message to Bob.

It is critical to understand that the only way that Alice can trust
that the certificate really is the one for Bob and that the NOTIFY
has not been spoofed is for Alice to check that the Identity [2]
header field value is correct.

The mechanism described in this document works for both self signed
certificates and certificates signed by well known certificate
authorities; however, it is imagined that most UAs using this would
only use self signed certificates and would use an Authentication
Service as described in [2] to provide a strong binding of an AOR to
the certificates.

The mechanisms described in this draft allow for three different
styles of deployment:

1. Deployments where the the credential server only stores

certificates and does not store any private key information. If
the deployment had users with multiple devices, some other scheme

Jennings & Peterson Expires January 18, 2006 [Page 6

Internet-Draft SIP Certificates July 2005

4.

(perhaps even manual provisioning) would be used to get the right
private keys onto all the devices that a user uses.

2. Deployments where the credential server stores certificates and
also stores encrypted version of the private keys. The
credential server would not know or need the password phrase for
decrypting the private key. The credential server would help
move the the private keys between devices but the user would need
to enter a password phrase on each device to allow that device to
decrypt (and encrypt) the private key information.

3. Deployments where the credential server stores the certificates
and private keys and also knows the password phrase for
decrypting the private keys. Deployments such as these may not
even use password phrases, in which case the private keys are not
encrypted inside the PKCS#8 objects. This style of deployments
would often have the credential server, instead of the devices,
create the credentials.

UA Behavior with Certificates

When a User Agent wishes to discover some other user’s certificate it
subscribes to the "certificate" SIP event package as described in
Section 7 to get the certificate. While the subscription is active,
if the certificate is updated, the Subscriber will receive the
updated certificate in a notification.

The Subscriber needs to decide how long it is willing to trust that
the certificate it receives is still valid. If the certificate is
revoked before it expires, the Notifier will send a notification with
an empty body to indicate that the certificate is no longer valid.
However, the Subscriber might not receive the notification if an
attacker blocks this traffic. The amount of time that the Subscriber
caches a certificate SHOULD be configurable. A default of one day is
RECOMMENDED.

Note that the actual duration of the subscription is orthogonal to
the caching time or validity time of the corresponding certificate.
Allowing subscriptions to persist after a certificate is not longer
valid ensures that Subscribers receive the replacement certificate in
a timely fashion. 1In some cases, the Notifier will not allow
unauthenticated subscriptions to persist. The Notifier could return
an immediate notification with the certificate in response to
subscribe and then immediately terminate subscription, setting the
reason parameter to "probation". The Subscriber will have to
periodically poll the Notifier to verify validity of the certificate.

If the UA uses a cached certificate in a request and receives a 437
(Unsupported Certificate) response, it SHOULD remove the certificate
it used from the cache, attempt to fetch the certificate again. If

Jennings & Peterson Expires January 18, 2006 [Page 7

Internet-Draft SIP Certificates July 2005

the certificate is the not the same, then the UA SHOULD retry the
original request again. This situation usually indicates that the
certificate was recently updated, and that the Subscriber has not
received a corresponding notification. If the certificate fetched is
the same as the one that was previously in the the cache, then the UA
SHOULD NOT try the request again. This situation can happened when
the request was retargeted to a different user than the original
request. The 437 response is defined in [2].

Note: A UA that has a presence list MAY want to subscribe to the
certificates of all the presentities in the list when the UA
subscribes to their presence, so that when the user wishes to
contact a presentity, the UA will already have the appropriate
certificate. Future specifications might consider the possibility
of retrieving the certificates along with the presence documents.

The details of how a UA deals with receiving encrypted messages is
outside the scope of this specification but it is worth noting that
if Charlie’s UAS receives a request that is encrypted to Bob, it
would be valid and legal for that UA to send a 302 redirecting the
call to Charlie.

UA Behavior with Credentials

UAs discover their own credentials by subscribing to their AOR with
an event type of credential as described in Section 8. After a UA
registers, it SHOULD retrieve its credentials by subscribing to them
as described in Section 7.6.

When a UA discovers its credential, the private key information might
be encrypted with a password phrase. The UA SHOULD request that the
user enter the password phrase on the device, and the UA MAY cache
this password phrase for future use.

There are several different cases in which a UA should generate a new

credential:

o If the UA receives a NOTIFY with no body for the credential
package.

o If the certificate has expired.

o If the certificate is within 600 seconds of expiring, the UA
SHOULD attempt to create replacement credentials. The UA does
this by waiting a random amount of time between 0 and 300 seconds.
If no new credentials have been received in that time, the UA
creates new credentials to replace the expiring ones and sends
them in a PUBLISH request (with a SIP-If-Match header set to the
current etag). This makes credential collisions both unlikely and
harmless.

Jennings & Peterson Expires January 18, 2006 [Page 8

Internet-Draft SIP Certificates July 2005

o If the user of the device has indicated via the user interface
that they wish to revoke the current certificate and issue a new
one.

Credentials are created by creating a new key pair which will require

appropriate randomness, and then creating a certificate as described

in Section 10.6. The UA MAY encrypt the private key with a password
phrase supplied by the user. Then the UA updates the user’s
credential by sending a PUBLISH [3] request with the credentials or

just the certificate as described in Section 8.9.

If a UA wishes to revoke the existing certificate without publishing
a new one, it MUST send a PUBLISH with an empty body to the
credential server.

6. Credential Service Behavior

The credential service stores credentials for users and can provide
the credentials to other user agents belonging to the same user, and
certificates to any user agent. The credentials are indexed by a URI
that corresponds to the AOR of the user. When a UA requests a public
certificate with a SUBSCRIBE, the server sends the UA the certificate
in a NOTIFY and sends a subsequent NOTIFY any time the certificate
changes. TWhen a credential is requested, the credential service
digest challenges the requesting UA to authenticate it so that the
credential service can verify that the UA is authorized to receive
the requested credentials. When a credential is published, the
credential service digest challenges the requesting UA to
authenticate it so that the credential service can verify that the UA
is authorized to change the credentials. This behavior is defined in
Section 7 and Section 8.

7. Event Package Formal Definition for "certificate"
7.1 Event Package Name

This document defines a SIP Event Package as defined in RFC 3265 [4].
The event-package token name for this package is:

certificate

7.2 Event Package Parameters
This package does not define any event package parameters.
7.3 SUBSCRIBE Bodies

This package does not define any SUBSCRIBE bodies.

Jennings & Peterson Expires January 18, 2006 [Page 9

Internet-Draft SIP Certificates July 2005

7.4 Subscription Duration

Subscriptions to this event package can range from no time to weeks.
Subscriptions in days are more typical and are RECOMMENDED. The
default subscription duration for this event package is one day.

The credential service is encouraged to keep the subscriptions active
for AORs that are communicating frequently, but the credential
service MAY terminate the subscription at any point in time.

7.5 NOTIFY Bodies

The body of a NOTIFY request for this package MUST either be empty or
contain an application/pkix-cert body (as defined in [10]) that
contains the certificate, unless an Accept header has negotiated some
other type. The Content-Disposition MUST be set to "signal".

A future extension MAY define other NOTIFY bodies. If no "Accept"
header is present in the SUBSCRIBE, the body type defined in this
document MUST be assumed.

Implementations which generate large notifications are reminded to
follow the message size restrictions for unreliable transports
articulated in Section 18.1.1 of SIP.

7.6 Subscriber Generation of SUBSCRIBE Requests

A UA discovers a certificate by sending a SUBSCRIBE request with an
event type of "certificate" to the AOR for which a certificate is
desired. 1In general, the UA stays subscribed to the certificate for
as long as it plans to use and cache the certificate, so that the UA
can be notified about changes or revocations to the certificate.

Subscriber User Agents will typically subscribe to certificate
information for a period of hours or days, and automatically attempt
to re-subscribe just before the subscription is completely expired.

When a user de-registers from a device (logoff, power down of a
mobile device, etc.), subscribers SHOULD unsubscribe by sending a
SUBSCRIBE request with an Expires header of zero.

7.7 Notifier Processing of SUBSCRIBE Requests

When a SIP credential server receives a SUBSCRIBE request with the
certificate event-type, it is not necessary to authenticate the
subscription request. The Notifier MAY limit the duration of the
subscription to an administrator-defined period of time. The
duration of the subscription does not correspond in any way to the

Jennings & Peterson Expires January 18, 2006 [Page 10

Internet-Draft SIP Certificates July 2005

period for which the certificate will be wvalid.

When the credential server receives a SUBSCRIBE request for a
certificate, it first checks to see if it has credentials for the
requested URI. If it does not have a certificate, it returns a
NOTIFY request with an empty message body.

7.8 Notifier Generation of NOTIFY Requests

Immediately after a subscription is accepted, the Notifier MUST send
a NOTIFY with the current certificate, or an empty body if no
certificate is available for the target user. In either case it
forms a NOTIFY with the From header field value set to the value of
the To header field in the SUBSCRIBE request. This server sending
the NOTIFY needs either to implement an Authentication Service (as
described in SIP Identity [2]) or else the server needs to be set up
such that the NOFIFY request will be sent through an Authentication
Service. Sending the NOTIFY request through the the Authentication
Service requires the SUBSCRIBE request to have been routed through
the Authentication Service, since the NOTIFY is sent within the
dialog formed by the subscription.

7.9 Subscriber Processing of NOTIFY Requests

The resulting NOTIFY will contain an application/pkix-cert body that
contains the requested certificate. The UA MUST follow the
procedures in Section 10.3 to decide if the received certificate can
be used. The UA needs to cache this certificate for future use. The
maximum length of time it should be cached for is discussed in
Section 10.1. The certificate MUST be removed from the cache if the
certificate has been revoked (if a NOTIFY with an empty body is
received), or if it is updated by a subsequent NOTIFY. The UA MUST
check that the NOTIFY is correctly signed by an Authentication
Service as described in [2]. If the identity asserted by the
Authentication Service does not match the AOR that the UA subscribed
to, the certificate in the NOTIFY is discarded and MUST NOT be used.

