
Internet Engineering Task Force SIP WG
INTERNET-DRAFT Handley/Schulzrinne/Schooler/Rosenberg
draft-ietf-sip-rfc2543bis-03.ps ACIRI/Columbia U./Caltech/dynamicsoft

May 29, 2001
Expires: November 2001

SIP: Session Initiation Protocol

Status of this Memo

This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its

working groups. Note that other groups may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced,

or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt
To view the list Internet-Draft Shadow Directories, seehttp://www.ietf.org/shadow.html.

Copyright Notice

Copyright (c) The Internet Society (2001). All Rights Reserved.

Abstract

The Session Initiation Protocol (SIP) is an application-layer control (signaling) protocol for creat-
ing, modifying and terminating sessions with one or more participants. These sessions include Internet
multimedia conferences, Internet telephone calls and multimedia distribution. Members in a session can
communicate via multicast or via a mesh of unicast relations, or a combination of these.

SIP invitations used to create sessions carry session descriptions which allow participants to agree
on a set of compatible media types. SIP supports user mobility by proxying and redirecting requests
to the user’s current location. Users can register their current location. SIP is not tied to any particular
conference control protocol. SIP is designed to be independent of the lower-layer transport protocol and
can be extended with additional capabilities.

Contents

1 Introduction 7
1.1 Overview of SIP Functionality. 7
1.2 Terminology . 8
1.3 Overview of SIP Operation . 8
1.4 Definitions . 9

1.4.1 SIP Addressing 13
1.4.2 Locating a SIP Server . 13
1.4.3 SIP Transaction . 15
1.4.4 Initiating a Session .. 15
1.4.5 Locating a User . 17
1.4.6 Changing an Existing Session .. 17
1.4.7 Registration Services . 17

1.5 Protocol Properties. 18
1.5.1 Minimal State . 18

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

1.5.2 Lower-Layer-Protocol Neutral . 18
1.5.3 Text-Based. 18

2 SIP Uniform Resource Locators 18
2.1 SIP URL Comparison . 22
2.2 Non-SIP URLs . 22

3 SIP Message Overview 23

4 Request 26
4.1 Request-Line . 26
4.2 Methods. 26
4.3 Request-URI . 26

4.3.1 SIP Version . 27
4.4 Option Tags . 27

4.4.1 Registering New Option Tags with IANA . 28

5 INVITE, ACK and CANCEL 28
5.1 INVITE . 28

5.1.1 ACK . 30
5.2 CANCEL . 30

6 BYE 31

7 Registrars, Registrations and theREGISTER Method 31
7.1 Where to Register . 32
7.2 REGISTER Header Fields . 32
7.3 Registering Contact Locations . 33
7.4 Registration Expiration . 33
7.5 List of Current Registrations . 34
7.6 Removing Registrations . 34

8 OPTIONS 34

9 Response 35
9.1 Status-Line . 35

9.1.1 Status Codes and Reason Phrases. 35

10 Header Field Definitions 36
10.1 General Header Fields . 38
10.2 Entity Header Fields. 39
10.3 Request Header Fields . 40
10.4 Response Header Fields 41
10.5 Header Field Format . 41
10.6 Accept . 41
10.7 Accept-Encoding . 42
10.8 Accept-Language . 42

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 2]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

10.9 Alert-Info . 42
10.10Allow . 43
10.11Authorization . 43
10.12Call-ID . 43
10.13Call-Info . 44
10.14Contact . 44
10.15Content-Disposition . 47
10.16Content-Encoding . 47
10.17Content-Language . 48
10.18Content-Length . 48
10.19Content-Type . 48
10.20CSeq . 49
10.21Date . 49
10.22Encryption . 50
10.23Error-Info . 50
10.24Expires . 51
10.25From . 51
10.26In-Reply-To . 52
10.27Max-Forwards . 52
10.28MIME-Version . 53
10.29Organization . 53
10.30Priority . 53
10.31Proxy-Authenticate . 53
10.32Proxy-Authorization . 54
10.33Proxy-Require . 54
10.34Record-Route . 54
10.35Require . 54
10.36Response-Key . 55
10.37Retry-After . 55
10.38Route . 56
10.39Server . 56
10.40Subject . 56
10.41Supported . 56
10.42Timestamp . 57
10.43To . 57
10.44Unsupported . 58
10.45User-Agent . 58
10.46Via . 58

