Internet Engineering Task Force Adam Roach

Internet Draft | dynamicsoft
Category: Standards Track February 2002
| Expires August 2002

<draft-ietf-sip-events-02.fm>

S| P-Specific Event Notification

Satus of thisMemo

This document is an Internet-Draft and is in full conformance with all provi-
sions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups may
aso distribute working documents as I nternet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and
may be updated, replaced, or obsoleted by other documents at any time. It is
inappropriate to use Internet-Drafts as reference material or cite them other

than as “work in progress’.

Thelist of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/
lid-abstracts.txt

Thelist of Internet-Draft Shadow Directories can be accessed at http://
www.ietf.org/shadow.html

Thisdocument isan individual submission to the |IETF. Comments should be
directed to the authors.

Abstract

This document describes an extension to the Session I nitiation Protocol
(SIP). The purpose of this extension isto provide an extensible framework
by which SIP nodes can request notification from remote nodes indicating
that certain events have occurred.

Concrete uses of the mechanism described in this document may be stan-
dardized in the future.

Note that the event notification mechanisms defined herein are NOT

intended to be a general -purpose infrastructure for all classes of event sub-
scription and notification.

Roach [Page 1]

Internet Draft SIP-Specific Event Natification February 2002

1.

2.

2.1

Roach

Table of Contents

I ntroduction

The ability to request asynchronous notification of events proves useful in
many types of services for which cooperation between end-nodesis
required. Examples of such servicesinclude automatic callback services
(based on terminal state events), buddy lists (based on user presence events),
message waiting indications (based on mailbox state change events), and
PINT status (based on call state events).

The methods described in this document allow aframework by which notifi-
cation of these events can be ordered.

The event notification mechanisms defined herein are NOT intended to be a
general-purpose infrastructure for all classes of event subscription and noti-
fication. Meeting requirements for the general problem set of subscription
and notification is far too complex for asingle protocol. Our goal isto pro-
vide a Sl P-specific framework for event notification which isnot so complex
as to be unusable for simple features, but which is still flexible enough to
provide powerful services. Note, however, that event packages based on this
framework may define arbitrarily complex rules which govern the subscrip-
tion and notification for the events or classes of events they describe.

Thisdraft does not describe an extension which may be used directly; it must
be extended by other drafts (herein referred to as “event packages.”) In
object-oriented design terminology, it may be thought of as an abstract base
class which must be derived into an instantiatable class by further exten-
sions. Guidelines for creating these extensions are described in section 5.

Overview of Operation

The general concept is that entities in the network can subscribe to resource
or call state for various resources or callsin the network, and those entities
(or entities acting on their behalf) can send notifications when those states
change.

A typical flow of messages would be:

Subscri ber Noti fier
[----- SUBSCRI BE- - - - >| Request state subscription
| <------- 200-------- | Acknow edge subscription
| <------ NOTI FY- - - - - | Return current state information
[-------- 200------- >|
| <------ NOTI FY- - - - - | Return current state information
[-------- 200------- >|

[Page 2]

Internet Draft SIP-Specific Event Natification February 2002

Subscriptions are expired and must be refreshed by subsequent SUB-
SCRIBE messages.

3. Definitions

Event Package: An event package is an additional specification which
defines a set of state information to be reported by a notifier to a sub-
scriber. Event packages also define further syntax and semantics
based on the framework defined by this document required to convey
such state information.

Event Template-Package: An event template-package is a special kind of
event package which defines a set of state which may be applied to
al possible event packages, including itself.

Notification: Notification isthe act of anotifier sending aNOTIFY message
to a subscriber to inform the subscriber of the state of a resource.

Notifier: A notifier isauser agent which generates NOTIFY requestsfor the
purpose of notifying subscribers of the state of aresource. Notifiers
typically also accept SUBSCRIBE requests to create subscriptions.

State Agent: A state agent is a notifier which publishes state information on
behalf of aresource; in order to do so, it may need gather such state
information from multiple sources. State Agents always have com-
plete state information for the resource for which it is creating notifi-
cations.

Subscriber: A subscriber is auser agent which receives NOTIFY requests
from notifiers; these NOTIFY requests contain information about the
state of a resource in which the subscriber isinterested. Subscribers
typically also generate SUBSCRIBE requests and send them to noti-
fiersto create subscriptions.

Subscription: A subscription is a set of application state associated with a
dialog. This application state includes a pointer to the associated dia-
log, the event package name, and possibly an identification token.
Event packages will define additional subscription state information.
By definition, subscriptions exist in both a subscriber and a notifier.

Subscription Migration: Subscription migration is the act of moving a sub-
scription from one natifier to another notifier.

Roach [Page 3]

Internet Draft SIP-Specific Event Natification February 2002

4,

4.1.

Node Behavior

Description of SUBSCRIBE Behavior

The SUBSCRIBE method is used to request current state and state updates
from aremote node.

4.1.1. Subscription duration

4.1.2.

Roach

SUBSCRIBE requests SHOULD contain an “Expires’ header (defined in
SIP[1]). This expires value indicates the duration of the subscription. In
order to keep subscriptions effective beyond the duration communicated in
the “Expires’ header, subscribers need to refresh subscriptions on aperiodic
basis using a new SUBSCRIBE message on the same dialog as defined in
SIP[1].

If no “Expires’ header is present in a SUBSCRIBE request, the implied
default is defined by the event package being used.

200-class responses to SUBSCRIBE requests also MUST contain an
“Expires’ header. The period of timein the response MAY be shorter or
longer than specified in the request. The period of timein the responseisthe
one which defines the duration of the subscription.

An*“expires’ parameter on the “Contact” header has no semantics for SUB-
SCRIBE and is explicitly not equivalent to an “Expires’ header in a SUB-
SCRIBE request or response.

A natural consequence of this schemeis that a SUBSCRIBE with an
“Expires’ of 0 constitutes arequest to unsubscribe from an event.

Notifiers may also wish to cancel subscriptions to events; thisis useful, for
example, when the resource to which a subscription refersis no longer avail-
able. Further details on this mechanism are discussed in section 4.2.2.

| dentification of Subscribed Events and Event Classes

|dentification of eventsis provided by three pieces of information: Request
URI, Event Type, and (optionally) message body.

The Request URI of a SUBSCRIBE request, most importantly, contains
enough information to route the request to the appropriate entity. It also con-
tains enough information to identify the resource for which event notifica-
tion isdesired, but not necessarily enough information to uniquely identify
the nature of the event (e.g. “ sip:adam@dynamicsoft.com” would be an

Internet Draft SIP-Specific Event Natification February 2002

appropriate URI to subscribe to for my presence state; it would also be an
appropriate URI to subscribe to the state of my voice mailbox).

Subscribers MUST include exactly one “Event” header in SUBSCRIBE
requests, indicating to which event or class of events they are subscribing.
The“Event” header will contain atoken which indicates the type of state for
which a subscription is being requested. This token will be registered with
the TANA and will correspond to an event package which further describes
the semantics of the event or event class. The“Event” header MAY also con-
tain an “id” parameter. This“id” parameter, if present, contains an opaque
token which identifies the specific subscription within adialog. An “id”
parameter is only valid within the scope of asingle dialog.

If the event package to which the event token corresponds defines behavior
associated with the body of its SUBSCRIBE requests, those semantics apply.

Event packages may also define parameters for the Event header; if they do
s0, they must define the semantics for such parameters.

4.1.3. Additional SUBSCRIBE Header Values

Because SUBSCRIBE requests create adialog as defined in SIP [1], they
MAY containan “Accept” header. This header, if present, indicates the body
formats allowed in subsequent NOTIFY requests. Event packages MUST
define the behavior for SUBSCRIBE requests without “ Accept” headers;
usualy, thiswill connote a single, default body type.

Header values not described in this document are to be interpreted as
described in SIP [1].

4.1.4. Subscriber SUBSCRIBE Behavior

4.1.4.1.

Roach

Requesting a Subscription
SUBSCRIBE is adialog-creating method, as described in SIP [1].

When a subscriber wishes to subscribe to a particular state for aresource, it
forms a SUBSCRIBE message. If theinitial SUBSCRIBE represents a

request outside of adialog (asit typicaly will), its construction follows the
procedures outlined in SIP [1] for UAC request generation outside of adia-

log.

This SUBSCRIBE request will be confirmed with afinal response. 200-class
responses indicate that the subscription has been accepted, and that a
NOTIFY will be sent immediately. A 200 response indicates that the sub-
scription has been accepted and that the user is authorized to subscribe to the

[Page 5]

Internet Draft SIP-Specific Event Natification February 2002

4.1.4.2.