7.10 Handling of Forked Requests

This event package does not permit forked requests. At most one
subscription to this event type is permitted per resource.

7.11 Rate of Notifications

Notifiers SHOULD NOT generate NOTIFY requests more frequently than
once per minute.

Jennings & Peterson Expires January 18, 2006 [Page 11

Internet-Draft SIP Certificates July 2005

7.12 State Agents and Lists

Implementers MUST NOT implement state agents for this event type.
Likewise, implementations MUST NOT use the event list extension [19]
with this event type. It is not possible to make such an approach
work, because the Authentication service would have to simultaneously
assert several different identities.

7.13 Behavior of a Proxy Server
There are no additional requirements on a SIP Proxy, other than to
transparently forward the SUBSCRIBE and NOTIFY requests as required
in SIP. This specification describes the Proxy, Authentication
service, and credential service as three separate services, but it is
certainly possible to build a single SIP network element that
performs all of these services at the same time.

8. Event Package Formal Definition for "credential"

8.1 Event Package Name

This document defines a SIP Event Package as defined in RFC 3265 [4].
The event-package token name for this package is:

credential

8.2 Event Package Parameters
This package defines the "etag" Event header parameter which is valid
only in NOTIFY requests. It contains a token which represents the
SIP etag value at the time the notification was sent. Considering
how infrequently credentials are updated, this hint is very likely to
be the correct etag to use in the SIP-If-Match header in a SIP
PUBLISH request to update the current credentials.

etag-param = "etag" EQUAL token

8.3 SUBSCRIBE Bodies
This package does not define any SUBSCRIBE bodies.
8.4 Subscription Duration
Subscriptions to this event package can range from hours to one week.

Subscriptions in days are more typical and are RECOMMENDED. The
default subscription duration for this event package is one day.

Jennings & Peterson Expires January 18, 2006 [Page 12]

Internet-Draft SIP Certificates July 2005

The credential service SHOULD keep subscriptions active for UAs that
are currently registered.

.5 NOTIFY Bodies

The NOTIFY MUST contain a multipart/mixed (see [14]) body that
contains both an application/pkix-cert body with the certificate and
an application/pkcs8 body that has the associated private key
information for the certificate. The Content-Disposition MUST be set
to "signal" as defined in [16]

A future extension MAY define other NOTIFY bodies. If no "Accept"
header is present in the SUBSCRIBE, the body type defined in this
document MUST be assumed.

The application/pkix-cert body is a DER encoded X.509v3 certificate
[10]. The application/pkcs8 body contains a DER-encoded PKCS#8 [1]
object that contains the private key. The PKCS#8 objects MUST be of
type PrivateKeyInfo. The integrity and confidentiality of the PKCS#8
objects is provided by the TLS transport. The transport encoding of
all the MIME bodies is binary.

.6 Subscriber Generation of SUBSCRIBE Requests

A Subscriber User Agent will subscribe to its credential information
for a period of hours or days and will automatically attempt to re-
subscribe before the subscription has completely expired.

The Subscriber SHOULD subscribe to its credentials whenever a new
user becomes associated with the device (a new login). The
subscriber SHOULD also renew its subscription immediately after a
reboot, or when the subscriber’s network connectivity has just been
re-established.

The UA needs to authenticate with the credential service for these
operations. The UA MUST use TLS to connect to the server. The UA
may be configured with a specific name for the credential service;
otherwise normal SIP routing is used. As described in RFC 3261, the
TLS connection needs to present a certificate that matches the
expected name of the server to which the connection was formed, so
that the UA knows it is talking to the correct server. Failing to do
this may result in the UA publishing its private key information to
an attacker. The credential service will authenticate the UA using
the usual SIP Digest mechanism, so the UA can expect to receive a SIP
challenge to the SUBSCRIBE or PUBLISH requests.

Jennings & Peterson Expires January 18, 2006 [Page 13

Internet-Draft SIP Certificates July 2005

.7 Notifier Processing of SUBSCRIBE Requests

When a credential service receives a SUBSCRIBE for a credential, the
credential service has to authenticate and authorize the UA and
validate that adequate transport security is being used. Only a UA
that can authenticate as being able to register as the AOR is
authorized to receive the credentials for that AOR. The credential
Service MUST digest challenge the UA to authenticate the UA and then
decide if it is authorized to receive the credentials. If
authentication is successful, the Notifier MAY limit the duration of
the subscription to an administrator-defined period of time. The
duration of the subscription MUST not be larger than the length of
time for which the certificate is still valid. The Expires header
should be set appropriately.

.8 Notifier Generation of NOTIFY Requests

Once the UA has authenticated with the credential service and the
subscription is accepted, the credential service MUST immediately
send a Notify request. The Notifier SHOULD include the current etag
value in the "etag" Event package parameter in the NOTIFY request.
The Authentication Service is applied to this NOTIFY request in the
same way as the certificate subscriptions. If the credential is
revoked, the credential service MUST terminate any current
subscriptions and force the UA to re-authenticate by sending a NOTIFY
with its Subscription-State header set to "terminated" and a reason
parameter of "deactivated". (This causes a Subscriber to retry the
subscription immediately.) This is so that if a secret for
retrieving the credentials gets compromised, the rogue UA will not
continue to receive credentials after the compromised secret has been
changed.

Any time the credentials for this URI change, the credential service
MUST send a new NOTIFY to any active subscriptions with the new
credentials.

.9 Generation of PUBLISH Requests

A user agent SHOULD be configurable to control whether it publishes
the credential for a user or just the user’s certificate.

When publishing just a certificate, the body contains an application/
pkix-cert. When publishing a credential, the body contains a
multipart/mixed containing both an application/pkix-cert and an
application/pkcs8 body.

When the UA sends the PUBLISH [3] request, it needs to do the

Jennings & Peterson Expires January 18, 2006 [Page 14

Internet-Draft SIP Certificates July 2005 Internet-Draft SIP Certificates July 2005

following: 8.12 Handling of Forked Requests
o0 The Expires header field value in the PUBLISH request SHOULD be
set to match the time for which the certificate is valid. This event package does not permit forked requests.
o If the certificate includes Basic Constraints, it SHOULD set the
CA flag to false. 8.13 Rate of Notifications
o The PUBLISH request SHOULD include a SIP-If-Match header field
with the previous etag from the subscription. This prevents Notifiers SHOULD NOT generate NOTIFY requests more frequently than
multiple User Agents for the same AOR from publishing conflicting once per minute.
credentials. Note that UAs replace credentials that are about to
expire at a random time (described in Section 5), reducing the 8.14 State Agents and Lists
chance of publishing conflicting credentials even without using
the etag. Implementers MUST NOT implement state agents for this event type.
Likewise, implementations MUST NOT use the event list extension [19]
8.10 Notifier Processing of PUBLISH Requests with this event type.
When the credential service receives a PUBLISH to update credentials, 8.15 Behavior of a Proxy Server
it MUST authenticate and authorize this request the same way as for
subscriptions for credentials. If the authorization succeeds, then The behavior is identical to behavior described for certificate
the credential service MUST perform the following check on the the subscriptions described in Section 7.13.
certificate:
o One of the names in the SubjectAltName of the certificate matches 9. Examples
the authorized user making the request.
o The notBefore validity time MUST NOT be in the future. In all these examples, large parts of the messages are omitted to
o The notAfter validity time MUST be in the future. highlight what is relevant to this draft. The lines in the examples
o If an CA Basic Constraint is set in the certificate, it is set to that are prefixed by $ represent encrypted blocks of data.
false.
If all of these succeed, the credential service updates the 9.1 Encrypted Page Mode IM Message
credential for this URI, processes all the active certificates and
credential subscriptions to this URI, and generates a NOTIFY request In this example, Alice sends Bob an encrypted page mode instant
with the new credential or certificate. message. Alice does not already have Bob’s public key from previous
communications, so she fetches Bob’s public key from Bob’s credential
If the Subscriber submits a PUBLISH request with no body, this service:

revokes the current credentials and causes all subscriptions to the
credential package to be deactivated as described in the previous

section. (Note that subscriptions to the certificate package are NOT SUBSCRIBE sip:bob@biloxi.example.com SIP/2.0
terminated; each subscriber to the certificate package receives a e
notification with an empty body.) Event: certificate
8.11 Subscriber Processing of NOTIFY Requests The credential service responds with the certificate in a NOTIFY.

When the UA receives a valid NOTIFY request, it should replace its
existing credentials with the new received ones. If the UA cannot
decrypt the PKCS#8 object, it MUST send a 437 (Unsupported
Certificate) response. Later if the user provides a new password
phrase for the private key, the UA can subscribe to the credentials
again and attempt to decrypt with the new password phrase.

Jennings & Peterson Expires January 18, 2006 [Page 15] Jennings & Peterson Expires January 18, 2006 [Page 16

Internet-Draft

SIP Certificates July 2005

NOTIFY alice@atlanta.example.com SIP/2.0
Subscription-State: active; expires=7200

From: <sip:bobGbiloxi.example.com>;tag=1234

Identity: "NJguAbpmYXjnlxFmlOkumMI+MZXjB2iV/NW5xsFQqzD/pdyiovrdBghd3T
ZkegnsmoHryzk9gTBH7Gj/erixEFI£8203Anmb+CIbrgdl03gGaD6ICvkp
VgoMXZ7ZjdvSpycyHOhhlcmUx3b9Vr3pZuEh+cB01pbMQ8Blch++iMjw="

Identity-Info: <https://atlanta.example.com/cert>;alg=rsa-shal

Event: certificate
Content-Type: application/pkix-cert
Content-Disposition: signal

< certificate data >

Next, Alice sends a SIP MESSAGE message to Bob and can encrypt the
body using Bob’s public key as shown below. Although outside the
scope of this document, it is worth noting that instant messages
often have common plain text like "Hi", so that setting up symmetric
keys for extended session mode IM conversations will likely increase
efficiency, as well as reducing the likelihood of compromising the
asymmetric key in the certificate.