10.46.1 Requests . 58
10.46.2 Receiver-taggedVia Header Fields . 59
10.46.3 Receiving Responses. 59
10.46.4 Generating Responses . 59
10.46.5 Sending Responses . 60
10.46.6 Syntax . 60

10.47Warning . 61

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 3]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

10.48WWW-Authenticate . 63

11 Status Code Definitions 63
11.1 Informational 1xx . 63

11.1.1 100 Trying . 64
11.1.2 180 Ringing . 64
11.1.3 181 Call Is Being Forwarded . 64
11.1.4 182 Queued . 64
11.1.5 183 Session Progress. 64

11.2 Successful 2xx . .. 64
11.2.1 200 OK . 65

11.3 Redirection 3xx . 65
11.3.1 300 Multiple Choices. 65
11.3.2 301 Moved Permanently . 65
11.3.3 302 Moved Temporarily. 66
11.3.4 305 Use Proxy . 66
11.3.5 380 Alternative Service . 66

11.4 Request Failure 4xx . 66
11.4.1 400 Bad Request . 66
11.4.2 401 Unauthorized . 66
11.4.3 402 Payment Required . 66
11.4.4 403 Forbidden . 67
11.4.5 404 Not Found 67
11.4.6 405 Method Not Allowed . 67
11.4.7 406 Not Acceptable .. 67
11.4.8 407 Proxy Authentication Required . 67
11.4.9 408 Request Timeout . 67
11.4.10 409 Conflict . 67
11.4.11 410 Gone . 67
11.4.12 413 Request Entity Too Large .. 68
11.4.13 414 Request-URI Too Long . 68
11.4.14 415 Unsupported Media Type .. 68
11.4.15 420 Bad Extension . 68
11.4.16 480 Temporarily Unavailable . .. 68
11.4.17 481 Call Leg/Transaction Does Not Exist . 68
11.4.18 482 Loop Detected . 68
11.4.19 483 Too Many Hops . 69
11.4.20 484 Address Incomplete . 69
11.4.21 485 Ambiguous 69
11.4.22 486 Busy Here . 69
11.4.23 487 Request Terminated . 69
11.4.24 488 Not Acceptable Here. 69

11.5 Server Failure 5xx . 70
11.5.1 500 Server Internal Error . 70
11.5.2 501 Not Implemented . 70

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 4]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

11.5.3 502 Bad Gateway . 70
11.5.4 503 Service Unavailable . 70
11.5.5 504 Server Time-out . 70
11.5.6 505 Version Not Supported 70
11.5.7 513 Message Too Large. 71

11.6 Global Failures 6xx . 71
11.6.1 600 Busy Everywhere . 71
11.6.2 603 Decline . 71
11.6.3 604 Does Not Exist Anywhere . 71
11.6.4 606 Not Acceptable .. 71

12 SIP Message Body 71
12.1 Body Inclusion . 71
12.2 Message Body Type. 72
12.3 Message Body Length 72

13 Compact Form 72

14 Behavior of SIP Clients and Servers 73
14.1 Multicast Unreliable Transport Protocols. 73
14.2 Reliable Transport Protocols . 74
14.3 Reliability for Requests Other ThanINVITE . 74

14.3.1 Unreliable Transport Protocols . 74
14.3.2 Reliable Transport Protocol . 75

14.4 Reliability forINVITE Requests . 75
14.4.1 Unreliable Transport Protocols . 75
14.4.2 Reliable Transport Protocol . 76

14.5 ICMP Handling . 76

15 Behavior of SIP User Agents 77
15.1 Caller Issues InitialINVITE Request . 77
15.2 Callee Issues Response 78
15.3 Caller Receives Response to Initial Request 78
15.4 Caller or Callee Generate Subsequent Requests . 79
15.5 Receiving Subsequent Requests. 80

16 Routing of Requests 80
16.1 UAC Processing for initial transaction .. 81
16.2 UAS Processing of initial transaction . .. 81
16.3 Proxy procedures for record routing a transaction . 82
16.4 UA Processing of Subsequent Requests in a Call Leg. 84