Roach

requested resource. A 202 response merely indicates that the subscription
has been understood, and that authorization may or may not have been
granted.

The “Expires’ header in a 200-class response to SUBSCRIBE indicates the
actual duration for which the subscription will remain active (unless
refreshed).

Non-200 class final responses indicate that no subscription or dialog has
been created, and no subsequent NOTIFY message will be sent. All non-200
class responses (with the exception of “489,” described herein) have the
same meanings and handling as described in SIP [1].

A SUBSCRIBE request MAY include an “id” parameter in its*Event”
header to allow differentiation between multiple subscriptions in the same
dialog.

Refreshing of Subscriptions

At any time before a subscription expires, the subscriber may refresh the
timer on such a subscription by sending another SUBSCRIBE request on the
same dialog as the existing subscription, and with the same “Event” header
“id” parameter (if one was present in theinitial subscription). The handling
for such arequest is the same asfor theinitia creation of a subscription
except as described below.

If the initial SUBSCRIBE message contained an “ id” parameter on
the* Event” header, then refreshes of the subscription must also con-
tain anidentical “id” parameter; they will otherwise be considered
new subscriptionsin an existing dialog.

If a SUBSCRIBE request to refresh a subscription receives a “481”
response, thisindicates that the subscription has been terminated and that the
subscriber did not receive notification of thisfact. In this case, the subscriber
should consider the subscription invalid. If the subscriber wishes to re-sub-
scribe to the state, he does so by composing an unrelated initial SUB-
SCRIBE request with afreshly-generated Call-ID and anew, unique “From”
tag (see section 4.1.4.1.)

If a SUBSCRIBE request to refresh a subscription fails with anon-481
response, the original subscription is still considered valid for the duration of
the most recently known “Expires’ value as negotiated by SUBSCRIBE and
its response, or as communicated by NOTIFY in the “ Subscription-State”
header “expires’ parameter.

[Page 6]

Internet Draft SIP-Specific Event Natification February 2002

| 4143

4.1.4.4.

Unsubscribing

Unsubscribing is handled in the same way as refreshing of a subscription,
with the “Expires’ header set to “0.” Note that a successful unsubscription
will also trigger afinal “NOTIFY”.

Confirmation of Subscription Creation

The subscriber can expect to receive aNOTIFY message from each node
which has processed a successful subscription or subscription refresh. Until
thefirst NOTIFY message arrives, the subscriber should consider the state of
the subscribed resource to be in aneutral state. Event packages which define
new event packages MUST define this “neutral state” in such away that
makes sense for their application (see section 5.4.7.).

Dueto the potential for both out-of-order messages and forking, the sub-
scriber MUST be prepared to receive NOTIFY messages before the SUB-
SCRIBE transaction has completed.

Except as noted above, processing of thisNOTIFY isthe same asin section
4.2.4.

4.1.5. Proxy SUBSCRIBE Behavior

Proxies need no additional behavior beyond that described in SIP [1] to sup-
port SUBSCRIBE. If aproxy wishesto see al of the SUBSCRIBE and
NOTIFY requestsfor agiven dialog, it MUST record-route al SUBSCRIBE
and NOTIFY requests.

4.1.6. Notifier SUBSCRIBE Behavior

| 4161

Roach

Initial SUBSCRIBE Transaction Processing

In no case should a SUBSCRIBE transaction extend for any longer than the
time necessary for automated processing. In particular, notifiers MUST NOT
wait for a user response before returning afinal response to a SUBSCRIBE
request.

This requirement isimposed primarily to prevent timer F fromfiring
during the SUBSCRIBE transaction, since interaction with a user
would often exceed 64* T1 seconds.

The notifier SHOUL D check that the event package specified in the “ Event”

header is understood. If not, the notifier SHOULD return a*“489 Bad Event”
response to indicate that the specified event/event class is not understood.

[Page 7]

Internet Draft SIP-Specific Event Natification February 2002

4.1.6.2.

Roach

The notifier SHOULD also perform any necessary authentication and autho-
rization per its local policy. See section 4.1.6.3.

If the notifier is able to immediately determine that it understands the event
package, that the authenticated subscriber isauthorized to subscribe, and that
there are no other barriersto creating the subscription, it creates the subscrip-
tion and adialog (if necessary), and returns a*200 OK” response (unless
doing so would reveal authorization policy in an undesirable fashion; see
section 6.2.).

If the notifier cannot immediately create the subscription (e.g. it needsto
wait for user input for authorization, or is acting for another node which is
not currently reachable), or wishes to mask authorization policy, it will
return a*“202 Accepted” response. This response indicates that the request
has been received and understood, but does not necessarily imply that the
subscription has been authorized yet.

When a subscription is created in the natifier, it stores the event package
name and the “Event” header “id” parameter (if present) as part of the sub-
scription information.

The"Expires’ values present in SUBSCRIBE 200-class responses behave in
the same way as they do in REGISTER responses:. the server MAY shorten
theinterval, but MUST NOT lengthen it. If the duration specified in a SUB-
SCRIBE message is unacceptably short, the notifier SHOULD respond with
a“ 423 Subscription Too Brief” message.

200-class responses to SUBSCRIBE requests will not generally contain any
useful information beyond subscription duration; their primary purposeisto
serve as areliability mechanism. State information will be communicated
viaa subsequent NOTIFY request from the notifier.

The other response codes defined in SIP [1] may be used in response to
SUBSCRIBE requests, as appropriate.

Confirmation of Subscription Creation/Refreshing

Upon successfully accepting or refreshing of a subscription, notifiers MUST
send aNOTIFY message immediately to communicate the current resource
state to the subscriber. This NOTIFY message is sent on the same dialog as
created by the SUBSCRIBE response. If the resource has no meaningful
state at the time that the SUBSCRIBE message is processed, this NOTIFY
message MAY contain an empty or neutral body. See section 4.2.2. for fur-
ther details on NOTIFY message generation.

[Page 8]

Internet Draft SIP-Specific Event Natification February 2002

4.1.6.3.

4.1.6.4.

Roach

Notethat aNOTIFY messageisaways sent immediately after any 200-class
response to a SUBSCRIBE request, regardless of whether the subscription
has already been authorized.

Authentication/Authorization of SUBSCRIBE requests

Privacy concerns may require that notifiers apply policy to determine
whether a particular subscriber is authorized to subscribe to a certain set of
events. Such policy may be defined by mechanisms such as access control
lists or real-time interaction with a user. In general, authorization of sub-
scribers prior to authentication is not particularly useful.

SIP authentication mechanisms are discussed in SIP [1]. Note that, even if
the notifier node typically acts as a proxy, authentication for SUBSCRIBE
requests will always be performed viaa“401” response, not a*“407;” notifi-
ers always act as a user agents when accepting subscriptions and sending
notifications.

If authorization fails based on an accesslist or some other automated mecha-
nism (i.e. it can be automatically authoritatively determined that the sub-
scriber is not authorized to subscribe), the notifier SHOULD reply to the
request with a“403 Forbidden” or “603 Decline”’ response, unless doing so
might reveal information that should stay private; see section 6.2.

If the notifier owner isinteractively queried to determine whether a subscrip-
tionisallowed, a“202 Accept” responseisreturned immediately. Notethat a
NOTIFY messageis still formed and sent under these circumstances, as
described in the previous section.

If subscription authorization was delayed and the notifier wishes to convey
that such authorization has been declined, it may do so by sending a
NOTIFY message containing a“ Subscription-State” header with a value of
“terminated” and a reason parameter of “rejected.”

Refreshing of Subscriptions

When a notifier receives a subscription refresh, assuming that the subscriber
is still authorized, the notifier updates the expiration time for subscription.
Aswith the initial subscription, the server MAY shorten the amount of time
until expiration, but MUST NOT increase it. The final expiration timeis
placed in the “Expires’ header in the response. If the duration specified in a
SUBSCRIBE message is unacceptably short, the notifier SHOULD respond
with a*423 Subscription Too Brief” message.

If no refresh for anotification address is received before its expiration time,
the subscription is removed. When removing a subscription, the notifier

[Page 9]

Internet Draft SIP-Specific Event Natification February 2002

SHOULD send aNOTIFY message with a*“ Subscription-State” value of
“terminated” to inform it that the subscription is being removed. If such a
message is sent, the “ Subscription-State” header SHOULD contain a*“rea-
son=timeout” parameter.

The sending of a NOTIFY when a subscription expires allows the
corresponding dialog to be terminated, if appropriate.

4.2. Description of NOTIFY Behavior

NOTIFY messages are sent to inform subscribers of changesin state to
which the subscriber has a subscription. Subscriptions are typically put in
place using the SUBSCRIBE method; however, it is possible that other
means have been used.