MESSAGE sip:bob@biloxi.example.com SIP/2.0

Content-Type: application/pkcs7-mime
Content-Disposition: render

$ Content-Type: text/plain
$

$ < encrypted version of "Hello" >

.2 Setting and Retrieving UA Credentials

When Alice’s UA wishes to publish Alice’s public and private keys to
the credential service, it sends a PUBLISH request like the one
below. This must be sent over a TLS connection in which the other
end of the connection presents a certificate that matches the
credential service for Alice and digest challenges the request to
authenticate her.

Jennings & Peterson Expires January 18, 2006 [Page 17

Internet-Draft

10.

SIP Certificates

PUBLISH sips:alicel@atlanta.example.com SIP/2.0

Content-Type: multipart/mixed;boundary=boundary
Content-Disposition: signal

—-boundary
Content-ID: 123
Content-Type: application/pkix-cert

< Public certificate for Alice >
—--boundary

Content-ID: 456

Content-Type: application/pkcs8

< Private Key for Alice >
—-boundary

If one of Alice’s UAs subscribes to the credential event,

July 2005

the UA will

be digest challenged, and the NOTIFY will include a body similar to

the one in the PUBLISH section above.

Security Considerations

The high level message flow from a security point of view is
summarized in the following figure. The 200 responses are removed
from the figure as they do not have much to do with the overall

security.

Jennings & Peterson Expires January 18, 2006

[Page 18]

Internet-Draft SIP Certificates July 2005
Alice Server Bob UA
| | TLS Handshake | 1) Client authC/Z server
| <= > |
| | PUBLISH | 2) Client sends request
| [<m=—mmmmm | (write credential)
| | Digest Challenge | 3) Server challenges client
| [= > |
| | PUBLISH + Digest | 4) Server authC/Z client
| [<mmmmmmmmmm |
| | time |
| | |
| | TLS Handshake | 5) Client authC/Z server
| <= > |
| | SUBSCRIBE | 6) Client sends request
| [<m=—mmmmm e | (read credential)
| | Digest Challenge | 7) Server challenges client
| [= > |
| | SUBSCRIBE+Digest | 8) Server authC/Z client
| [<mmmmmmmmmm - |
| | NOTIFY | 9) Server returns credential
| == >
| |
| SUBSCRIBE | 10) Client requests certificate
| === >|
| |
|NOTIFY+AUTH| 11) Server returns user’s certificate and signs that
| <=mmmmm——— | it is valid using certificate for the domain

When the UA, labeled Bob, first created a credential for Bob, it
would store this on the the credential server. The UA authenticated
the Server using the certificates from the TLS handshake. The Server
authenticated the UA using a digest style challenge with a shared
secret.

The UA, labeled Bob, wishes to request its credentials from the
server. First it forms a TLS connection to the Server, which
provides integrity and privacy protection and also authenticates the
server to Bob’s UA. Next the UA requests its credentials using a
SUBSCRIBE request. The Server digest challenges this to authenticate
Bob’s UA. The server and Bob’s UA have a shared secret that is used
for this. If the authentication is successful, the server sends the
credentials to Bob’s UA. The private key in the credentials may have
been encrypted using a shared secret that the server does not know.

A similar process would be used for Bob’s UA to publish new
credentials to the server. The SUBSCRIBE request would change to a
PUBLISH request and there would not be an NOTIFY. When this

Jennings & Peterson Expires January 18, 2006 [Page 19

Internet-Draft

10.

SIP Certificates July 2005

happened, all the other UAs that were subscribed to Bob’s credentials
would receive a new NOTIFY with the new credentials.

Alice wishes to find Bob’s certificate and sends a SUBSCRIBE to the
server. The server sends the response in NOTIFY. This does not need
to be sent over a privacy or integrity protected channel, as the
Authentication service described in [2] provides integrity protection
of this information and signs it with the certificate for the domain.

This whole scheme is highly dependent on trusting the operators of
the credential service and trusting that the credential service will
not be compromised. The security of all the users will be
compromised if the credential service is compromised.

Note: There has been significant discussion of the topic of
avoiding deployments in which the credential servers store the
private keys, even in some encrypted form that the credential
server does not know how to decrypt. Various schemes were
considered to avoid this but they all result in either moving the
problem to some other server, which does not seem to make the
problem any better, or having a different credential for each
device. For some deployments where each user has only one device
this is fine but for deployments with multiple devices, it would
require that when Alice went to contact Bob, Alice would have to
provide messages encrypted for all of Bob’s devices. The sipping
working group did consider this architecture and decided it was
not appropriate due both to the information it revealed about the
devices and users and the amount of signaling required to make it
work.

This specification requires the TLS session to be used for SIP
communications to the credential service. As specified in RFC 3261,
TLS clients MUST check that the SubjectAltName of the certificate for
the server they connected to exactly matches the server they were
trying to connect to. Failing to use TLS or selecting a poor cipher
suite (such as NULL encryption) will result in credentials, including
private keys, being sent unencrypted over the network and will render
the whole system useless. Implementations really must use TLS or
there is no point in implementing any of this.

The correct checking of chained certificates as specified in TLS [11]
is critical for the client to authenticate the server. If the client
does not authenticate that it is talking to the correct credential
service, a man in the middle attack is possible.

1 Certificate Revocation

If a particular credential needs to be revoked, the new credential is

Jennings & Peterson Expires January 18, 2006 [Page 20

Internet-Draft

10.

10.

Jennings & Peterson

SIP Certificates July 2005

simply published to the credential service. Every device with a copy
of the old credential or certificate in its cache will have a
subscription and will rapidly (order of seconds) be notified and
replace its cache. Clients that are not subscribed will subscribe
when they next need to use the certificate and will get the new
certificate.

It is possible that an attacker could mount a DOS attack such that
the UA that had cached a certificate did not receive the NOTIFY with
its revocation. To protect against this attack, the UA needs to
limit how long it caches certificates. After this time, the UA would
invalidate the cached information even though no NOTIFY had ever been
received due to the attacker blocking it.

The duration of this cached information is in some ways similar to a
device deciding how often to check a CRL list. For many
applications, a default time of 1 day is suggested, but for some
applications it may be desirable to set the time to zero so that no
certificates are cached at all and the credential is checked for
validity every time the certificate is used.

2 Certificate Replacement

The UAs in the system replace the certificates close to the time that
the certificates would expire. If a UA has used the same key pair to
encrypt a very large volume of traffic, the UA MAY choose to replace
the credential with a new one before the normal expiration.

3 Trusting the Identity of a Certificate

When a UA wishes to discover the certificate for
sip:alice@example.com, the UA subscribes to the certificate for
alicel@example.com and receives a certificate in the body of a SIP
NOTIFY request. The term original URI is used to describe the URI
that was in the To header field value of the SUBSCRIBE request. So
in this case the original URI would be sip:alice@example.com.

If the certificate is signed by a trusted CA, and one of the names in
the SubjectAltName matches the original URI, then this certificate
MAY be used but only for exactly the original URI and not for other
identities found in the SubjectAltName. Otherwise, there are several
steps the UA MUST perform before using this certificate.

o The From header in the NOTIFY request MUST match the original URI
that was subscribed to.

o The UA MUST check the Identity header as described in the Identity
[2] specification to validate that bodies have not been tampered
with and that an Authentication Service has validated this From
header.

Expires January 18, 2006 [Page 21]

Internet-Draft

10.

10.

Jennings & Peterson

SIP Certificates July 2005

o The UA MUST check the validity time of the certificate and stop

using the certificate if it is invalid. (Implementations are
reminded to verify both the notBefore and notAfter validity
times.)

o The certificate MAY have several names in the SubjectAltName but
the UA MUST only use this certificate when it needs the
certificate for the identity asserted by the Authentication
Service in the NOTIFY. This means that the certificate should
only be indexed in the certificate cache by the AOR that the
Authentication Service asserted and not by the value of all the
identities found in the SubjectAltName list.

These steps result in a chain of bindings that result in a trusted

binding between the original AOR that was subscribed to and a public

key. The original AOR is forced to match the From. The

Authentication Service validates that this request did come from the

identity claimed in the From header field value and that the bodies

in the request that cary the certificate have not been tampered with.

The certificate in the body contains the public key for the identity.

Only the UA that can authenticate as this AOR, or devices with access

to the private key of the domain, can tamper with this body. This

stops other users from being able to provide a false public key.

This chain of assertion from original URI, to From, to body, to

public key is critical to the security of the mechanism described in

this specification. If any of the steps above are not followed, this
chain of security will be broken and the system will not work.

4 Conformity to the SACRED Framework

This specification uses the security design outlined in the SACRED
Framework [7]. Specifically, it follows the cTLS architecture
described in section 4.2.2 of RFC 3760. The client authenticates the
server using the server’s TLS certificate. The server authenticates
the client using a SIP digest transaction inside the TLS session.

The TLS sessions form a strong session key that is used to protect
the credentials being exchanged.

5 Crypto Profiles

Credential services SHOULD implement the server name indication
extensions in RFC 3546 [8] and they MUST support a TLS profile of
TLS_RSA_WITH_AES_128_CBC_SHA as described in RFC 3268 [9] and a
profile of TLS_RSA_WITH_3DES_EDE_CBC_SHA.

The PKCS#8 in the clients MUST implement PBES2 with a key derivation
algorithm of PBKDF2 using HMAC with SHAl and an encryption algorithm
of DES-EDE2-CBC-Pad as defined in RFC 2898 [12]. It is RECOMMENDED
that this profile be used when using PKCS#8.

Expires January 18, 2006 [Page 22]

Internet-Draft

10.

10.

11.

Jennings & Peterson

SIP Certificates July 2005

6 User Certificate Generation

The certificates should be consistent with RFC 3280 [13]. A
signatureAlgorithm of shalWithRSAEncryption MUST be implemented. The
Issuers SHOULD be the same as the subject. Given the ease of issuing
new certificates with this system, the Validity can be relatively
short. A Validity of one year or less is RECOMMENDED. The
subjectAltName must have a URI type that is set to the SIP URL
corresponding to the user AOR. It MAY be desirable to put some
randomness into the length of time for which the certificates are
valid so that it does not become necessary to renew all the
certificates in the system at the same time.