16.4.1 Local outbound proxies. 85
16.5 Proxy routing procedures . 85
16.6 Pre-Loaded Route Headers . 86

17 Behavior of SIP Proxy and Redirect Servers 86

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 5]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

17.1 Redirect Server . 86
17.2 User Agent Server . 86
17.3 Proxy Server . 86

17.3.1 Proxying Requests .. 87
17.3.2 Proxying Responses. 87
17.3.3 Stateless Proxy: Proxying Responses . .. 87
17.3.4 Stateful Proxy: Receiving Requests 88
17.3.5 Stateful Proxy: ReceivingACKs . 88
17.3.6 Stateful Proxy: Receiving Responses . .. 88
17.3.7 Stateless, Non-Forking Proxy .. 88

17.4 Forking Proxy . 88

18 Security Considerations 92
18.1 Confidentiality and Privacy: Encryption. 92

18.1.1 End-to-End Encryption . 92
18.1.2 Privacy of SIP Responses . 94
18.1.3 Encryption by Proxies . 95
18.1.4 Hop-by-Hop Encryption . 95

18.2 Message Integrity and Access Control: Authentication 95
18.2.1 Trusting responses . 97

18.3 Callee Privacy . 98
18.4 Denial of Service . 98
18.5 Known Security Problems .. 98

19 SIP Authentication using HTTP Basic and Digest Schemes 98
19.1 Framework . 99
19.2 Basic Authentication . 99
19.3 Digest Authentication . 99
19.4 Proxy-Authentication. 100

20 Examples 100
20.1 Registration . 100
20.2 Invitation to a Multicast Conference . .. 102

20.2.1 Request . 102
20.2.2 Response .. 103

20.3 Two-party Call . 104
20.4 Terminating a Call . 106
20.5 Forking Proxy . 106
20.6 Redirects . 110
20.7 Negotiation . 111
20.8 OPTIONS Request . 112

A Minimal Implementation 113
A.1 Transport Protocol Support .. 113
A.2 Client . 113
A.3 Server . 114

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 6]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

A.4 Header Processing. 114

B Usage of the Session Description Protocol (SDP) 114
B.1 General Methodology. 114
B.2 Generating the initial offer .. 116

B.2.1 Unicast . .. 116
B.2.2 Multicast . 117

B.3 Generating the answer . 117
B.3.1 Unicast . .. 118
B.3.2 Multicast . 118

B.4 Modifying the session. 119
B.4.1 Adding a media stream . 119
B.4.2 Removing a media stream . 120
B.4.3 Modifying a media stream . 120
B.4.4 Putting a media stream on hold .. 121

B.5 Example . 121

C Summary of Augmented BNF 122
C.1 Basic Rules . 124

D IANA Considerations 126

E Changes from RFC 2543 126

F Changes Made in Version 00 127

G Changes Made in Version 01 131

H Changes Made in Version 02 132

I Changes Made in Version 03 133

J Acknowledgments 135

K Authors’ Addresses 136

1 Introduction

1.1 Overview of SIP Functionality

The Session Initiation Protocol (SIP) is an application-layer control protocol that can establish, modify
and terminate multimedia sessions (conferences) or Internet telephony calls. SIP can invite participants to
unicast and multicast sessions; the initiator does not necessarily have to be a member of the session to which
it is inviting. Media and participants can be added to an existing session.

SIP transparently supports name mapping and redirection services, allowing the implementation of
ISDN and Intelligent Network telephony subscriber services. These facilities also enablepersonal mobility.
In the parlance of telecommunications intelligent network services, this is defined as: “Personal mobility

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 7]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

is the ability of end users to originate and receive calls and access subscribed telecommunication services
on any terminal in any location, and the ability of the network to identify end users as they move. Personal
mobility is based on the use of a unique personal identity (i.e., personal number).” [1, p. 44]. Personal
mobility complements terminal mobility, i.e., the ability to maintain communications when moving a single
end system from one subnet to another.

SIP supports five facets of establishing and terminating multimedia communications:

User location: determination of the end system to be used for communication;

User capabilities: determination of the media and media parameters to be used;

User availability: determination of the willingness of the called party to engage in communications;

Call setup: “ringing”, establishment of call parameters at both called and calling party;

Call handling: including transfer and termination of calls.