If any non-SUBSCRIBE mechanisms are defined to create subscriptions, it
isthe responsibility of the parties defining those mechanisms to ensure that
correlation of aNOTIFY message to the corresponding subscription is possi-
ble. Designers of such mechanisms are also warned to make a distinction
between sending a NOTIFY message to a subscriber who is aware of the
subscription, and sending aNOTIFY message to an unsuspecting node. The
latter behavior isinvalid, and MUST receive a* 481 Subscription does not
exist” response (unless some other 400- or 500-class error code is more
applicable), as described in section 4.2.4. In other words, knowledge of a
subscription must exist in both the subscriber and the notifier to be valid,
even if installed via a non-SUBSCRIBE mechanism.

A NOTIFY does not terminate its corresponding subscription; in other
words, asingle SUBSCRIBE request may trigger several NOTIFY requests.

4.2.1. ldentification of reported events, event classes, and current state

| dentification of events being reported in anotification isvery similar to that
described for subscription to events (see section 4.1.2.).

Asin SUBSCRIBE requests, NOTIFY “Event” headerswill contain asingle
event package namefor which anotification is being generated. The package
name in the “Event” header MUST match the “Event” header in the corre-
sponding SUBSCRIBE message. If an “id” parameter was present in the
SUBSCRIBE message, that “id” parameter MUST also be present in the cor-
responding NOTIFY messages.

If the event package to which the event package name corresponds defines
behavior associated with the body of its NOTIFY reguests, those semantics
apply. Thisinformation is expected to provide additional details about the
nature of the event which has occurred and the resultant resource state.

Roach

[Page 10]

Internet Draft SIP-Specific Event Natification February 2002

When present, the body of the NOTIFY request MUST be formatted into
one of the body formats specified in the “ Accept” header of the correspond-
ing SUBSCRIBE request. This body will contain either the state of the sub-
scribed resource or a pointer to such state in the form of aURI.

4.2.2. Notifier NOTIFY Behavior

When a SUBSCRIBE request is answered with a 200-class response, the
notifier MUST immediately construct and send aNOTIFY request to the
subscriber. When a change in the subscribed state occurs, the notifier
SHOULD immediately construct and send aNOTIFY request, subject to
authorization, local policy, and throttling considerations.

A NOTIFY request is considered failed if the response times out, or a non-
200 class response code is received which has no “Retry-After” header and
no implied further action which can be taken to retry the request (e.g. “401
Authorization Required.”)

If the NOTIFY request fails (as defined above) due to atimeout condition,
and the subscription was installed using a soft-state mechanism (such as
SUBSCRIBE), the notifier SHOULD remove the subscription.

This behavior prevents unnecessary transmission of state informa-
tion for subscriberswho have crashed or disappeared from the net-
work. Because such transmissions will be sent 11 times (instead of
the typical single transmission for functioning clients), continuing to
service them when no client is available to acknowledge them could
place undue strain on a network. Upon client restart or reestablish-
ment of a network connection, it is expected that clients will send
SUBSCRIBE messages to refresh potentially stale state information;
such messages will re-install subscriptionsin all relevant nodes.

If the NOTIFY request fails (as defined above) due to an error response, and
the subscription was installed using a soft-state mechanism, the notifier
MUST remove the corresponding subscription.

A notify error response would generally indicate that something has
gone wrong with the subscriber or with some proxy on the way to the
subscriber. If the subscriber isin error, it makes the most sense to
allow the subscriber to rectify the situation (by re-subscribing) once
the error condition has been handled. If a proxy isin error, the peri-
odic SUBSCRIBE refreshes will re-install subscription state once the
network problem has been resolved.

Roach [Page 11]

Internet Draft SIP-Specific Event Natification February 2002

If aNOTIFY request receives a481 response, the notifier MUST removethe
corresponding subscription even if such subscription was installed by non-
SUBSCRIBE means (such as an administrative interface).

If the above behavior were not required, subscribers receiving a
notify for an unknown subscription would need to send an error sta-
tus code in response to the NOTIFY and also send a SUBSCRIBE
request to remove the subscription. Snce this behavior would make
subscribers available for use as amplifiersin denial of service
attacks, we have instead elected to give the 481 response special
meaning: it is used to indicate that a subscription must be cancelled
under all circumstances.

NOTIFY requests MUST contain a* Subscription-State” header with avalue
of “active,” “pending,” or “terminated.” The “active’ value indicates that the
subscription has been accepted and has been authorized (in most cases; see
section 6.2.). The “pending” value indicates that the subscription has been
received, but that policy information isinsufficient to accept or deny the sub-
scription at thistime. The “terminated” value indicates that the subscription
isnot active.

If the value of the “ Subscription-State” header is “active” or “pending,” the
notifier SHOULD also include in the “ Subscription-State” header an
“expires’ parameter which indicates the time remaining on the subscription.
The notifier MAY use this mechanism to shorten a subscription; however,
this mechanism MUST NOT be used to lengthen a subscription.

Including expiration information for active and pending subscrip-
tionsis useful in case the SUBSCRIBE request forks, since the
response to a forked SUBSCRIBE may not be received by the sub-
scriber. Note well that this*“ expires’ value is a parameter on the
“ Qubscription-Sate” header, NOT an “ Expires’ header.

If the value of the “ Subscription-State” header is “terminated,” the notifier
SHOULD also include a“reason” parameter. The notifier MAY also include
a‘“retry-after” parameter, where appropriate. For details on the value and
semantics of the “reason” and “retry-after” parameters, see section 4.2.4.

4.2.3. Proxy NOTIFY Behavior

Roach

Proxies need no additional behavior beyond that described in SIP [1] to sup-
port NOTIFY. If aproxy wishesto seeall of the SUBSCRIBE and NOTIFY
requests for agiven dialog, it MUST record-route all SUBSCRIBE and
NOTIFY requests.

[Page 12]

Internet Draft SIP-Specific Event Natification February 2002

4.2.4. Subscriber NOTIFY Behavior

Roach

Upon receiving aNOTIFY request, the subscriber should check that it
matches at least one of its outstanding subscriptions; if not, it MUST return a
“481 Subscription does not exist” response unless another 400- or 500-class
response is more appropriate. The rulesfor matching NOTIFY requests with
subscriptions that create a new dialog is described in section 4.3.4. Notifica
tions for subscriptions which were created inside an existing dialog match if
they arein the same dialog and the “ Event” headers match (as described in
section 7.5.1.)

If, for some reason, the event package designated in the “Event” header of
the NOTIFY request is not supported, the subscriber will respond with a
“489 Bad Event” response.

To prevent spoofing of events, NOTIFY requests SHOULD be authenti-
cated, using any defined SIP authentication mechanism.

NOTIFY requests MUST contain “ Subscription-State” headers which indi-
cate the status of the subscription.

If the “ Subscription-State” header value is “active,” it means that the sub-
scription has been accepted and (in general) has been authorized. If the
header also contains an “expires’ parameter, the subscriber SHOULD takeit
as the authoritative subscription duration and adjust accordingly. The “retry-
after” and “reason” parameters have no semanticsfor “active.”

If the “ Subscription-State” valueis * pending,” the subscription has been
received by the notifier, but thereisinsufficient policy information to grant
or deny the subscription yet. If the header also contains an “expires’ param-
eter, the subscriber SHOULD take it as the authoritative subscription dura-
tion and adjust accordingly. No further action is necessary on the part of the
subscriber. The “retry-after” and “reason” parameters have no semantics for
“pending.”

If the “ Subscription-State” value is “terminated,” the subscriber should con-
sider the subscription terminated. The “expires’ parameter has no semantics
for “terminated.” If areason codeis present, the client should behave as
described below. If no reason code or an unknown reason code is present, the
client MAY attempt to re-subscribe at any time (unless a*“ retry-after” param-
eter is present, in which case the client SHOULD NOT attempt re-subscrip-
tion until after the number of seconds specified by the “retry-after”
parameter). The defined reason codes are:

deactivated: The subscription has been terminated, but the client SHOULD
retry immediately with a new subscription. One primary use of such

Internet Draft SIP-Specific Event Natification February 2002

4.3.

astatus code is to alow migration of subscriptions between nodes.
The “retry-after” parameter has no semantics for “deactivated.”

probation: The subscription has been terminated, but the client SHOULD
retry at some later time. If a“retry-after” parameter is also present,
the client SHOULD wait at least the number of seconds specified by
that parameter before attempting to re-subscribe.

rgjected: The subscription has been terminated due to change in authoriza-
tion policy. Clients SHOULD NOT attempt to re-subscribe. The
“retry-after” parameter has no semantics for “rejected.”

timeout: The subscription has been terminated because it was not refreshed
before it expired. Clients MAY re-subscribe immediately. The “retry-
after” parameter has no semantics for “timeout.”

giveup: The subscription has been terminated because the notifier could not
obtain authorization in atimely fashion. If a“retry-after” parameter
isalso present, the client SHOULD wait at |least the number of sec-
onds specified by that parameter before attempting to re-subscribe;
otherwise, the client MAY retry immediately, but will likely get put
back into pending state.