It is worth noting that a UA can discover the current time by looking
at the Date header field value in the 200 response to a REGISTER
request.

7 Compromised Authentication Service

One of this worst attacks against this system would be if the
Authentication Service were compromised. This attack is somewhat
analogous to a CA being compromised in traditional PKI systems. The
attacker could make a fake certificate for which it knows the private
key, use it to receive any traffic for a given use, and then re-
encrypt that traffic with the correct key and forward the
communication to the intended receiver. The attacker would thus
become a man in the middle in the communications.

There is not too much that can be done to protect against this. A UA
MAY subscribe to its own certificate under some other identity to try
to detect whether the credential server is handing out the correct
certificates. It will be difficult to do this in a way that does not
allow the credential server to recognize the user’s UA.

The UA MAY also save the fingerprints of the cached certificates and
warn users when the certificates change significantly before their
expiry date.

The UA MAY also allow the user to see the fingerprints for the cached
certificates so that they can be verified by some other out of band
means.

IANA Considerations

This specification defines two new event packages that IANA is
requested to add the registry at:

Expires January 18, 2006 [Page 23]

Internet-Draft

11

11.

11.

Jennings & Peterson

SIP Certificates July 2005

http://www.iana.org/assignments/sip-events
It also defines a new mime type that IANA is requested to add to the
registry at:

http://www.iana.org/assignments/media-types/application

.1 Certificate Event Package

To: ietf-sip-events@iana.org
Subject: Registration of new SIP event package

Package Name: certificate
Is this registration for a Template Package: No
Published Specification(s): This document

New Event header parameters: This package defines no
new parameters

Person & email address to contact for further information:
Cullen Jennings <fluffy@cisco.com>

2 Credential Event Package

To: ietf-sip-events@iana.org

Subject: Registration of new SIP event package

Package Name: credential

Is this registration for a Template Package: No

Published Specification(s): This document

New Event header parameters: "etag"

Person & email address to contact for further information:

Cullen Jennings <fluffy@cisco.com>

3 PKCS#8

Expires January 18, 2006 [Page 24]

Internet-Draft

SIP Certificates July 2005

To: ietf-types@iana.org
Subject: Registration of MIME media type application/pkcs8

MIME media type name: application
MIME subtype name: pkcs8

Required parameters: None
Optional parameters: None

Encoding considerations: The PKCS#8 object inside this MIME type
MUST be DER-encoded.

This MIME type was designed for use with
protocols which can carry binary-encoded
data. Protocols which do not carry binary
data (which have line length or
character-set restrictions for example)
MUST use a reversible transfer encoding
(such as base64) to carry this MIME type.
Protocols that carry binary data SHOULD
use a transfer encoding of "binary".

Security considerations: Carries a cryptographic private key
Interoperability considerations: None
Published specification:
RSA Laboratories, "Private-Key Information Syntax Standard,
Version 1.2", PKCS 8, November 1993.
Applications which use this media type: Any MIME-compliant transport
Additional information:
Magic number (s): None
File extension(s): .p8

Macintosh File Type Code(s): none

Person & email address to contact for further information:
Cullen Jennings <fluffy@cisco.com>

Intended usage: COMMON

Author/Change controller:
the IESG

Jennings & Peterson Expires January 18, 2006 [Page 25

Internet-Draft

12.

13.

13.

SIP Certificates July 2005

Acknowledgments

Many thanks to Eric Rescorla, Jim Schaad, Rohan Mahy for significant
help and discussion. Many others provided useful comments, including
Kumiko Ono, Peter Gutmann, Russ Housley, Yaron Pdut, Aki Niemi,
Magnus Nystrom, Paul Hoffman, Adina Simu, Dan Wing, Mike Hammer,
Lyndsay Campbell, and Jason Fischl. Rohan Mahy, John Elwell, and
Jonathan Rosenberg provided detailed review and text.

References
1 Normative References

[1] RSA Laboratories, "Private-Key Information Syntax Standard,
Version 1.2", PKCS 8, November 1993.

[2] Peterson, J. and C. Jennings, "Enhancements for Authenticated
Identity Management in the Session Initiation Protocol (SIP)",
draft-ietf-sip-identity-05 (work in progress), May 2005.

[3] Niemi, A., "Session Initiation Protocol (SIP) Extension for
Event State Publication", RFC 3903, October 2004.

[4] Roach, A., "Session Initiation Protocol (SIP)-Specific Event
Notification", RFC 3265, June 2002.

[5] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997.

[6] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
Session Initiation Protocol", RFC 3261, June 2002.

[7] Gustafson, D., Just, M., and M. Nystrom, "Securely Available
Credentials (SACRED) - Credential Server Framework", RFC 3760,
April 2004.

[8] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J., and

T. Wright, "Transport Layer Security (TLS) Extensions",
RFC 3546, June 2003.

[9] Chown, P., "Advanced Encryption Standard (AES) Ciphersuites for
Transport Layer Security (TLS)", RFC 3268, June 2002.

[10] Housley, R. and P. Hoffman, "Internet X.509 Public Key
Infrastructure Operational Protocols: FTP and HTTP", RFC 2585,
May 1999.

Jennings & Peterson Expires January 18, 2006 [Page 26

Internet-Draft

13.

[11]

[12]

SIP Certificates July 2005

Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

Kaliski, B., "PKCS #5: Password-Based Cryptography
Specification Version 2.0", RFC 2898, September 2000.

Housley, R., Polk, W., Ford, W., and D. Solo, "Internet X.509
Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile", RFC 3280, April 2002.

Freed, N. and N. Borenstein, "Multipurpose Internet Mail
Extensions (MIME) Part Two: Media Types", RFC 2046,
November 1996.

International Telecommunications Union, "Information technology
- Open Systems Interconnection - The Directory: Public-key and

attribute certificate frameworks", ITU-T Recommendation X.509,

ISO Standard 9594-8, March 2000.

Zimmerer, E., Peterson, J., Vemuri, A., Ong, L., Audet, F.,
Watson, M., and M. Zonoun, "MIME media types for ISUP and QSIG
Objects", RFC 3204, December 2001.

2 Informational References

[17]

[19]

Ramsdell, B., "Secure/Multipurpose Internet Mail Extensions
(S/MIME) Version 3.1 Message Specification", RFC 3851,
July 2004.

Peterson, J., "S/MIME Advanced Encryption Standard (AES)
Requirement for the Session Initiation Protocol (SIP)",
RFC 3853, July 2004.

Roach, A., Rosenberg, J., and B. Campbell, "A Session
Initiation Protocol (SIP) Event Notification Extension for
Resource Lists", draft-ietf-simple-event-1ist-07 (work in
progress), January 2005.

Jennings & Peterson Expires January 18, 2006 [Page 27

Internet-Draft

Jennings & Peterson

Authors’ Addresses

Cullen Jennings

Cisco Systems

170 West Tasman Drive
MS: SJC-21/2

San Jose, CA 95134
USA

Phone: +1 408 421-9990
Email: fluffy@cisco.com

Jon Peterson
NeuStar, Inc.

1800 Sutter St
Suite 570

Concord, CA 94520
us

Phone: +1 925/363-8720
Email: jon.peterson@neustar.biz
URI: http://www.neustar.biz/

SIP Certificates

Expires January 18,

2006

July 2005

[Page 28]

Internet-Draft SIP Certificates July 2005

Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.

Disclaimer of Validity

This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement
Copyright (C) The Internet Society (2005). This document is subject
to the rights, licenses and restrictions contained in BCP 78, and
except as set forth therein, the authors retain all their rights.
Acknowledgment

Funding for the RFC Editor function is currently provided by the
Internet Society.

Jennings & Peterson Expires January 18, 2006 [Page 29

SIP WG C. Jennings
Internet-Draft Cisco Systems
Expires: January 17, 2006 K. Ono
NTT Corporation

July 16, 2005

Example call flows using SIP security mechanisms
draft-jennings-sip-sec-flows-03

Status of this Memo

By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware

have been or will be disclosed, and any of which he or she becomes
aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress.”

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/lid-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on January 17, 2006.

Copyright Notice
Copyright (C) The Internet Society (2005).

Abstract
This document shows call flows demonstrating the use of SIPS, TLS,
and S/MIME in SIP. This draft provides information that helps
implementers build interoperable SIP software. It is purely
informational. To help facilitate interoperability testing, it

includes certificates used in the example call flows and a CA
certificate to create certificates for testing.

Jennings & Ono Expires January 17, 2006 [Page 1

Internet-Draft SIP Secure Flows

July 2005

This work is being discussed on the sip@ietf.org mailing list.

Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL"
[17.

document are to be interpreted as described in RFC-2119

Table of Contents

1. Introduction
2. Security Con51deratlons
3. Certificates

3.1 CA Certificates

3.2 Host Certificate

3.3 User Certificates
4. Callflow with Message Over TLS

4.1 TLS with Server Authentication

4.2 MESSAGE Message Over TLS
5. Callflow with S/MIME-secured Message

1 MESSAGE Message with Signed Body
5.2 MESSAGE Message with Encrypted Body .

3 MESSAGE Message with Encrypted and Signed Body
Test Notes e e e e e e e
Open Issues
IANA Con51deratlons
Acknowledgments
0. References

10.1 Normative References

10.2 Informative References
Authors’ Addresses

A. Making Test Certificates

A.1 makeCA script

A.2 makeCert script
B. Certificates for Testing

Intellectual Property and Copyrlght Statements

= © o -J o

Jennings & Ono Expires January 17, 2006

"SHALL NOT",

in this

[Page 2]

Internet-Draft SIP Secure Flows July 2005

1. Introduction

Several different groups are starting to implement the S/MIME[7]
portion of SIP([2]. Over the last several interoperability events, it
has become clear that it is difficult to write these systems without
any test vectors or examples of "known good" messages to test
against. Furthermore, testing at the events is often hampered by
trying to get certificates signed by some common test root into the
appropriate format for various clients. This document addresses both
of these issues by providing detailed messages that give detailed
examples that implementers can use for comparison and that can also
be used for testing. In addition, this document provides a common
certificate that can be used for a CA to reduce the time it takes to
set up a test at an interoperability event. The document also
provides some hints and clarifications for implementers.