SIP is designed as part of the overall IETF multimedia data and control architecture currently incorporat-
ing protocols such as RSVP (RFC 2205 [2]) for reserving network resources, the real-time transport protocol
(RTP) (RFC 1889 [3]) for transporting real-time data and providing QOS feedback, the real-time streaming
protocol (RTSP) (RFC 2326 [4]) for controlling delivery of streaming media, the session announcement
protocol (SAP) [5] for advertising multimedia sessions via multicast and the session description protocol
(SDP) (RFC 2327 [6]) for describing multimedia sessions. However, the functionality and operation of SIP
does not depend on any of these protocols.

SIP does not offer conference control services such as floor control or voting and does not prescribe how
a conference is to be managed, but SIP can be used to introduce conference control protocols. SIP does not
allocate multicast addresses and does not reserve network resources.

1.2 Terminology

In this document, the key words “MUST”, “ MUST NOT”, “ REQUIRED”, “ SHALL”, “ SHALL NOT”, “ SHOULD”,
“ SHOULD NOT”, “ RECOMMENDED”, “ MAY ”, and “OPTIONAL” are to be interpreted as described in RFC
2119 [7] and indicate requirement levels for compliant SIP implementations.

1.3 Overview of SIP Operation

This section explains the basic protocol functionality and operation. Terms are defined more precisely in
Section 1.4. In SIP, protocol participants are identified by SIP URLs, described in Section 1.4.1. SIP is a
request-response protocol, with requests sent by clients and received by servers. A single implementation
typically combines both client and server functionality. SIP requests can be sent using any reliable or
unreliable protocol, including UDP, SCTP and TCP. Protocol operation is largely independent of the lower-
layer transport protocol.

This specification defines six SIP request methods:INVITE (Section 5.1) initiates sessions,ACK (Sec-
tion 5.1.1) confirms session establishment,OPTIONS (Section 8) requests information about capabilities,
BYE (Section 6) terminates a sessions,CANCEL (Section 5.2) cancels a pending session andREGISTER
(Section 7) allows a client to bind a permanent SIP URL to a temporary SIP URL reflecting the current
network location.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 8]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

SIP requests and responses consists of a request (or status) line, a number of header lines and a message
body (Section 3).

SIP requests can be sent directly from a user agent client to a user agent server, or they can traverse one
or more proxy servers along the way. Often, proxy servers are associated with DNS domains, similar to
SMTP MTAs.

User agents send requests either directly to the address indicated in the SIP URI or to a designated proxy
(“outbound proxy”), independent of the destination address. The current destination address is carried in
the Request-URI. Each proxy can forward the request based on local policy and information contained
in the SIP request. The proxyMAY rewrite the request URI. A proxyMAY also forward the request to
another designated proxy regardless of the request URI. For example, a departmental proxy could forward
all authorized requests to a corporate-wide proxy which then forwards it to the proxy operated by the Internet
service provider, which finally routes the request based on the request URI.

ProxiesMAY modify any part of the SIP message that are not integrity-protected, except those needed
to identify call legs. Proxies generally do not modify the session description, butMAY do so.

For example, if the user agent wants to contact the usersip:alice@example.com , it sends the
request to the server handling theexample.com domain (Section 1.4.2). If that host acts as a proxy server,
it looks up whether it has a mapping fromalice@example.com to another address. If so, it substitutes
that address, sayalice@sales.example.com , into theRequest-URI and then sends the request to the
server for thesales.example.com domain. Any server can also return a response indicating a different
destination to be tried by the upstream client or indicating that the request cannot be forwarded.

Typically, only the first request within a call traverses all proxies, while subsequent requests are ex-
changed directly between user agents. However, a proxy can indicate that it wants to remain in the request
path via aRecord-Route (Section 10.34) header field.

1.4 Definitions

This specification uses a number of terms to refer to the roles played by participants in SIP communications.
The definitions of client, server and proxy are similar to those used by the Hypertext Transport Protocol
(HTTP) (RFC 2616 [8]). The terms and generic syntax of URI and URL are defined in RFC 2396 [9]. The
following terms have special significance for SIP.