Once the notification is deemed acceptable to the subscriber, the subscriber
SHOULD return a 200 response. In general, it is not expected that NOTIFY
responses will contain bodies, however, they MAY, if the NOTIFY request

contained an “Accept” header.

Other responses defined in SIP [1] may also be returned, as appropriate.

General

4.3.1. Detecting support for SUBSCRIBE and NOTIFY

Roach

Neither SUBSCRIBE nor NOTIFY necessitate the use of “Require” or
“Proxy-Require” headers; ssimilarly, there is no token defined for “ Sup-
ported” headers. If necessary, clients may probe for the support of SUB-
SCRIBE and NOTIFY using the OPTIONS request defined in SIP[1].

The presence of the “Allow-Events’ header in a message is sufficient to
indicate support for SUBSCRIBE and NOTIFY.

The “methods’ parameter for Contact may aso be used to specifically

announce support for SUBSCRIBE and NOTIFY messages when register-
ing. (See reference [7] for details on the “methods’” parameter).

[Page 14]

Internet Draft SIP-Specific Event Natification February 2002

4.3.2. CANCEL requests

No semantics are associated with cancelling SUBSCRIBE or NOTIFY.

4.3.3. Forking

Successful SUBSCRIBE requests will receive only one 200-class response;
however, due to forking, the subscription may have been accepted by multi-
ple nodes. The subscriber MUST therefore be prepared to receive NOTIFY
requests with “From:” tags which differ from the “To:” tag received in the
SUBSCRIBE 200-class response.

If multiple NOTIFY messages are received in response to asingle SUB-
SCRIBE message, they represent different destinations to which the SUB-
SCRIBE request was forked. For information on subscriber handling in such
Situations, see section 5.4.9.

4.3.4. Dialog creation and termination

Roach

If aninitial SUBSCRIBE request is not sent on an pre-existing dialog, the
subscriber will wait for aresponse to the SUBSCRIBE request or amatching
NOTIFY.

Responses are matched to such SUBSCRIBE requestsiif they contain the
same the same “Call-ID,” the same “From” header field, the same “To”
header field, excluding the “tag,” and the same “CSeq.” Rules for the com-
parison of these headers are described in SIP[1]. If a 200-class response
matches such a SUBSCRIBE request, it creates a new subscription and a
new dialog (unless they have aready been created by a matching NOTIFY
request; see below).

NOTIFY requests are matched to such SUBSCRIBE requestsif they contain
the same “Call-ID,” a“From” header field which matchesthe “To” header
field of the SUBSCRIBE, excluding the “tag,” a“To” header field which
matches the “From” header field of the SUBSCRIBE, and the same “Event”
header field. Rules for comparisons of the “ Event” headers are described in
section 7.5.1. If amatching NOTIFY request contains a* Subscription-State”
of “active” or “pending,” it creates a new subscription and a new dialog
(unless the have aready been created by a matching response, as described
above).

If aninitial SUBSCRIBE is sent on a pre-existing dialog, a matching 200-

class response or successful NOTIFY request merely creates a new subscrip-
tion associated with that dialog.

[Page 15]

Internet Draft SIP-Specific Event Natification February 2002

Multiple subscriptions can be associated with a single dialog. Subscriptions
may also exist in dialogs associated with INVITE-created application state
and other application state created by mechanisms defined in other specifica-
tions. These sets of application state do not interact beyond the behavior
described for adialog (e.g. route set handling).

A subscription is destroyed when a notifier sendsaNOTIFY request with a
“Subscription-State” of “terminated”.

A subscriber may send a SUBSCRIBE request with an “ Expiration”
header of O in order to trigger the sending of such a NOTIFY
request; however, for the purposes of subscription and dialog life-
time, the subscription is not considered terminated until the NOTIFY
with a “ Subscription-Sate” of “ terminated” is sent.

If a subscription’s destruction leaves no other application state associated
with the dialog, the dialog terminates. The destruction of other application
state (such as that created by an INVITE) will not terminate the dialog if a
subscription is still associated with that dialog.

Note that the above behavior means that a dialog created with an
INVITE does not necessarily terminate upon receipt of a BYE.

4.3.5. Sate Agentsand Notifier Migration

Roach

When state agents (see section 5.4.11.) are used, it is often useful to allow
migration of subscriptions between state agents and the nodes for which they
are providing state aggregation (or even among various state agents). Such
migration may be effected by sending a“NOTIFY” with an * Subscription-
State” header of “terminated,” and areason parameter of “ deactivated.” This
NOTIFY request is otherwise normal, and is formed as described in section
4.2.2.

Upon receipt of thisNOTIFY message, the subscriber SHOULD attempt to
re-subscribe (as described in the preceding sections). Note that this subscrip-
tion is established on anew dialog, and does not re-use the route set from the
previous subscription dial og.

The actual migration is effected by making a change to the policy (such as
routing decisions) of one or more servers to which the SUBSCRIBE request
will be sent in such away that a different node ends up responding to the
SUBSCRIBE request. This may be as ssmple as a change in the local policy
in the notifier from which the subscription is migrating so that it servesas a
proxy or redirect server instead of anotifier.

[Page 16]

Internet Draft SIP-Specific Event Natification February 2002

Whether, when, and why to perform notifier migrations may be described in
individual event packages; otherwise, such decisions are a matter of local
notifier policy, and are left up to individual implementations.

4.3.6. Polling Resource Sate

A natural consequence of the behavior described in the preceding sectionsis
that an immediate fetch without a persistent subscription may be effected by
| sending a SUBSCRIBE with an “Expires’ of 0.

Of course, an immediate fetch while a subscription is active may be effected
by sending a SUBSCRIBE with an “Expires’ equal to the number of seconds
remaining in the subscription.

Upon receipt of this SUBSCRIBE request, the natifier (or notifiers, if the
SUBSCRIBE request was forked) will send aNOTIFY request containing
resource state in the same dialog.

Note that the NOTIFY messages triggered by SUBSCRIBE messages with
“Expire” headers of O will contain a* Subscription-State” value of “termi-
nated,” and a“reason” parameter of “timeout.”

4.3.7. Allow-Eventsheader usage

The“Allow-Events’ header, if present, includes alist of tokens which indi-
cates the event packages supported by the client (if sent in arequest) or
server (if sent in aresponse). In other words, a node sending an “ Allow-
Events’ header is advertising that it can process SUBSCRIBE requests and
generate NOTIFY requestsfor al of the event packages listed in that header.

Any node implementing one or more event packages SHOULD include an
appropriate “ Allow-Events’ header indicating all supported eventsin all
methods which initiate dialogs and their responses (such as INVITE) and
OPTIONS responses.

Thisinformation is very useful, for example, in allowing user agentsto ren-
der particular interface elements appropriately according to whether the
events required to implement the features they represent are supported by the
appropriate nodes.

Note that “ Allow-Events’ headers MUST NOT be inserted by proxies.
4.3.8. PINT Compatibility

The“Event” header is considered mandatory for the purposes of this docu-
ment. However, to maintain compatibility with PINT (see[3]), servers MAY

Roach [Page 17]

Internet Draft SIP-Specific Event Natification February 2002

interpret a SUBSCRIBE request with no “Event” header as requesting a sub-
scriptionto PINT events. If a server does not support PINT, it SHOULD
return “489 Bad Event” to any SUBSCRIBE messages without an “Event”
header.

5. Event Packages

This section covers several issues which should be taken into consideration
when event packages based on SUBSCRIBE and NOTIFY are proposed.

5.1. Appropriateness of Usage

When designing an event package using the methods described in this draft
for event notification, it isimportant to consider: is SIP an appropriate mech-
anism for the problem set? Is SIP being selected because of some unique fea-
ture provided by the protocol (e.g. user mobility), or merely because “it can
be done?’ If you find yourself defining event packages for notifications
related to, for example, network management or the temperature inside your
car’'s engine, you may want to reconsider your selection of protocols.

Those interested in extending the mechanism defined in this document are
urged to read “ Guidelines for Authors of SIP Extensions’[2] for further
guidance regarding appropriate uses of SIP.

Further, it is expected that this mechanism is not to be used in applications
where the frequency of reportable eventsis excessively rapid (e.g. more than
about once per second). A SIP network is generally going to be provisioned
for areasonable signalling volume; sending a notification every timeauser’s
GPS position changes by one hundreth of a second could easily overload
such a network.