A simple SIP call flow using SIPS and TLS is shown in Section 4. The
certificates for the hosts used are shown in Section 3.2 and the CA
certificates used to sign these are shown in Section 3.1.

The text from Section 5.1 through Section 5.3 shows some simple SIP
call flows using S/MIME to sign and encrypt the body of the message.
The user certificates used in these examples are shown in

Section 3.3. These host certificates are signed with the same CA
certificate.

Section 6 presents a partial list of things implementers should check
that they do in order to implement a secure system.

A way to make certificates that can be used for interoperability
testing is presented in Appendix A, along with methods for converting
these to various formats.

The S/MIME messages shown in this document were made using client
implementations from the authors’ respective companies. These
implementations are different code bases and though there may still
be errors in these flows, the authors feel that the interoperability
of these two clients bodes well for the correctness of the flows in
this document.

2. Security Considerations

Implementers must never use any of the certificates provided in this
document in anything but a test environment. Installing the CA root
certificates used in this document as a trusted root in operational
software would completely destroy the security of the system while
giving the user the impression that the system was operating
securely.

Jennings & Ono Expires January 17, 2006 [Page 3

Internet-Draft SIP Secure Flows July 2005

This document recommends some things that implementers might test or
verify to improve the security of their implementations. It is
impossible to make a comprehensive list of these, and this document
only suggests some of the most common mistakes that have been seen at
the SIPit interoperability events. Just because an implementation
does everything this document recommends does not make it secure.

The S/MIME examples use 3DES, but AES is preferred.
3. Certificates
3.1 CA Certificates
The certificate used by the CA to sign the other certificates is

shown below. This is a X509v3 certificate. Note that the basic
constraints allow it to be used as a CA.

Jennings & Ono Expires January 17, 2006 [Page 4

Internet-Draft

Jennings & Ono

SIP Secure Flows

Version: 3 (0x2)
Serial Number: 0 (0x0)
Signature Algorithm: shalWithRSAEncryption
Issuer: C=US, ST=California, L=San Jose, O=sipit,
OU=Sipit Test Certificate Authority
Validity
Not Before: Jul 18 12:21:52 2003 GMT
Not After Jul 15 12:21:52 2013 GMT
Subject: C=US, ST=California, L=San Jose, O=sipit,
OU=Sipit Test Certificate Authority
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:c3:22:1e:83:91:¢5:03:2c:3c:8a:£f4:11:
4b:9d:fa:72:78:¢c6:00:95:18:a7:e0:8c:79:
ad:ae:le:21:2d:9d:f1:0b:1lc:cf:bd:5b:29:
13:73:66:92:6e:df:4c:b3:b3:1c:1£f:2a:82:

03:ff:2a:76:cd:df:87:1la:bd:71:eb:el:99:
7£:8e:74:a0:77:85:04:e9:41:ad:£fc:03:b6:
aa:33:ea:0a:16:d9:fb:79:32:2e:£8:cf:4d:
a3:ff:1b:d0:68:28:el1:9d:eb
Exponent: 65537 (0x10001)
X509v3 extensions:
X509v3 Subject Key Identifier:
6B:46:17:14:EA:94:76:25:80:54:6E:13:54:DA:AL1:E3
X509v3 Authority Key Identifier:
6B:46:17:14:EA:94:76:25:80:54:6E:13:54:DA:AL1:E3
DirName:/C=US/ST=California/L=San Jose/O=sipit/
OU=Sipit Test Certificate Authority
serial:00
X509v3 Basic Constraints:
CA:TRUE
Signature Algorithm: shalWithRSAEncryption

96:6d:1b:ef:d5:91:93:45:7c:5b:1f:cf:cd4:aa:47:52:0b:
a8:50:fa:ec:fa:b4:2a:47:4c:5d:41:a7:3d:c0:d6:3f:9e:
5p:91:1d:ce:a8:07:03:1b:ad4:9f:9a:49:6f:7f:e0:ce:83:
71:42:af:fe:63:a2:34:dc:bd:5e:ab:ce:ca:79:50:e9:6a:
4c:14:69:e9:7c:ab:22:6c:44:cc:8a:9¢c:33:6b:23:50:42:
1f:el:c2:81:88:5f:ba:e5:47:bb:85:90:83:25:ad:84:32:
2a:5b:8b:70:12:11:83:61:¢c9:69:15:4£:58:a3:3c:92:d4:

The ASN.l1 parse of the CA certificate is shown belo

Expires January 17, 2006

July 2005

:54:14:A1:B6

:54:14:A1:B6

W.

[Page 5]

Internet-

145:
147:
162:
177:
179:
181:
183:
188:
192:
194:
196:
201:
213:
215:
217:
222:
232:
234:

Jennings

Draft

:1= 804

:1= 112

= 32

= 30
= 13

1= 112

= 3
= 2

- 3

= 17

= 15
= 3

= 12

& Ono

cons:
cons:
cons:
prim:
prim:
cons:
prim:
prim:
cons:
cons:
cons:
prim:
prim:
cons:
cons:
prim:
prim:
cons:
cons:
prim:
prim:
cons:
cons:
prim:
prim:
cons:
cons:
prim:
prim:

cons:
prim:
prim:
cons:
cons:
cons:
prim:
prim:
cons:
cons:
prim:
prim:
cons:
cons:
prim:
prim:
cons:
cons:

SIP Secure Flows

SEQUENCE

SEQUENCE
cont [0]
INTEGER

:02

INTEGER :00

SEQUENCE
OBJECT
NULL
SEQUENCE
SET
SEQUENCE
OBJECT
PRINTABLESTRING
SET
SEQUENCE
OBJECT
PRINTABLESTRING
SET
SEQUENCE
OBJECT
PRINTABLESTRING
SET
SEQUENCE
OBJECT
PRINTABLESTRING
SET
SEQUENCE
OBJECT
PRINTABLESTRING

:shalWithRSAEncryption

:countryName

:Us

:stateOrProvinceName
:California

:localityName
:San Jose

:organizationName
:sipit

:organizationalUnitName

Sipit Test Certificate Authority

SEQUENCE
UTCTIME
UTCTIME
SEQUENCE
SET
SEQUENCE
OBJECT
PRINTABLESTRING
SET
SEQUENCE
OBJECT
PRINTABLESTRING
SET
SEQUENCE
OBJECT
PRINTABLESTRING
SET
SEQUENCE

Expires January 17,

:0307181221527
:1307151221527

:countryName
:US

:stateOrProvinceName
:California

:localityName
:San Jose

2006 [Page 6]

July 2005

Internet-

236:
241:
248:
250:
252:
257:

647:
649:

30 03

661:
663:

Jennings

July 2005

:organizationName
:sipit

rorganizationalUnitName

Sipit Test Certificate Authority

Draft SIP Secure Flows
1 3 prim OBJECT

1= 5 prim PRINTABLESTRING
1= 41 cons SET

1= 39 cons SEQUENCE

1= 3 prim OBJECT

1 32 prim PRINTABLESTRING

= 159 cons SEQUENCE

= 13 cons SEQUENCE

= 9 prim OBJECT

= 0 prim NULL

= 141 prim BIT STRING

81 89 02 81 81 00-c3 22 le 83 91 c5
f4 11 14 c6 4b 9d-fa 72 78 c6 b0 95
79 ba 5d a4 ae le-21 2d 9d f1 0Ob lc
b3 90 13 73 66 92-6e df 4c b3 b3 1lc
ba 07 4d 52 b0 £8-37 7b e2 0a 27 30
03 ff 2a 76 cd df-87 la bd 71 eb el
8e 74 a0 77 85 04-e9 41 ad fc 03 bé6
ea 0a 16 d9 fb 79-32 2e £8 cf 4d c6
d0 68 28 el 9d e5-02 03 01 00 01

= 205 cons: cont [3]

= 202 cons: SEQUENCE

= 29 cons: SEQUENCE

= 3 prim: OBJECT :X509v3

= 22 prim: OCTET STRING

6b 46 17 14 ea 94-76 25 80 54 6e 13
54 14 al b6

= 154 cons: SEQUENCE

= 3 prim: OBJECT :X509v3

= 146 prim: OCTET STRING

8f 80 14 6b 46 17-14 ea 94 76 25 80
da al e3 54 14 al-b6 al 74 a4 72 30
09 06 03 55 04 06-13 02 55 53 31 13
55 04 08 13 0a 43-61 6¢c 69 66 6f 72
11 30 Of 06 03 55-04 07 13 08 53 61
73 65 31 0e 30 0c-06 03 55 04 0Oa 13
69 74 31 29 30 27-06 03 55 04 0b 13
69 74 20 54 65 73-74 20 43 65 72 74
61 74 65 20 41 75-74 68 6f 72 69 74
0092 - <SPACES/NULS>

1= 12 cons: SEQUENCE

1= 3 prim: OBJECT
:1= 5 prim: OCTET STRING

01 01 ff

1= 13 cons: SEQUENCE

1= 9 prim: OBJECT 'S
& Ono Expires January 17,

:rsaEncryption

03 2c

Subject Key Identifier

54 da kELLo.vs.TIn.T.
LT

Authority Key Identifier

54 6e 0....kF....v%.Tn
70 31 LTo o T ot x0pl
30 11 .0...0....USL.0.
6e 69 .U....Californi
6e 20 al.0...U....San
05 73 Josel.0...U....s
20 53 ipitl)0’..U... S
69 66 ipit Test Certif
79 82 icate Authority.
:X509v3 Basic Constraints
0....
halWithRSAEncryption

2006 [Page 7]

Internet-Draft

00 96 6d 1b
52 0b 34 a8
c0 d6 3f 9e
49 6f 7f e0
5e a5 ce ca
6c 44 cc 8a
5f ba e5 47
70 12 11 83

3.2

The certificate for the host example.com is shown below.

ef
50
56
ce
79
9¢c
bb
61

0 prim:
129 prim:

das

Host Certificate

SIP Secure

NULL

BIT STRING

93-45
fa-b4d
ld-ce
71-42
6a-99
23-50
83-25
15-4f

Tc
2a
a8
af
4c
42
ad
58

Flows

cf

1b
a2
e9
el

92

c4
41
a4

Tc
c2
2a
d4

July 2005

Note that

the Subject Alternative Name is set to example.com and is a DNS type.
The certificates for the other hosts are shown in Appendix B.