Back-To-Back User Agent: Also known as a B2BUA, this is a logical entity that receives an invitation,
and acts as a UAS to process it. In order to determine how the request should be answered, it acts as
a UAC and initiates a call outwards. A B2BUA appears like a proxy, but differs in that it maintains
complete call state and must remain in a call. Since it is nothing more than a concatenation of other
logical functions, no explicit definitions are needed for its behavior.

Call: A call consists of all participants in a session invited by a common source. A SIP call is identified by
a globally unique call-id (Section 10.12), and is created when a user agent sends anINVITE request.
This INVITE request may generate multiple acceptances, each of which are part of the same call (but
different call legs). Furthermore, if a user is invited to the same multicast session by several people,
each of these invitations will be a unique call. In a multiparty conference unit (MCU) based call-in
conference, each participant uses a separate call to invite himself to the MCU.

Call leg: A call leg is a pairwise signaling relationship between two SUP usage agents. A call leg is es-
tablished when a call invitation results in a successful response. It is identified by the combination

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 9]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

of the Call-ID header field, the local address of the participant, and the remote address of the other
participant. For the caller, the local address is theFrom field of theINVITE, and the remote address
is theTo field of the 200 class response. For the callee, the local address is theTo field of the 200
class response to theINVITE, and the remote address is theFrom field of theINVITE. SIP URIs are
compared according to Section 2.1, non-SIP URIs according to Section 2.2. Within the sameCall-ID,
requests withFrom A andTo valueB belong to the same call leg as the requests in the opposite
direction, i.e.,From B andTo A.

Call Stateful: A proxy is said to becall statefulwhen it retains state that persists for the duration of a call
initiated through it. To properly manage that state, the proxy will normally need to receive theBYE
requests that terminate the call.

Client: An application program that sends SIP requests. Clients may or may not interact directly with a
human user.User agentsandproxiescontain clients (and servers).

Conference: A multimedia session (see below), identified by a common session description. A conference
can have zero or more members and includes the cases of a multicast conference, a full-mesh confer-
ence and a two-party “telephone call”, as well as combinations of these. Any number of calls can be
used to create a conference.

Downstream: Requests sent in the direction from the caller to the callee (i.e., user agent client to user agent
server).

Final response: A response that terminates a SIP transaction, as opposed to aprovisional responsethat
does not. All 2xx, 3xx, 4xx, 5xx and 6xx responses are final.

Initiator, calling party, caller: The party initiating a session invitation. Note that the calling party does
not have to be the same as the one creating the conference. A caller retains this role for the duration
of a call.

Invitation: A request sent to a user (or service) requesting participation in a session. A successful SIP
invitation consists of two transactions: anINVITE request followed by anACK request.

Invitee, invited user, called party, callee: The person or service that the calling party is trying to invite to
a conference. A callee retains this role for the duration of a call.

Isomorphic request or response:Two requests or responses are defined to beisomorphicfor the purposes
of this document if they have the same values for theCall-ID, To, From andCSeq header fields. In
addition, isomorphic requests have to have the sameRequest-URI and the same top-mostVia header.

Location server: Seelocation service.

Location service: A location service is used by a SIP redirect or proxy server to obtain information about
a callee’s possible location(s). Examples of sources of location information include SIP registrars,
databases or mobility registration protocols. Location services are offered by location servers. Lo-
cation serversMAY be part of a SIP server, but the manner in which a SIP server requests location
services is beyond the scope of this document.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 10]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

Outbound proxy: A proxy that is located near the originator of requests. It receives all outgoing requests
from a particular UAC, including those requests whoseRequest-URLs identify a host other than the
outbound proxy. The outbound proxy sends these requests, after any local processing, to the address
indicated in theRequest-URI. (All other proxy servers are simply referred as proxies, notinbound
proxies.)

Parallel search: In a parallel search, a proxy issues several requests to possible user locations upon receiv-
ing an incoming request. Rather than issuing one request and then waiting for the final response before
issuing the next request as in asequential search, a parallel search issues requests without waiting for
the result of previous requests.

Provisional response:A response used by the server to indicate progress, but that does not terminate a SIP
transaction. 1xx responses are provisional, other responses are consideredfinal.

Proxy, proxy server: An intermediary program that acts as both a server and a client for the purpose of
making requests on behalf of other clients. Requests are serviced internally or by passing them on,
possibly after translation, to other servers. A proxy interprets, and, if necessary, rewrites a request
message before forwarding it.