5.2. Event Template-packages

Normal event packages define a set of state applied to a specific type of
resource, such as user presence, call state, and messaging mailbox state.

Event template-packages are a special type of package which define a set of
state applied to other packages, such as statistics, access policy, and sub-
scriber lists. Event template-packages may even be applied to other event
template-packages.

To extend the obj ect-oriented analogy made earlier, event template-packages

can be thought of as templatized C++ packages which must be applied to
other packagesto be useful.

Roach [Page 18]

Internet Draft SIP-Specific Event Natification February 2002

5.3.

The name of an event template-package as applied to a package isformed by
appending a period followed by the event template-package name to the end
of the package. For example, if atemplate-package called “winfo” were
being applied to a package called “ presence,” the event token used in
“Event” and “Allow-Events” would be “ presence.winfo”.

Event template-packages must be defined so that they can be applied to any

arbitrary package. In other words, event template-packages cannot be specif-
ically tied to one or afew “parent” packagesin such away that they will not

work with other packages.

Amount of Sateto be Conveyed

When designing event packages, it isimportant to consider the type of infor-
mation which will be conveyed during a notification.

A natural temptation isto convey merely the event (e.g. “anew voice mes-
sage just arrived”) without accompanying state (e.g. “7 total voice mes-
sages’). This complicates implementation of subscribing entities (since they
have to maintain complete state for the entity to which they have sub-
scribed), and also is particularly susceptible to synchronization problems.

There are two possible solutions to this problem that event packages may
choose to implement.

5.3.1. Complete SateInformation

For packages which typically convey state information that is reasonably
small (on the order of 1 kb or s0), it is suggested that event packages are
designed so as to send complete state information when an event occurs.

In the circumstances that state may not be sufficient for a particular class of
events, the event packages should include complete state information along
with the event that occurred. For example, “no customer service representa
tives available” may not be as useful “no customer service representatives
available; representative sip:46@cs.xyz.int just logged off”.

5.3.2. SateDdtas

Roach

In the case that the state information to be conveyed is large, the event pack-
age may choose to detail a scheme by which NOTIFY messages contain
state deltas instead of compl ete state.

Such a scheme would work as follows: any NOTIFY sent in immediate

response to a SUBSCRIBE contains full state information. NOTIFY mes-
sages sent because of a state change will contain only the state information

[Page 19]

Internet Draft SIP-Specific Event Natification February 2002

that has changed; the subscriber will then merge thisinformation into its cur-
rent knowledge about the state of the resource.

Any event package that supports delta changes to states MUST use a pay-
load which contains a version number that increases by exactly one for each
NOTIFY message. Note that the state version number appears in the body of
the message, not in a SIP header.

If aNOTIFY arrivesthat has a version number that is incremented by more
than one, the subscriber knows that a state delta has been missed; it ignores
the NOTIFY message containing the state delta (except for the version num-
ber, which it retains to detect message loss), and re-sends a SUBSCRIBE to
forceaNOTIFY containing a complete state snapshot.

54. Event Package Responsibilities

Event packages are not required to re-iterate any of the behavior described in
this document, although they may choose to do so for clarity or emphasis. In
general, though, such packages are expected to describe only the behavior
that extends or modifies the behavior described in this document.

Note that any behavior designated with “SHOULD” or “MUST” in this doc-
ument is not allowed to be changed by extension documents; however, such
documents may elect to strengthen “SHOULD” requirementsto “MUST”
strength if required by their application.

In addition to the normal sections expected by “Instructions to RFC
Authors’[5] and “Guidelines for Authors of SIP Extensions’[2], authors of
event packages MUST address each of the issues detailed in the following
subsections, whenever applicable.

5.4.1. Event Package Name

This mandatory section of an event package defines the token name to be
used to designate the event package. It MUST include the information which
appearsin the lANA registration of the token. For information on registering
such types, see section 7.

5.4.2. Event Package Parameters
If parameters are to be used on the “Event” header to modify the behavior of

the event package, the syntax and semantics of such headers MUST be
clearly defined.

Roach [Page 20]

Internet Draft SIP-Specific Event Natification February 2002

5.4.3. SUBSCRIBE Bodies

It is expected that most, but not all, event packages will define syntax and
semantics for SUBSCRIBE method bodies; these bodies will typically mod-
ify, expand, filter, throttle, and/or set thresholds for the class of events being
requested. Designers of event packages are strongly encouraged to re-use
existing MIME types for message bodies where practical.

This mandatory section of an event package defines what type or types of
event bodies are expected in SUBSCRIBE requests (or specify that no event
bodies are expected). It should point to detailed definitions of syntax and
semantics for all referenced body types.

5.4.4. Subscription Duration

ItisRECOMMENDED that event packages give a suggested range of times
considered reasonable for the duration of a subscription. Such packages
MUST also define a default “Expires’ value to be used if noneis specified.

5.4.5. NOTIFY Bodies

The NOTIFY body is used to report state on the resource being monitored.
Each package MUST define a what type or types of event bodies are
expected in NOTIFY requests. Such packages MUST specify or cite detailed
specifications for the syntax and semantics associated with such event body.

Event packages also MUST define which MIME type is to be assumed if
none are specified in the “Accept” header of the SUBSCRIBE request.

5.4.6. Notifier processing of SUBSCRIBE requests

This section describes the processing to be performed by the notifier upon
receipt of a SUBSCRIBE request. Such a section isrequired.

Information in this section includes details of how to authenticate subscrib-
ers and authorization issues for the package. Such authorization issues may
include, for example, whether all SUBSCRIBE requests for this package are
answered with 202 responses (see section 6.2.).

5.4.7. Notifier generation of NOTIFY requests

Roach

This section of an event package describes the process by which the notifier
generates and sends aNOTIFY request. This includes detailed information
about what events cause a NOTIFY to be sent, how to compute the state
information in the NOTIFY, how to generate “neutral” or “fake” state infor-
mation to hide authorization delays and decisions from users, and whether
state information is complete or deltas for notifications (see section 5.3.)

[Page 21]

Internet Draft SIP-Specific Event Natification February 2002

It may optionally describe the behavior used to processes the subsequent
response. Such a section is required.

5.4.8. Subscriber processing of NOTIFY requests

This section of an event package describes the process followed by the sub-
scriber upon receipt of aNOTIFY request, including any logic required to
form a coherent resource state (if applicable).

5.4.9. Handling of forked requests

Each event package SHOULD specify whether forked SUBSCRIBE
reguests are allowed to install multiple subscriptions.

If such behavior is not allowed, the first potential dialog-establishing mes-
sage will create adialog. All subsequent NOTIFY messages which corre-
spond to the SUBSCRIBE message (i.e. match To, From, From tag, Call-1D,
CSeq, Event, and Event id) but which do not match the dialog would be
rejected with a 481 response.

If installing of multiple subscriptions by way of asingle forked INVITE is
allowed, the subscriber establishes a new dialog towards each notifier by
returning a 200-class response to each NOTIFY. Each dialog is then handled
asitsown entity, and is refreshed independent of the other dialogs.

In the case that multiple subscriptions are allowed, the event package MUST
specify whether merging of the notifications to form asingle state is
required, and how such merging isto be performed. Note that it is possible
that some event packages may be defined in such away that each dialog is
tied to amutually exclusive state which is unaffected by the other dialogs;
thisMUST be clearly stated if it isthe case.

If the event package does not specify which mode of operation to use, the
subscriber may employ either mode of operation.

5.4.10. Rate of notifications

Roach

Each event package is expected to define arequirement (SHOULD or
MUST strength) which defines an absolute maximum on the rate at which
notifications are allowed to be generated by a single notifier.

Such packages MAY further define a throttle mechanism which allows sub-
scribersto further limit the rate of notification.

[Page 22]

Internet Draft SIP-Specific Event Natification February 2002

5.4.11. Sate Agents

Designers of event packages should consider whether their package can ben-
efit from network aggregation points (* State Agents’) and/or nodes which
act on behalf of other nodes. (For example, nodes which provide state infor-
mation about a resource when such aresource is unable or unwilling to pro-
vide such state information itself). An example of such an applicationisa
node which tracks the presence and availability of a user in the network.

If state agents are to be used by the package, the package MUST specify how
such state agents aggregate information and how they provide authentication
and authorization.

Event packages MAY aso outline specific scenarios under which notifier
migrations take place.

5.4.12. Examples

Event packages SHOULD include severa demonstrative message flow dia-
grams paired with several typical, syntactically correct and complete mes-

Sages.

