SIP URI Service Discovery using DNS-SD draft-lee-sip-dns-sd-uri-00

Henning Schulzrinne
Jae Woo Lee
Columbia University

DNS-SD/mDNS Overview

 DNS-Based Service Discovery (DNS-SD) adds a level of indirection to SRV using PTR:

```
_sipuri._udp.local. PTR sip:bob@a.com._sipuri._udp.local.
_sipuri._udp.local. PTR sip:joe@a.com._sipuri._udp.local.

sip:bob@a.com._sipuri._udp.local.

SRV 0 0 5060 bobs-host.local.

sip:bob@a.com._sipuri._tcp.local. TXT

txtvers=1 name=Bob contact=sip:bob@bobs-host.local
```

- PTR used for directory listings only
- Multicast DNS (mDNS)
 - Run by every host on a local link
 - Queries & answers are sent via multicast

Comparison: SIP multicast

- REGISTER only, not INVITE
- UAs can track peer locations using multicast REGISTER
- No query capability
 - new UA won't discover existing UAs until their registrations are refreshed (up to an hour delay)
 - not reliable may miss registrations

SIP URI Advertisement

- Service instance name: Instance.Service.Domain
 - Instance = (SIP-URI / SIPS-URI) [SP description]
 - Service = "_sipuri._udp" / "_sipuri._tcp" / "_sipuri._sctp"
 - E.g.) sip:bob@example.com PDA._sipuri._udp.local.
- Contact TXT record attribute
 - Similar to Contact SIP header except:
 - It contains only a single URI
 - Non-SIP URIs are not allowed
 - UA capabilities advertised via field parameters (RFC3840)

User Agent Client Behavior

- "To" header
 - SIP/SIPS URI from service instance name (normally AOR)
- Request-URI
 - SIP/SIPS URI from contact attribute if available, otherwise same as "To" header (changed from I-D)
- Open issue: determining request destination
 - 3 possibilities of RFC3263 compliance:
 - 1) Full: resolve (TXT) contact URI according to RFC3263
 - 2) None: IP address determined from DNS-SD records (SRV, A)
 - 3) Partial: skip NAPTR, but do SRV lookup (_sip.)

Open Issue: Request Destination

Pros and Cons

	Pros	Cons
1) Full	•Conceptually clean (DNS- SD replaces proxy/registrar) •Full flexibility of RFC3263	•NAPTR & SRV overkill for common local settings •Tweaked use of DNS-SD
2) None	•Simple •Normal DNS-SD usage	•May not work for complex SIP deployment scenarios
3) Partial	•A compromise	•A compromise

Other Open Issues

- Transport label ("_tcp" or "_udp") in service instance name
 - DNS-SD treats it as boilerplate text, not as an indication of desired transport
 - Advertising under one "primary" transport (as DNS-SD specifies) is inconsistent with SRV usage of RFC3263
- "_sip" service type currently used by Asterisk
 - Server advertisement rather than user advertisement
 - Further investigation/collaboration needed