Proxy servers are, for example, used to route requests, enforce policies, control firewalls.

Redirect server: A redirect server is a server that accepts a SIP request, maps the address into zero or more
new addresses and returns these addresses to the client. Unlike aproxy server, it does not initiate its
own SIP request. Unlike auser agent server, it does not accept calls.

Registrar: A registrar is a server that acceptsREGISTER requests. A registrar is typically co-located with
a proxy or redirect server andMAY make its information available through the location server.

Regular Transaction: A regular transaction is any transaction with a method other thanINVITE, ACK, or
CANCEL.

Ringback: Ringback is the signaling tone produced by the calling client’s application indicating that a
called party is being alerted (ringing).

Server: A server is an application program that accepts requests in order to service requests and sends back
responses to those requests. Servers are either proxy, redirect or user agent servers or registrars.

Session:From the SDP specification: “A multimedia session is a set of multimedia senders and receivers
and the data streams flowing from senders to receivers. A multimedia conference is an example of a
multimedia session.” (RFC 2327 [6]) (A session as defined for SDP can comprise one or more RTP
sessions.) As defined, a callee can be invited several times, by different calls, to the same session.
If SDP is used, a session is defined by the concatenation of theuser name, session id, network type,
address typeandaddresselements in the origin field.

(SIP) transaction: A SIP transaction occurs between a client and a server and comprises all messages from
the first request sent from the client to the server up to a final (non-1xx) response sent from the server
to the client. A transaction is identified by theCSeq sequence number (Section 10.20) within a single
call leg. The ACK request has the sameCSeq number as the correspondingINVITE request, but
comprises a transaction of its own.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 11]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

Spiral: A spiral is a SIP request which is routed to a proxy, forwarded onwards, and arrives once again at
that proxy, but this time, with aRequest-URI that differs from the previous arrival. A spiral is not an
error condition, unlike a loop.

Stateless Proxy:A logical entity that does not maintain state for a SIP transaction. A stateless proxy
forwards every request it receives downstream and every response it receives upstream.

Stateful Proxy: A logical entity that maintains state information for the duration of a SIP transaction.
Also known as a transaction stateful proxy. The behavior of a stateful proxy is further defined in
Section 17.3. A stateful proxy is not the same as a call stateful proxy.

Upstream: Responses sent in the direction from the user agent server to the user agent client.

URL-encoded: A character string encoded according to RFC 1738, Section 2.2 [10].

User agent client (UAC): A user agent client is a logical entity that initiates a SIP transaction with a re-
quest. This role lasts only for the duration of that transaction. In other words, if a piece of software
initiates a request, it acts as a UAC for the duration of that request. If it receives a request later on, it
takes on the role of a User Agent Server for the processing of that transaction.

User agent server (UAS):A user agent server is a logical entity that responds to a SIP request, generally
acting on behalf of some user. The response accepts, rejects or redirects the request. This role lasts
only for the duration of that transaction. In other words, if a piece of software responds to a request,
it acts as a UAS for the duration of that request. If it generates a request later on, it takes on the role
of a User Agent Client for the processing of that transaction.

User agent (UA): A logical entity which acts as both a user agent client and user agent server for the
duration of a call.

An application programMAY be capable of acting both as a client and a server. For example, a typical
multimedia conference control application would act as a user agent client to initiate calls or to invite others
to conferences and as a user agent server to accept invitations. The role of UAC and UAS as well as proxy
and redirect servers are defined on a request-by-request basis. For example, the user agent initiating a call
acts as a UAC when sending the initialINVITE request and as a UAS when receiving aBYE request from
the callee. Similarly, the same software can act as a proxy server for one request and as a redirect server for
the next request.

Proxy, redirect, location and registrar servers defined above arelogical entities; implementationsMAY

combine them into a single application program. The properties of the different SIP server types are sum-
marized in Table 1.

property redirect proxy user agent registrar
server server server

also acts as a SIP client no yes no no
insertsVia header no yes no no
acceptsACK yes yes yes no

Table 1: Properties of the different SIP server types

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 12]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

1.4.1 SIP Addressing

The “objects” addressed by SIP are users at hosts, identified by a SIP URL. The SIP URL takes a form
similar to amailto or telnet URL, i.e.,user@host.Theuserpart is a user name or a telephone number. The
hostpart is either a domain name or a numeric network address. See section 2 for a detailed discussion of
SIP URL’s.