It is RECOMMENDED that documents describing event packages clearly
indicate that such examples are informative and not normative, with instruc-
tions that implementors refer to the main text of the draft for exact protocol
details.

5.4.13. URI List handling

Some types of event packages may define state information which is poten-
tially too large to reasonably send in a SIP message. To alleviate this prob-
lem, event packages may include the ability to use a MIME body type of
“application/uri-list” in NOTIFY messages. The URI or URIs contained in
the NOTIFY body will then be used to retrieve the actual state information.

If an event package elects to use this mechanism, it MUST define at least
one baseline scheme (e.g. http) which is mandatory to support, aswell asone
mandatory baseline data format for the data so retrieved. Event packages
using URIsto retrieve state information also MUST address the duration of
the validity of the URIs passed to a subscriber in this fashion.

Roach

[Page 23]

Internet Draft SIP-Specific Event Natification February 2002

| 6. Security Considerations

6.1. AccessControl

The ability to accept subscriptions should be under the direct control of the
user, since many types of events may be considered sensitive for the pur-
poses of privacy. Similarly, the notifier should have the ability to selectively

| reject subscriptions based on the subscriber identity (based on access control
lists), using standard SIP authentication mechanisms. The methods for cre-
ation and distribution of such access control lists is outside the scope of this
draft.

6.2. Release of Sendtive Policy Information

The mere act of returning a 200 or certain 4xx and 6xx responses to SUB-
SCRIBE requests may, under certain circumstances, create privacy concerns
by revealing sensitive policy information. In these cases, the notifier

| SHOULD always return a 202 response. While the subsequent NOTIFY
message may not convey true state, it MUST appear to contain a potentially
correct piece of datafrom the point of view of the subscriber, indistinguish-
ablefrom avalid response. Information about whether a user is authorized to
subscribe to the requested state is never conveyed back to the original user
under these circumstances.

6.3. Denial-of-Service attacks

The current model (one SUBSCRIBE request triggers a SUBSCRIBE
response and one or more NOTIFY requests) is aclassic setup for an ampli-
fier node to be used in a smurf attack.

Also, the creation of state upon receipt of a SUBSCRIBE request can be
used by attackers to consume resources on avictim’'s machine, rendering it
unusable.

To reduce the chances of such an attack, implementations of notifiers
SHOULD require authentication. Authentication issues are discussed in SIP

[1].

6.4. Replay Attacks
Replaying of either SUBSCRIBE or NOTIFY can have detrimental effects.
In the case of SUBSCRIBE messages, attackers may be able to install any

arbitrary subscription which it witnessed being installed at some point in the
past. Replaying of NOTIFY messages may be used to spoof old state infor-

Roach [Page 24]

Internet Draft SIP-Specific Event Natification February 2002

mation (although a good versioning mechanism in the body of the NOTIFY
messages may help mitigate such an attack).

To prevent such attacks, implementations SHOULD require authentication.
Authentication issues are discussed in SIP [1].

6.5. Man-in-the middle attacks

Even with authentication, man-in-the-middle attacks using SUBSCRIBE
may be used to install arbitrary subscriptions, hijack existing subscriptions,
terminate outstanding subscriptions, or modify the resource to which a sub-
scription is being made. To prevent such attacks, implementations SHOULD
provide integrity protection across “Contact,” “Route,” “Expires,” “Event,”
and “To” headers of SUBSCRIBE messages, at aminimum. If SUBSCRIBE
bodies are used to define further information about the state of the call, they
SHOULD be included in the integrity protection scheme.

Man-in-the-middle attacks may also attempt to use NOTIFY messages to
spoof arbitrary state information and/or terminate outstanding subscriptions.
To prevent such attacks, implementations SHOULD provide integrity pro-
tection across the “ Call-ID,” “CSeq,” and “ Subscription-State” headers and
the bodies of NOTIFY messages.

Integrity protection of message headers and bodiesis discussed in SIP[1].
6.6. Confidentiality

The state information contained in aNOTIFY message has the potential to

contain sensitive information. |mplementations MAY encrypt such informa-

tion to ensure confidentiality.

While less likely, it is also possible that the information contained in a SUB-

SCRIBE message contains information that users might not want to have

reveaed. Implementations MAY encrypt such information to ensure confi-

dentiality.

To alow the remote party to hide information it considers sensitive, all

implementations SHOUL D be able to handle encrypted SUBSCRIBE and

NOTIFY messages.

The mechanisms for providing confidentiality are detailed in SIP[1].
7. |ANA Considerations

(This section is not applicable until this document is published as an RFC.)

Roach [Page 25]

Internet Draft SIP-Specific Event Natification February 2002

7.1.

Roach

This document defines an event-type namespace which requires a central
coordinating body. The body chosen for this coordination is the Internet
Assigned Numbers Authority (IANA).

There are two different types of event-types: normal event packages, and
event template-packages; see section 5.2. To avoid confusion, template-
package names and package names share the same namespace; in other
words, an event template-package MUST NOT share a name with a pack-

age.

Following the policies outlined in “ Guidelines for Writing an IANA Consid-
erations Section in RFCs’[6], normal event package identification tokens are
allocated as First Come First Served, and event template-package identifica
tion tokens are allocated on al ETF Consensus basis.

Registrations with the IANA MUST include the token being registered and
whether the token is a package or atemplate-package. Further, packages
MUST include contact information for the party responsible for the registra-
tion and/or a published document which describes the event package. Event
template-package token registrations MUST include a pointer to the pub-
lished RFC which defines the event templ ate-package.

Registered tokens to designate packages and templ ate-packages MUST
NOT contain the character “.”, which is used to separate template-packages
from packages.

Registration Information

As this document specifies no package or template-package names, the ini-
tial IANA registration for event types will be empty. The remainder of the
text in this section gives an example of the type of information to be main-
tained by the IANA,; it also demonstrates al five possible permutations of
package type, contact, and reference.

The table below lists the event packages and template-packages defined in
“SIP-Specific Event Notification” [RFC xxxx]. Each nameisdesignated asa
package or a template-package under “Type.”

Package Nane Type Cont act Ref er ence
exanpl el package [Roach]

exanpl e2 package [Roach] [RFC xxxx]
exanpl e3 package [RFC xxxx]
exanpl e4 tenpl ate [Roach] [RFC xxxx]
exanpl e5 tenpl ate [RFC xxxx]

[Page 26]

Internet Draft SIP-Specific Event Natification February 2002

7.2.

7.3.

7.4.

Roach

[Roach] Adam Roach <adam@ynani csoft. cons

REFERENCES

[RFC xxxx] A. Roach “SlI P-Specific Event Notification”, RFC XXXX,
August 2002.

Registration Template

To: ietf-sip-events@ana.org
Subj ect: Registration of new SIP event package

Package Nane:

(Package names must conform to the syntax described in section
7.5.1.)

Is this registration for a Tenpl ate Package:

(indicate yes or no)

Publ i shed Specification(s):

(Template packages require a published RFC. Other packages may
reference a specification when appropriate).

Person & email address to contact for further infornmation:

Syntax

This section describes the syntax extensions required for event notification
in SIP. Semantics are described in section 4. Note that the formal syntax def-
initions described in this document are expressed in the ABNF format
defined by [1], and contain references to e ements defined therein.

New M ethods

This document describes two new SIP methods: “SUBSCRIBE” and
“NOTIFY.”

Thistable expands on tables2 and 3in SIP[1].

Header Wher e SUB NOT
Accept R o] o]
Accept 2XX - -
Accept 415 o] o]
Accept - Encodi ng R 0O o
Accept - Encodi ng 2XX - -

[Page 27]

Internet Draft

Roach

Accept - Encodi ng
Accept - Language
Accept - Language
Accept - Language
Alert-Info
Alert-Info

Al | ow
Al | ow
Al | ow
Al | ow

Aut henti cation-1Info
Aut hori zation
Call-1D

Cont act

Cont act

Cont act

Cont act

Cont act

Cont ent - Di sposition
Cont ent - Encodi ng
Cont ent - Language
Content-Length

Cont ent - Type

CSeq

Dat e
Error-Info
Expi res
From

I n- Reply-To
Max- For war ds
M n- Expi res

M ME- Ver si on
Organi zati on
Priority
Proxy- Aut henti cate
Proxy- Aut hori zati on
Proxy- Requi re
RAck

Recor d- Rout e
Recor d- Rout e
Repl y-To
Require
Retry-After
Retry-After
Retry-After
Rout e

RSeq

Server

Subj ect
Support ed
Support ed

Ti mest anp

To

Unsupport ed

415
R
2XX
415
R
180
R
2XX
r
405
2XX
R
c
R
Ixx
2XX
3XX
485

C

300- 699

2xx, 401, 484

404, 413, 480, 486

500, 503
600, 603
R
Ixx
r
R
R
2XX

c(1)
420

** 000033JO3J3IO0OO0JOOO

J o003

cogooo3zgg:!

o o !