Jennings & Ono

Expires January 17,

2006

[Page 8]

Internet-Draft SIP Secure Flows

Data:
Version: 3 (0x2)
Serial Number:
01:95:00:71:02:33:00:55
Signature Algorithm: shalWithRSAEncryption
Issuer: C=US, ST=California, L=San Jose, O=sipit,
OU=Sipit Test Certificate Authority
Validity
Not Before: Feb 3 18:49:08 2005 GMT
Not After : Feb 3 18:49:08 2008 GMT
Subject: C=US, ST=California, L=San Jose, O=sipit,
CN=example.com
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:e6:31:76:b5:27:cc:8d:32:85:56:70:£7:c2:
33:32:26:42:5€:3¢c:68:71:7b:1£:79:50:d0:72:
3b:4a:af:f2:ce:dl:0c:bc:c0:5£:31:6a:43:e7:
ad:64:bd:c7:e6:25:9f:aa:cd:2d:90:aa:68:84:
Tb:05:be:43:a5:af:bb:ea:9d:a9:5b:a4:53:9d:
8b:da:96:2e:1£:3f:92:46:b8:cc:c8:24:3c:46:
5d:2d:64:85:bl:ad:ca:01:f1:8e:c5:7e:0f:£ff:
9l:a3:ea:cb:3e:12:02:75:a4:bb:08:c8:d0:2a:
b3:bb:72:7a:98:e5:££:9£:81

Exponent: 65537 (0x10001)

X509v3 extensions:
X509v3 Subject Alternative Name:
DNS:example.com
X509v3 Basic Constraints:
CA:FALSE
X509v3 Subject Key Identifier:
22:EA:CB:38:66:1D:F1:96:0C:9A:47:B6:BB:1C:52:
44:B0:77:65:8D
Signature Algorithm: shalWithRSAEncryption
ae:eb:49:ed:1e:£1:8d:26:a9:6d:03:82:92:d5:df:44:cd:le:
1£:07:75:88:37:e4:76:97:35:12:59:98:79:78:16:6e:3b:bl:
c0:2b:db:85:02:6b:74:c9:5b:19:92:da:7e:£5:41:0b:bc:d2:
dd:45:aa:6f:be:24:dc:48:57:66:d9:2e:82:df:9e:8d:70:03:
73:75:ef:8f:7a:56:4c:cc:42:0bd:31:45:b0:5e:££f:d1l:3b:c4:
82:ee:fd:a7:c1:10:34:eb:81:49:1a:6b:86:7e:c7:61:1d:b3:
b9:0a:02:bd:84:£8:47:af:cf:f1:a8:73:a8:31:1d:20:7a:06:

3.3 User Certificates

July 2005

33:
27:
Tc:

22:
cd:

ef:

The user certificate for fluffy@example.com is shown below.

Jennings & Ono Expires January 17, 2006

Note

[Page 9]

Internet-Draft SIP Secure Flows July 2005

that the Subject Alternative Name has a list of names with different
URL types such as a sip, im, or pres URL. This is necessary for
interoperating with CPIM gateway. In this example, example.com is
the domain for fluffy, the message could be coming from a host called
example.com, and the AOR in the user certificate would still be the
same. The others are shown in Appendix B.

Jennings & Ono Expires January 17, 2006 [Page 10]

Internet-Draft SIP Secure Flows July 2005 Internet-Draft SIP Secure Flows July 2005

Data: 4. Callflow with Message Over TLS
Version: 3 (0x2)
Serial Number: 4.1 TLS with Server Authentication
01:95:00:71:02:33:00:58
Signature Algorithm: shalWithRSAEncryption The flow below shows the edited SSLDump output of the host
Issuer: C=US, ST=California, L=San Jose, O=sipit, example.com forming a TLS connection to example.net. In this example
OU=Sipit Test Certificate Authority mutual authentication is not used. Note that the client proposed
Validity three protocol suites including the required
Not Before: Feb 3 18:49:34 2005 GMT TLS_RSA_WITH_AES_128_CBC_SHA. The certificate returned by the server
Not After : Feb 3 18:49:34 2008 GMT contains a Subject Alternative Name that is set to example.net. A
Subject: C=US, ST=California, L=San Jose, O=sipit, detailed discussion of TLS can be found in [11]

CN=fluffy@example.com
Subject Public Key Info:

Public Key Algorithm: rsaEncryption New TCP connection #1: 127.0.0.1(55768) <-> 127.0.0.1(5061
RSA Public Key: (1024 bit) 11 0.0060 (0.0060) C>SVv3.1(49) Handshake
Modulus (1024 bit): ClientHello
00:ca:ab:9b:9b:4e:3c:d5:45:3c:ce:00:a6:36:a8: Version 3.1
b9:ec:d2:76:e2:b9:9b:e8:28:aa:ba:86:22:c5:cf: random[32]=
33:3e:4f:6d:56:21:ae:bd:54:84:7c:14:14:£9:7d: 42 16 8c c¢7 82 cd c5 87 42 ba f5 1lc 91 04 fb 7d
99:85:00:4e:93:d6:fd:6b:d4:dl:d4:55:8e:c9:89: 4d 6c 56 f1 db 1d ce 8a bl 25 71 5a 68 01 a2 14
bl:af:2b:5£:23:99:4a:95:e5:68:65:64:1d:12:a7: cipher suites
db:d3:d5:97:18:47:35:9c:e6:88:27:9d:a8:6c:ca: TLS_RSA_WITH_AES_256_CBC_SHA
2a:84:e6:62:d8:fl:e9:a2:1a:39:7e:0e:0£:90:a5: TLS_RSA_WITH_AES_128_CBC_SHA
a6:79:21:bc:2a:67:b4:dd:69:90:82:9a:ae:1£:02: TLS_RSA_WITH_3DES_EDE_CBC_SHA
52:8a:58:d3:£5:d0:d4:66:67 compression methods
Exponent: 65537 (0x10001) NULL
X509v3 extensions: 12 0.0138 (0.0077) S>Cv3.1(74) Handshake
X509v3 Subject Alternative Name: ServerHello
URI:sip:fluffy@example.com, URI:im:fluffy@example.com, Version 3.1
URI:pres:fluffylexample.com random[32]=
X509v3 Basic Constraints: 42 16 8c c7 c9 2c 43 42 bb 69 a5 ba fl1 2d 69 75
CA:FALSE c3 8d 3a 85 78 19 f2 e4 d9 2b 72 b4 cc dd e4 72
X509v3 Subject Key Identifier: session_id[32]=
EC:DA:98:5E:E9:F7:F7:D7:EC:2B:29:4B:DA:25:EE:C7:C7: 06 37 e9 22 56 29 eb b4 3a 6e 53 fe 56 27 ed 1f
TE:95:70 2a 75 34 65 £f0 91 fc 79 cf 90 da ac f4 6f 64 b5
Signature Algorithm: shalWithRSAEncryption ciphersSuite TLS_RSA_WITH_AES_256_CBC_SHA
4c:46:49:6e:01:48:e2:d4:6e:d7:48:a1:£3:7b:c8:a5:98:37: compressionMethod NULL
a5:44:46:58:9f:4a:37:7d:90:fb:5f:££:36:bd:67:31:£0:29: 13 0.0138 (0.0000) S>Cv3.1(1477) Handshake
de:0a:e2:ea:p9:f0:5c:9f:ad:al:de:eb:4e:42:8£:11:d8:41: Certificate
ea:68:be:db:c2:le:fa:e5:8a:2d:7£:66:13:29:e9:da:8f:fb: 14 0.0138 (0.0000) s>Cv3.1(4) Handshake
80:bf:7e:5e:b6:04:2d:08:5e:58:95:b7:¢5:38:85:d5:65:31: ServerHelloDone
ad:80:cb:28:a7:4c:ad:11:fd:41:3b:37:77:5a:de:85:96:3d: 15 0.0183 (0.0045) C>Sv3.1(134) Handshake
66:eb:5f:9a:£8:60:5f:8e:bl:fc:4a:43:53:b6:11:4d:2e:£4: ClientKeyExchange
3d:ff EncryptedPreMasterSecret [128]=

a6 bd d9 4b 76 4b 9d 6f 7b 12 8a e4 52 75 9d 74
4f 06 e4 b0 bc 69 96 d7 42 ba 77 01 b6 9e 64 b0
ea c5 aa de 59 41 e4 £3 9e 1lc lc a9 48 £5 0Oa 3f
5e ¢3 50 23 15 d7 46 1d 69 79 76 ba 5e c8 ac 39

Jennings & Ono Expires January 17, 2006 [Page 11] Jennings & Ono Expires January 17, 2006 [Page 12]

Internet-Draft SIP Secure Flows July 2005 Internet-Draft SIP Secure Flows July 2005

23 71 d0 Oc 18 a6 a9 77 0f 7d 49 61 ef 6f 8d 32 TLS connection. It is shown below.
54 £f5 a4 1d 19 33 0Oa 64 ee 56 91 9b f4 £f7 50 bl
11 4b 81 46 4c 36 df 70 98 04 dc 5c 8a 16 a9 2e

58 67 ae 5e 7a a9 44 2b Ob 7c 9c 2f 16 25 la e9 SIP/2.0 200 OK
1 6 0.0183 (0.0000) C>SvV3.1(1) ChangeCipherSpec To: <sips:kumiko@example.net>;tag=4c53f1b8
17 0.0183 (0.0000) <C>Sv3.1(48) Handshake From: <sips:fluffy@example.com>;tag=03de4dbel
18 0.0630 (0.0447) sS>Cv3.1(1l) ChangeCipherSpec Via: SIP/2.0/TLS 127.0.0.1:5071;
19 0.0630 (0.0000) S>CV3.1(48) Handshake branch=z9hG4bK-d87543-58c826887160£95f-1--d87543~;
1 10 0.3274 (0.2643) <C>SVv3.1(32) application_data rport=55768; received=127.0.0.1
1 11 0.3274 (0.0000) C>Sv3.1(720) application_data Call-ID: 0dc68373623af98alY2ou¥21z¥Y28uc2lwaXQubmv0
1 12 0.3324 (0.0050) S>CVv3.1(32) application_data CSeq: 1 MESSAGE
1 13 0.3324 (0.0000) S>Cv3.1(384) application_data Contact: <sips:kumiko@127.0.0.1:5061;transport=TLS>
1 9.2491 (8.9166) C>S TCP FIN Content-Length: 0
1 9.4023 (0.1531) S>C TCP FIN

4.2 MESSAGE Message Over TLS
5. Callflow with S/MIME-secured Message
Once the TLS session is set up, the following MESSAGE message is sent

from fluffy@example.com to kumiko@example.net. Note that the URI has 5.1 MESSAGE Message with Signed Body

a SIPS URL and that the VIA indicates that TLS was used. In order to

format this document, it was necessary to break up some of the lines Example Signed Message. The value on the Content-Type line has been
across continuation lines but the original messages have no broken across lines to fit on the page but it should not broken
continuations lines and no breaks in the Identity header field value. across lines in actual implementations.