A user’s SIP address can be obtained out-of-band, can be learned via existing media agents, can be
included in some mailers’ message headers, or can be recorded during previous invitation interactions. In
many cases, a user’s SIP URL can be guessed from their email address.

A SIP URL address can designate an individual (possibly located at one of several end systems), the
first available person from a group of individuals or a whole group. The form of the address, for example,
sip:sales@example.com , is not sufficient, in general, to determine the intent of the caller.

If a user or service chooses to be reachable at an address that is guessable from the person’s name and
organizational affiliation, the traditional method of ensuring privacy by having an unlisted “phone” number
is compromised. However, unlike traditional telephony, SIP offers authentication and access control mecha-
nisms and can avail itself of lower-layer security mechanisms, so that client software can reject unauthorized
or undesired call attempts.

1.4.2 Locating a SIP Server

The Request-URI is determined according to the rules in Section 16 and can be derived from either the
Route, Contact or To header fields.

When a client wishes to send a request, the client either sends it to a locally configured SIP proxy server,
the so-calledoutbound proxy, independent of theRequest-URI, or sends it to the IP address and port
corresponding to theRequest-URI. The outbound proxy can be configured by any mechanism, including
DHCP [11] and can be specified either as a set of parameters such as network address or host name, protocol
port and transport protocol, or as a SIP URI.

If the Request-URI is used, the client needs to determine the protocol, port and IP address of a server
to which to send the request. A clientSHOULD follow the steps below to obtain this information.

Clients MUST re-run the above selection algorithm, re-drawing any random numbers involved, once
per transaction rather than for each request, i.e., requests within the same transactionMUST be sent to the
same network address. Thus, the same address is used for the request, any retransmissions, any associated
CANCEL requests andACK requests for non-2xx responses. However,ACKs for 2xx responses use another
iteration of the selection algorithm. (Indeed, in many cases, they may have different request URIs.)

A stateless proxy can accomplish this, for example, by using the moduloN of a hash of theCall-ID value
or some other combination of transaction-identifying headers as the uniform random number described in
the weighting algorithm of RFC 2782. Here,N is the sum of weights within the priority class.

A client SHOULD be able to interpret explicit network notifications (such as ICMP messages) which
indicate that a server is not reachable, rather than relying solely on timeouts. (For socket-based programs:
For TCP,connect() returnsECONNREFUSEDif the client could not connect to a server at that address.
For UDP, the socket needs to be bound to the destination address usingconnect() rather thansendto()
or similar so that a secondwrite() or send() fails with ECONNREFUSEDif there is no server listening)
If the client finds the server is not reachable at a particular address, itSHOULD behave as if it had received a
400-class error response to that request.

The client tries to find one or more addresses for the SIP server by querying DNS. If a step elicits no
addresses, the client continues to the next step. However if a step elicits one or more addresses, but no SIP

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 13]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

server at any of those addresses responds, then the client concludes the server is down and does not continue
on to the next step.

If the client is configured with the address of an outbound proxy, the parameters of the outbound proxy,
including transport protocol and port, become thedestinationused below.

If there is no outbound proxy, the destination is theRequest-URI. The destination address is themaddr
parameter if it exists and thehost element if not. The transport protocol is thetransport parameter.

The service identifier for DNS SRV records [12] is “sip”.

1. If the destination address is a numeric IP address, the client contacts the server at the given address
and the port number specified in the SIP-URI or, if not specified, the default port (5060).

If the destination specifies a protocol, the client contacts the server using that protocol. If no protocol
is specified, the client first tries UDP. If attempt fails, or if the client does not support UDP but supports
other protocols, it tries those protocols in some implementation-defined order.

The client then skips the remaining steps.

2. If the destination specifies no port number or port number 5060, the transport protocol determines the
use of one of the following three rules:

• If the destination does not specify a transport protocol, DNS SRV records are retrieved according
to RFC 2782 [12]. The results of the query or queries are merged and ordered based on prior-
ity, keeping only records with transport protocols that the client supports. Then, the searching
technique outlined in RFC 2782 [12] is used to select servers in order. Server selection across re-
quests is independent of previous choices, except as noted above for stateless proxies. Message
length or other request properties do not influence the server selection. The client attempts to
contact each server in the order listed, at the port number specified in the SRV record. If none of
the servers can be contacted, the client gives up. If there are no SRV records (with any transport
protocol), DNS address records are used, as described below.