' OO0 OO0OO0O0 o0 !

©og3ooo

SIP-Specific Event Natification

** 00003JOO3J3IO0OO0JOO0OO

oo 3

1 3 1

3

o

co'oo3g:

' OO0 OO0 0o !

©og3ooo

February 2002

[Page 28]

Internet Draft SIP-Specific Event Natification February 2002

User - Agent o] o]
Vi a c m m
War ni ng r 0 0
WAV Aut hent i cat e 401 m m

7.4.1. SUBSCRIBE method

“SUBSCRIBE” is added to the definition of the e ement “Method” in the
SIP message grammar.

Likeal SIP method names, the SUBSCRIBE method nameis case sensitive.
The SUBSCRIBE method is used to request asynchronous notification of an
event or set of events at alater time.

7.4.2. NOTIFY method

7.5.

7.5.1.

Roach

“NOTIFY” is added to the definition of the element “Method” in the SIP
message grammar.

The NOTIFY method is used to notify a SIP node that an event which has
been requested by an earlier SUBSCRIBE method has occurred. It may also
provide further details about the event.

New Headers

This table expands on tables 2 and 3 in SIP [1], as amended by the changes
described in section 7.4.

Header field where proxy ACK BYE CAN I NV OPT REG PRA SUB NOT
Al | ow Event s R o] o] - o] o] o] o] o] o]
Al | ow Event s 2XX - o] - o] o] o] o] o] o]
Al | ow Event s 489 - - - - - - - m m
Event R - - - - - - - m m
Subscription-State R - - - - - - - m

“Event” header

The following header is defined for the purposes of this specification.

Event = (“Event” | "0”) HCOLON event-type
*(SEM event-param)
event-type event - package *(“.” event-tenplate)

t oken- nodot

t oken- nodot

1*(al phanum| "-" | "I" | "% | "*"
I I I IR I

event - param = generic-param| (“id” EQUAL token)

event - package
event-tenpl ate
t oken- nodot

[Page 29]

Internet Draft SIP-Specific Event Natification February 2002

7.5.2.

7.5.3.

Roach

Event is added to the definition of the element “message-header” in the SIP
message gramma.

For the purposes of matching responses and NOTIFY messages with SUB-
SCRIBE messages, the event-type portion of the “Event” header is com-
pared byte-by-byte, and the “id” parameter token (if present) is compared
byte-by-byte. An “Event” header containing an “id” parameter never
matches an “Event” header without an “id” parameter. No other parameters
are considered when performing a comparison.

This document does not define values for event-types. These values will be
defined by individual event packages, and MUST be registered with the
IANA.

There MUST be exactly one event type listed per event header. Multiple
events per message are disallowed.

For the curious, the “0” short form is chosen to represent “occurrence.”

“Allow-Events’ Header

The following header is defined for the purposes of this specification.

Al ow Events = (“Allow Events” | “u”) HCOLON
l*event -type

Allow-Eventsis added to the definition of the element “general-header” in
the SIP message grammar.

For the curious, the “u” short form is chosen to represent “ understands.”

“Subscription-State” Header

The following header is defined for the purposes of this specification.

Subscription-State = “Subscription-State” HCOLON
subst at e-val ue)
*(SEM subexp-parans)

subst at e- val ue = “active” | “pending” | “term nated”

(“reason” EQUAL reason-code)

| (“expires” EQUAL delta-seconds)

| (“retry-after” EQUAL del t a- seconds)
| generic-param

subexp- par ans

reason- code = “deacti vat ed”
| “probation”
| “rejected”
| “tinmeout”

[Page 30]

Internet Draft SIP-Specific Event Natification February 2002
| “giveup”
| reason-extension

reason- ext ensi on = t oken

Subscription-State is added to the definition of the element “request-header”
in the SIP message grammar.

7.6. New Response Codes

7.6.1. “202 Accepted” Response Code

The 202 response is added to the “ Success’ header field definition:

Success = “200" ; K
| “202" ; Accepted

“202 Accepted” has the same meaning as that defined in HTTP/1.1 [4].

7.6.2. “489 Bad Event” Response Code

The 489 event response is added to the “ Client-Error” header field defini-
tion:

Client-Error = “400" ; Bad Request

| “489” ; Bad Event

“489 Bad Event” is used to indicate that the server did not understand the
event package specified in a“Event” header field.

8. Changes

8.1. Changesfrom draft-ietf-...-01

- Changed dependancy from RFC2543 to new sip bis draft.
This allowed renoval of certain sections of text.

- Renanmed “sub-packages” to “tenpl ate- packages” in an
attenpt to nmitigate expl oding ranpant nisinterpretation.

- Changed “Subscription-Expires” to “Subscription-State,”
and added cl earer semantics for “reason” codes.

- Aligned “Subscription-State” “reason” codes with
wat cherinfo draft.

- Made “Subscription-State” nandatory in NOTIFY
requests, since it is integral to defining the
creation and destruction of subscriptions (and,
consequent |y, dial ogs)

Roach [Page 31]

Internet Draft SIP-Specific Event Natification February 2002

- Heavily revised section on dialog creation and
term nation.

- Expanded mgration section.

- Added “id” paraneter to Event header, to allow
demul ti pl exi ng of NOTIFY requests when nore than
one subscription is associated with a single dialog.

- Syncroni zed SUBSCRI BE “Expi res” handling with REQ STER
(agai n)

- Added definitions section.
- Restructuring for clarity.

- Added statement explicitly allow ng event
packages to define additional paraneters
for the “Event” header.

- Added notivational text in several places.

- Synced up header table nodifications with bis draft.

8.2. Changesfrom draft-ietf-...-00

- Fixed confusing typo in section describing correlation
of SUBSCRI BE requests

- Added explanitory text to clarify tag handling when
generating re-subscriptions

- Expanded general handling section to include specific
di scussi on of Route/ Record-Route handli ng.

- Included use of “methods” paraneter on Contact as
a nmeans for detecting support for SUBSCRI BE and NOTI FY.

- Added definition of term“dialog”; changed “leg” to
“di al og” everwhere.

- Added syntax for “Subscription-Expires” header.

- Changed NOTI FY nmessages to refer to “Subscription-Expires”
everywhere (instead of “Expires.”)

- Added information about generation and handli ng of
481 responses to SUBSCRI BE requests

- Changed havi ng Expires header in SUBSCRI BE from
MUST to SHOULD; this aligns nore closely with
REQ STER behavi or

- Renoved experinmental /private event package nanes,
per |ist consensus

Roach [Page 32]

Internet Draft

8.3.

Roach

SIP-Specific Event Natification February 2002

Cl eaned up sonme |l egacy text left over fromvery early
drafts that allowed nultiple contacts per subscription

Strengt hened | anguage requiring the renoval of subscriptions
if a NOTIFY request fails with a 481. darified that such
renoval is required for all subscriptions, including

admi ni strative ones.

Renoved description of delaying NOTIFY requests unti
aut horization is granted. Such behavi or was inconsi stent
with other parts of this docunent.

Moved description of event packages to later in docunent,
to reduce the nunmber of forward references.

M nor editorial and nits changes

Added new open issues to open issues section. Al
previ ous open issues have been resol ved.

Changes from draft-roach-...-03

Added DOS attacks section to open issues.
Added di scussion of forking to open issues

Changed response to PINT request for notifiers who don't
support PINT from 400 to 489

Added sentence to security section to call attention to
potential privacy issues of delayed NOTIFY responses.

Added cl arification: access control list handling is out
of scope.

(Hopeful l'y) Final resolution on out-of-band subscriptions:
mentioned in section 4.2. Renoved from open issues.

Made “Contact” header optional for SUBSCRI BE 1xx responses.
Added description clarifying tag handling (section 4.3.4.)
Renoved event throttling from open issues.

Editorial cleanup to renpve term “extension draft” and
simlar; “event package” is now (hopefully) used consistently
t hr oughout the docunent.

Renmpove di scussi on of event agents from open issues.
This is covered in the event packages section now.

Added di scussion of forking to open issues.
Added di scussi on of sub-packages

Added clarification that, upon receiving a “NOTI FY”
with an expires of “0”, the subscriber can re-subscri be.

[Page 33]

Internet Draft

8.4.

Roach

SIP-Specific Event Natification February 2002

This allows trivial mgration of subscriptions between
nodes.

Added prelimnary | ANA Consi derations section

Changed syntax for experinental event tokens to avoid
possi bly anbiguity between experinmental tokens and
sub- packages.