MESSAGE sips:kumiko@example.net SIP/2.0

To: <sips:kumiko@example.net>

From: <sips:fluffy@example.com>;tag=03de4dbel

Via: SIP/2.0/TLS 127.0.0.1:5071;

branch=z9hG4bK-d87543-58c826887160£95f-1--d87543~; rport

Call-ID: 0dc68373623af98a@Y2ou¥Y21zY28uc2lwaXQubmv0

CSeq: 1 MESSAGE

Contact: <sips:fluffy@127.0.0.1:5071;transport=TLS>

Max-Forwards: 70

Content-Transfer-Encoding: binary

Content-Type: text/plain

Date: Sat, 19 Feb 2005 00:48:07 GMT

User-Agent: SIPimp.org/0.2.5 (curses)

Identity: gKUEWvgss+FOpQHJCyarb8IMbDhldlgilAg51lty61b0+ug5ZQzo31xn
MAFHUeOtzNVoyOfmGUY2dIEWJ21iZ1GISEW3RF5hGN9f0y39iCRGGEAE
B4UG50cU4RzgXfK3Durle/66rkyCaLPJQ/pzgA+qW/nQyt SuzewhDrD
FRrCBQ=

Content-Length: 6

Hello!

The response is sent from example.net to example.com over the same

Jennings & Ono Expires January 17, 2006 [Page 13] Jennings & Ono Expires January 17, 2006 [Page 14

Internet-Draft

Jennings & Ono

SIP Secure Flows July 2005

MESSAGE sip:kumiko@example.net SIP/2.0

To: <sip:kumiko@example.net>

From: <sip:fluffyl@example.com>;tag=0c523b42

Via: SIP/2.0/UDP 68.122.119.3:5060;
branch=z9hG4bK-d87543-16a1192b7960£635-1--d87543~; rport

Call-ID: 27bb7608596d8914C@Y20uY21zY28uc2lwaXQubmv0

CSeqg: 1 MESSAGE

Contact: <sip:fluffy@68.122.119.3:5060>

Max-Forwards: 70

Content-Transfer-Encoding: binary

Content-Type: multipart/signed;boundary=151aa2144df0£f6bd;\

micalg=shal;protocol=application/pkcs7-signature

Date: Fri, 04 Feb 2005 20:17:12 GMT

User-Agent: SIPimp.org/0.2.5 (curses)

Content-Length: 1544

--15laa2144df0febd
Content-Type: text/plain
Content-Transfer-Encoding: binary

Hello

--151aa2144df0fe6bd

Content-Type: application/pkcs7-mime;name=smime.p7s
Content-Disposition: attachment;handling=required; filename=smime.p7s
Content-Transfer-Encoding: binary

hkkkkhkhkxkhkhkkhhkk**x

* BINARY BLOB 1 *
Kok kK ok kK ok kK Kk K Kk kK Kk

--15laa2144df0fébd--

It is important to note that the signature is computed across
includes the header and excludes the boundary. The value on the
Message-body line ends with CRLF. The CRLF is included in the
boundary and should not be shown.

Content-Type: text/plain

Content-Transfer-Encoding: binary

Hello

ASN.1 parse of binary Blob 1. Note that at address 30, the hash for
the signature is specified as SHAl. Also note that from address 52
to 777, the sender’s certificate is attached, although it is optional

[81.

0: SEQUENCE ({

Expires January 17, 2006 [Page 15]

Internet-Draft

109:
111:
113:
118:

130:
132:
134:
139:

149:
151:
153:
158:

Jennings & Ono

SIP Secure Flows July 2005

OBJECT IDENTIFIER signedData (1 2 840 113549 1 7 2)
(01 |
SEQUENCE {
INTEGER 1
SET {
SEQUENCE {
OBJECT IDENTIFIER shal (1 3 14 3 2 26)
NULL
}
}
SEQUENCE {
OBJECT IDENTIFIER data (1 2 840 113549 1 7 1)
}
[01 {
SEQUENCE {
SEQUENCE {
[01 {
INTEGER 2
}
INTEGER 01 95 00 71 02 33 00 58
SEQUENCE {
OBJECT IDENTIFIER
shalwithRSAEncryption (1 2 840 113549 1 1 5)
NULL
}
SEQUENCE {
SET {
SEQUENCE {
OBJECT IDENTIFIER countryName (2 5 4 6)
PrintableString ’US’
}
}
SET {
SEQUENCE {
OBJECT IDENTIFIER stateOrProvinceName (2 5 4 8)
PrintableString ’California’
}
}
SET {
SEQUENCE {
OBJECT IDENTIFIER localityName (2 5 4 7)
PrintableString ’San Jose’
}
}
SET {
SEQUENCE {
OBJECT IDENTIFIER organizationName (2 5 4 10)
PrintableString ’sipit’

Expires January 17, 2006 [Page 16

Internet-Draft

165:
167:
169:

208:
210:
225:

240:
242:
244
246:
251:

255:
257:
259:
264:

276:
278:
280:
285:

295:
297:
299:
304:

311:
313:
315:
320:

340:
343:

Jennings & Ono

SIP Secure Flows July 2005

}
}
SET {
SEQUENCE {
OBJECT IDENTIFIER
organizationalUnitName (2 5 4 11)
PrintableString ’Sipit Test Certificate Authority’
}
}
}
SEQUENCE {
UTCTime 03/02/2005 18:49:34 GMT
UTCTime 03/02/2008 18:49:34 GMT
}
SEQUENCE {
SET {
SEQUENCE {
OBJECT IDENTIFIER countryName (2 5 4 6)
PrintableString ’US’
}
}
SET {
SEQUENCE {
OBJECT IDENTIFIER stateOrProvinceName (2 5 4 8)
PrintableString ’California’
}
}
SET {
SEQUENCE {
OBJECT IDENTIFIER localityName (2 5 4 7)
PrintableString ’San Jose’
}
}
SET {
SEQUENCE {
OBJECT IDENTIFIER organizationName (2 5 4 10)
PrintableString ’sipit’
}
}
SET {
SEQUENCE {
OBJECT IDENTIFIER commonName (2 5 4 3)
TeletexString ' fluffy@example.com’
}
}
}
SEQUENCE {
SEQUENCE {

Expires January 17, 2006 [Page 17]

Internet-Draft

345:

358:
362:
365:

497:

502:
504:
506:
508:
513:
515:
517:
541:
564:

589:
591:
596:
598:

600:
602:

607:
609:

Jennings & Ono

SIP Secure Flows July 2005

OBJECT IDENTIFIER
rsaEncryption (1 2 840 113549 1 1 1)
NULL
}
BIT STRING, encapsulates {
SEQUENCE {
INTEGER
00 CA AB 9B 9B 4E 3C D5 45 3C CE 00 A6 36 A8 B9
EC D2 76 E2 B9 9B E8 28 AA BA 86 22 C5 CF 33 3E
4F 6D 56 21 AE BD 54 84 7C 14 14 F9 7D 99 85 00
4E 93 D6 FD 6B D4 D1 D4 55 8E C9 89 Bl AF 2B 5F
23 99 4A 95 E5 68 65 64 1D 12 A7 DB D3 D5 97 18
47 35 9C E6 88 27 9D A8 6C CA 2A 84 E6 62 D8 F1
E9 A2 1A 39 7E OE OF 90 A5 A6 79 21 BC 2A 67 B4
DD 69 90 82 9A AE 1F 02 52 8A 58 D3 F5 D0 D4 66
[Another 1 bytes skipped
INTEGER 65537
}
}
}
[31 {
SEQUENCE {
SEQUENCE {
OBJECT IDENTIFIER subjectAltName (2 5 29 17)
OCTET STRING, encapsulates {
SEQUENCE {
[6] "sip:fluffy@example.com’
[6] "im:fluffy@example.com’
[6] "pres:fluffylexample.com’
}
}
}
SEQUENCE {
OBJECT IDENTIFIER basicConstraints (2 5 29 19)
OCTET STRING, encapsulates ({
SEQUENCE {}
}
}
SEQUENCE {
OBJECT IDENTIFIER
subjectKeyIdentifier (2 5 29 14)
OCTET STRING, encapsulates {
OCTET STRING
EC DA 98 5E E9 F7 F7 D7 EC 2B 29 4B DA 25 EE C7
C7 7E 95 70
}
}

Expires January 17, 2006 [Page 18]

Internet-Draft

631:
633:

646:

778
782:
786:
789:
791:
793:
795:
797:
802:

806:
808:
810:

815:

827:
829:
831:
836:

846:
848:
850:
855:

Jennings & Ono

SIP Secure Flows

}
}
SEQUENCE {
OBJECT IDENTIFIER
shalwithRSAEncryption (1 2 840 113549 1
NULL
}
BIT STRING
4C 46 49 6E 01 48 E2 D4 6E D7 48 Al F3 7B
98 37 A5 44 46 58 9F 4A 37 7D 90 FB 5F FF
67 31 FO 29 DE OA E2 EA B9 FO 5C 9F AD A0

7F 66 13 29 E9 DA 8F FB 80 BF 7E 5E B6 04
5E 58 95 B7 C5 38 85 D5 65 31 AD 80 CB 28

F8 60 5F 8E Bl FC 4A 43 53 B6 11 4D 2E F4
}
}
SET {
SEQUENCE {
INTEGER 1
SEQUENCE {
SEQUENCE {
SET {
SEQUENCE {

July 2005

15)

OBJECT IDENTIFIER countryName (2 5 4 6)

PrintableString 'US’
}
}
SET {
SEQUENCE {
OBJECT IDENTIFIER

stateOrProvinceName (2 5 4 8)

PrintableString ’California’
}
}
SET {
SEQUENCE {
OBJECT IDENTIFIER localityName (2 5
PrintableString ’San Jose’
}
}
SET {
SEQUENCE {
OBJECT IDENTIFIER organizationName
PrintableString ’sipit’
}

Expires January 17, 2006

4. 7)
(2 54 10)
[Page 19]

Internet-Draft

862:
864:
866:

871:

915:
917:
924:

926:
929:
931:

942:
944 :

955:
957:

968:
970:

985:
987:

998:
1000:

1022:
1024:

1035:
1037:
1039:
1041:

Jennings & Ono

SIP Secure Flows July 2005

SET {
SEQUENCE {
OBJECT IDENTIFIER
organizationalUnitName (2 5 4 11)
PrintableString
"Sipit Test Certificate Authority’
}
}
}
INTEGER 01 95 00 71 02 33 00 58
}
SEQUENCE {
OBJECT IDENTIFIER shal (1 3 14 3 2 26)
NULL
}
[01 {
SEQUENCE {
OBJECT IDENTIFIER
contentType (1 2 840 113549 1 9 3)
SET {
OBJECT IDENTIFIER data (1 2 840 113549 1 7 1)
}
}
SEQUENCE {
OBJECT IDENTIFIER
signingTime (1 2 840 113549 1 9 5)
SET {
UTCTime 04/02/2005 20:17:12 GMT
}
}
SEQUENCE {
OBJECT IDENTIFIER
messageDigest (1 2 840 113549 1 9 4)
SET {
OCTET STRING
DA 23 80 OF 1E B9 E1 95 CC 7E 55 3D 49 AE Cl 7A
D5 99 DA 2B
}
}
SEQUENCE {
OBJECT IDENTIFIER
sMIMECapabilities (1 2 840 113549 1 9 15)
SET {
SEQUENCE {
SEQUENCE {
OBJECT IDENTIFIER
des-EDE3-CBC (1 2 840 113549 3 7)
}

Expires January 17, 2006 [Page 20]

Internet-Draft SIP Secure Flows

rc2CBC (1 2 840 113549 3 2)

rc2CBC (1 2 840 113549 3 2)

1051: SEQUENCE {
1053: OBJECT IDENTIFIER
1063: INTEGER 128
: }
1067: SEQUENCE {
1069: OBJECT IDENTIFIER
1079: INTEGER 64
: }
1082: SEQUENCE {
1084: OBJECT IDENTIFIER

desCBC (1 3 14 3 2 7)

: }
1091: SEQUENCE {

rc2CBC (1 2 840 113549 3 2)

1093: OBJECT IDENTIFIER
1103: INTEGER 40
: }
}
}
}
: }
1106: SEQUENCE {
1108: OBJECT IDENTIFIER
rsaEncryption (1 2 840
1119: NULL
: }
1121: OCTET STRING

66 FO C9 CO 78 69 27 F9 81 05
3A 2B 34 68 OE 31 19 06 DD 00
0C BC 6C 80 A2 0B 45 5B 68 36
0E 9B 9E A0 BD BC 4E 47 2D 99
77 78 BB A4 40 35 DE 2E 26 CE
89 51 E9 AB F1 26 CA 54 1C 05
3F A3 2C 5D 4F A0 46 77 45 6D
61 10 67 D2 3D 56 B2 3E A5 Cl

5.2 MESSAGE Message with Encrypted Body

Example encrypted message:

Jennings & Ono Expires January 17, 2006

113549 1

Fl
40
Cl
76
DA
01
DE
6E

54
DF
8C

A7
AE
Fl
5C

July 2005

1)

B9 5C
D8 2F
AF CA
9E B7
65 BA
75 6A
0D c4
4D FC

[Page 21]

Internet-Draft SIP Secure Flows

MESSAGE sip:kumiko@example.net SIP/2.0

To: <sip:kumiko@example.net>

From: <sip:fluffyQexample.com>;tag=6d2a39%e4

Via: SIP/2.0/UDP 68.122.119.3:5060;
branch=z9hG4bK-d87543-44ddc0a217a51788-1--d87543~; rport

Call-ID: 031be67669ea9799C@Y20uY21zY28uc2lwaXQubmv0

CSeqg: 1 MESSAGE

Contact: <sip:fluffy@68.122.119.3:5060>

Max-Forwards: 70

Content-Disposition: attachment;handling=required; filename=smime.p7

Content-Transfer-Encoding: binary

Content-Type: application/pkcs7-mime;\
smime-type=enveloped-data;name=smime.p7m

Date: Fri, 04 Feb 2005 20:04:10 GMT

User-Agent: SIPimp.org/0.2.5 (curses)

Content-Length: 418

KAk KK KK KKK KRK KKK KKK

* BINARY BLOB 2 *

Kk Kk Kk ok ok kK ok Kk ok ok ok ok

ASN.1 parse of binary Blob 2. Note that at address 324, the
encryption is set to des-ebe3-cbc.

0: SEQUENCE ({
4: OBJECT IDENTIFIER envelopedData (1 2 840 113549 1 7 3)

15: [0] {
19: SEQUENCE {
23: INTEGER 0
26: SET {
30: SEQUENCE {
34: INTEGER 0
37: SEQUENCE {
39: SEQUENCE {
41: SET {
43: SEQUENCE {
45: OBJECT IDENTIFIER countryName (2 5 4 6)
50: PrintableString ’'US’

: }

: }
54: SET {
56: SEQUENCE {
58: OBJECT IDENTIFIER

stateOrProvinceName (2 5 4 8)

63: PrintableString 'California’
: }

Jennings & Ono Expires January 17, 2006

July 2005

[Page 22]

Internet-Draft

110:
112:
114:

119:

153:

163:
165:

176:

178:

309:
322:
324:
334:

344:

Jennings & Ono

SIP Secure Flows July 2005

SET {
SEQUENCE {
OBJECT IDENTIFIER localityName (2 5 4 7)
PrintableString ’San Jose’
}
}
SET {
SEQUENCE {
OBJECT IDENTIFIER organizationName (2 5 4 10)
PrintableString ’sipit’
}
}
SET {
SEQUENCE {
OBJECT IDENTIFIER
organizationalUnitName (2 5 4 11)
PrintableString
’Sipit Test Certificate Authority’
}
}
}
INTEGER 01 95 00 71 02 33 00 57
}
SEQUENCE {
OBJECT IDENTIFIER
rsaEncryption (1 2 840 113549 1 1 1)
NULL
}
OCTET STRING

}

}

SEQUENCE {

OBJECT IDENTIFIER data (1 2 840 113549 1 7 1)

SEQUENCE {
OBJECT IDENTIFIER des-EDE3-CBC (1 2 840 113549 3 7)
OCTET STRING 05 8B C4 DC 50 5E D7 09
}

[0]
60 23 EO B9 79 CC 39 5B 86 E9 87 8C C2 C6 A0 EE
7A 15 3F 0OA BB D8 F5 6C EF 4D 18 52 Cl 25 65 F5

Expires January 17, 2006 [Page 23]

Internet-Draft SIP Secure Flows July 2005

84 5F C7 1C 78 52 1D 33 37 2B 41 69 52 DO 7C FD
67 A2 2E 96 2E AA 8F 6F 66 F2 9E 2F 74 12 A7 C7
CC 9E 83 D1 D9 C4 57 A3

5.3 MESSAGE Message with Encrypted and Signed Body

In the example below, one of the headers is contained in a box and is
split across two lines. This was only done to make it fit in the RFC
format. This header should not have the box around it and should be
on one line with no whitespace between the "mime;" and the "smime-
type". Note that Content-Type is split across lines for formatting
but is not split in the real message.

Jennings & Ono Expires January 17, 2006 [Page 24]

Internet-Draft SIP Secure Flows July 2005 Internet-Draft SIP Secure Flows July 2005

MESSAGE sip:kumiko@example.net SIP/2.0 37: SEQUENCE {
To: <sip:kumiko@example.net> 39: SEQUENCE {
From: <sip:fluffy@example.com>;tag=361300da 41: SET {
Via: SIP/2.0/UDP 68.122.119.3:5060; 43: SEQUENCE {
branch=z9hG4bK-d87543-0710dbfbl8ebb8e6-1--d87543~; rport 45: OBJECT IDENTIFIER countryName (2 5 4 6
Call-ID: 5eda27a67de6283dEY2ouY21zY28uc2lwaXQubmVv0 50: PrintableString ’'US’
CSeqg: 1 MESSAGE : }
Contact: <sip:fluffy@68.122.119.3:5060> : }
Max-Forwards: 70 54: SET {
Content-Transfer-Encoding: binary 56: SEQUENCE {
Content-Type: multipart/signed;boundary=1af019eb7754ddf7;\ 58: OBJECT IDENTIFIER
micalg=shal;protocol=application/pkcs7-signature stateOrProvinceName (2 5 4 8)
Date: Fri, 04 Feb 2005 20:07:14 GMT 63: PrintableString ’California’
User-Agent: SIPimp.org/0.2.5 (curses) : }
Content-Length: 2079 : }
75: SET {
--1af019eb7754ddf7 77: SEQUENCE {
| --See note about stuff