Slight adjustment to “Event” syntax to accomobdate sub-packages.

Added section describing the information which is to be
i ncluded in docunents describing event packages.

Made 481 responses mandatory for unexpected notifications
(allowing notifiers to renove subscriptions in error cases)

Several minor non-senmantic editorial changes.

Changes from dr aft-roach-...-02

Clarification under “Notifier SUBSCRI BE behavi or” which
i ndicates that the first NOTIFY nmessage (sent inmediately
in response to a SUBSCRI BE) may contain an enpty body, if
resource state doesn’t make sense at that point in tine.

Text on nmessage flow in overview section corrected

Renoved suggestion that clients attenpt to unsubscribe
whenever they receive a NOTIFY for an unknown event.
Such behavi or opens up DOS attacks, and will lead to
message | oops unl ess additional precautions are taken
The 481 response to the NOTIFY should serve the same
pur pose.

Changed processing of non-200 responses to NOTIFY from
“SHOULD renove contact” to “MJST renove contact” to support
t he above change.

Re- added di scussi on of out-of-band subscription nmechani sns
(i ncludi ng open issue of resource identification).

Added text specifying that SUBSCRI BE transacti ons are not

to be prolonged. This is based on the consensus that non-1NVITE
transacti ons shoul d never be prol onged; such consensus within
the SIP working group was reached at the 49th | ETF

Added “202 Accepted” response code to support the above
change. The behavi or of this 202 response code is a
generalization of that described in the presence draft.

Updated to specify that the response to an unauthori zed
SUBSCRI BE request is 603 or 403.

Level -4 subheadi ngs added to particularly long sections to
break themup into logical units. This hel ps nmake the

[Page 34]

Internet Draft SIP-Specific Event Natification February 2002

behavi or description seem sonewhat |ess ranbling. This also
caused sone re-ordering of these paragraphs (hopefully in a
way that nekes them nore readable).

- Sone final nopping up of old text describing “call related”
and “third party” subscriptions (deprecated concepts).

- Duplicate explanation of subscription duration removed from
subscri ber SUBSCRI BE behavi or section

- Oher text generally applicable to SUBSCRI BE (instead of just
subscri ber handling of SUBSCRIBE) nobved to parent section

- Updated header table to refl ect mandatory usage of “Expires”
header in SUBSCRI BE requests and responses

- Renoved “Event” header usage in responses

- Added sentence suggesting that notifiers may notify
subscri bers when a subscription has tined out.

- Carified that a failed attenpt to refresh a subscription
does not inply that the original subscription has been
cancel | ed.

- Clarified that 489 is a valid response to “NOTI FY" requests.

- Mnor editorial changes to clean up awkward and/or uncl ear
grammar in several places

8.5. Changesfrom draft-roach-...-01
- Multiple contacts per SUBSCRI BE nmessage di sal | owed.
- Contact header now required in NOTIFY messages.
- Distinction between third party/call menber events renpved
- Distinction between call-related/resource-rel ated events renoved.

- Carified that subscribers nust expect NOTIFY nessages before
t he SUBSCRI BE transaction conpl etes

- Added i nmedi ate NOTI FY nessage after successful SUBSCRI BE
this solves a nyriad of issues, nost having to do with forking.

- Added di scussion of “undefined state” (before a NOTIFY arrives).

- Added mechanismfor notifiers to shorten/cancel outstanding
subscri pti ons.

- Renoved open issue about appropriateness of new “489” response.
- Rermoved all discussion of out-of-band subscriptions.

- Added brief discussion of event state polling.

Roach [Page 35]

Internet Draft

SIP-Specific Event Natification February 2002

0. References

| [1]
[2]
[3]
‘ [4]
[S]
[6]

[7]

J. Rosenberg et. al., “ SIP: Session Initiation Protocol”, <draft-ietf-sip-
rfc2543bis-07>, IETF; February 2002. Work in progress.

J. Rosenberg, H. Schulzrinne, “Guidelines for Authors of SIP Extensions’,
<draft-ietf-sip-guidelines-03.txt>, IETF; November 2001. Work in progress.

S. Petrack, L. Conroy, “The PINT Service Protocol”, RFC 2848, IETF; June
2000.

R. Fielding et. al., “Hypertext Transfer Protocol -- HTTP/1.1”, RFC2068, IETF,
January 1997.

J. Postel, J. Reynolds, “Instructionsto RFC Authors’, RFC2223, IETF, October
1997.

T. Narten, H. Alvestrand, “ Guidelines for Writing an IANA Considerations
Section in RFCs’, BCP 26, IETF, October 1998.

Schulzrinne/Rosenberg, “SIP Caller Preferences and Callee Capabilities”,
<draft-ietf-sip-callerprefs-05.txt>, IETF;, November 2001. Work in progress.

10. Acknowledgements

Thanksto the participants in the Events BOF at the 48th IETF meeting in
Pittsburgh, as well as those who gave ideas and suggestions on the SIP
Events mailing list. In particular, | wish to thank Henning Schul zrinne of
Columbia University for coming up with the final three-tiered event identifi-

| cation scheme, Sean Olson for miscellaneous guidance, Jonathan Rosenberg
for athorough scrubbing of the -00 draft, and the authors of the “ SIP Exten-
sionsfor Presence” draft for their input to SUBSCRIBE and NOTIFY
request semantics.

11. Author’s Address

Adam Roach
dynamicsoft

Roach

5100 Tennyson Parkway

Suite 1200

Plano, TX 75024

USA

E-Mail: <adam@dynamicsoft.com>
Voice: <sip:adam@dynamicsoft.com>

[Page 36]

	Status of this Memo
	Abstract
	1. Table of Contents
	2. Introduction
	2.1. Overview of Operation

	3. Definitions
	4. Node Behavior
	4.1. Description of SUBSCRIBE Behavior
	4.1.1. Subscription duration
	4.1.2. Identification of Subscribed Events and Event Classes
	4.1.3. Additional SUBSCRIBE Header Values
	4.1.4. Subscriber SUBSCRIBE Behavior
	4.1.5. Proxy SUBSCRIBE Behavior
	4.1.6. Notifier SUBSCRIBE Behavior

	4.2. Description of NOTIFY Behavior
	4.2.1. Identification of reported events, event classes, and current state
	4.2.2. Notifier NOTIFY Behavior
	4.2.3. Proxy NOTIFY Behavior
	4.2.4. Subscriber NOTIFY Behavior

	4.3. General
	4.3.1. Detecting support for SUBSCRIBE and NOTIFY
	4.3.2. CANCEL requests
	4.3.3. Forking
	4.3.4. Dialog creation and termination
	4.3.5. State Agents and Notifier Migration
	4.3.6. Polling Resource State
	4.3.7. Allow-Events header usage
	4.3.8. PINT Compatibility

	5. Event Packages
	5.1. Appropriateness of Usage
	5.2. Event Template-packages
	5.3. Amount of State to be Conveyed
	5.3.1. Complete State Information
	5.3.2. State Deltas

	5.4. Event Package Responsibilities
	5.4.1. Event Package Name
	5.4.2. Event Package Parameters
	5.4.3. SUBSCRIBE Bodies
	5.4.4. Subscription Duration
	5.4.5. NOTIFY Bodies
	5.4.6. Notifier processing of SUBSCRIBE requests
	5.4.7. Notifier generation of NOTIFY requests
	5.4.8. Subscriber processing of NOTIFY requests
	5.4.9. Handling of forked requests
	5.4.10. Rate of notifications
	5.4.11. State Agents
	5.4.12. Examples
	5.4.13. URI List handling

	6. Security Considerations
	6.1. Access Control
	6.2. Release of Sensitive Policy Information
	6.3. Denial-of-Service attacks
	6.4. Replay Attacks
	6.5. Man-in-the middle attacks
	6.6. Confidentiality

	7. IANA Considerations
	7.1. Registration Information
	7.2. Registration Template
	7.3. Syntax
	7.4. New Methods
	7.4.1. SUBSCRIBE method
	7.4.2. NOTIFY method

	7.5. New Headers
	7.5.1. “Event” header
	7.5.2. “Allow-Events” Header
	7.5.3. “Subscription-State” Header

	7.6. New Response Codes
	7.6.1. “202 Accepted” Response Code
	7.6.2. “489 Bad Event” Response Code

	8. Changes
	8.1. Changes from draft-ietf-...-01
	8.2. Changes from draft-ietf-...-00
	8.3. Changes from draft-roach-...-03
	8.4. Changes from draft-roach-...-02
	8.5. Changes from draft-roach-...-01

	9. References
	10. Acknowledgements
	11. Author’s Address