• If a transport protocol is specified and this protocol is supported by the client, the procedure
in the paragraph above is used, limited to DNS resource records with the transport protocol
specified in the SIP-URI.

• If the transport protocol specified is not supported by the client, the client gives up.

If there are no SRV records, the next step applies.

3. If the destination specifies a port number other than 5060 or if there are no SRV records, the client
queries the DNS server for address records for the destination address. Address records include
A RR’s, AAAA RR’s, or other similar records, chosen according to the client’s network protocol
capabilities.

If the DNS server returns no address records, the client gives up. If there are address records, the same
rules as in step 2 apply.

ClientsMUST NOT cache query results except according to the rules in RFC 1035 [13].
The results of the DNS lookup operation do not, in general, lead to a modification of theRequest-URI.

A proxy is free to modify theRequest-URI to any value desired, but the DNS lookups are usually based on the
Request-URI obtained from a location server.

If the DNS time-to-live value exceeds a few minutes, servers generating a large number of requests are probably
well advised to retry failed servers every few minutes.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 14]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

1.4.3 SIP Transaction

Once thehostpart has been resolved to a SIP server, the client sends one or more SIP requests to that server
and receives one or more responses from the server. A request (and its retransmissions) together with the
responses triggered by that request make up a SIP transaction. All responses to a request contain the same
values in theCall-ID, CSeq, To, andFrom fields (with the possible addition of a tag in theTo field (section
10.43)). This allows responses to be matched with requests. TheACK request confirming the receipt of an
INVITE response isnot part of the transaction since it may traverse a different set of hosts.

If a reliable stream protocol is used, request and responses within a single SIP transaction are carried
over the same connection (see Section 14). Several SIP requests from the same client to the same server
MAY use the same connection orMAY use a new connection for each request.

If a client sends the request via a unicast datagram protocol such as UDP, the receiving user agent directs
the response according to the information contained in theVia header fields (Section 10.46). Each proxy
server in the forward path of the request forwards the response using theseVia header fields, as described in
detail in Sections 10.46.3 and 10.46.4. For datagram protocols, reliability is achieved using retransmission
(Section 14).

1.4.4 Initiating a Session

A session is initiated with theINVITE request. A successful SIP invitation consists of two requests,INVITE
followed by ACK. The INVITE (Section 5.1) request asks the callee to join a particular conference or
establish a two-party conversation. After the callee has agreed to participate in the call, the caller confirms
that it has received that response by sending anACK (Section 5.1.1) request.

TheINVITE request typically contains a session description, for example written in SDP (RFC 2327 [6])
format, that provides the called party with enough information to join the session. For multicast sessions,
the session description enumerates the media types and formats that are allowed to be distributed to that
session. For a unicast session, the session description enumerates the media types and formats that the caller
is willing to use and where it wishes the media data to be sent. In either case, if the callee wishes to accept
the call, it responds to the invitation by returning a similar description listing the media it wishes to use. For
a multicast session, the calleeSHOULD only return a session description if it is unable to receive the media
indicated in the caller’s description or wants to receive data via unicast.

The protocol exchanges for theINVITE method are shown in Fig. 1 for a proxy server and in Fig. 2 for
a redirect server. (Note that the messages shown in the figures have been abbreviated slightly.) In Fig. 1,
the proxy server accepts theINVITE request (step 1), contacts the location service with all or parts of the
address (step 2) and obtains a more precise location (step 3). The proxy server then issues a SIPINVITE
request to the address(es) returned by the location service (step 4). The user agent server alerts the user (step
5) and returns a success indication to the proxy server (step 6). The proxy server then returns the success
result to the original caller (step 7). The receipt of this message is confirmed by the caller using anACK
request, which is forwarded to the callee (steps 8 and 9). Note that anACK can also be sent directly to the
callee, bypassing the proxy. All requests and responses have the sameCall-ID.

The redirect server shown in Fig. 2 accepts theINVITE request (step 1), contacts the location service as
before (steps 2 and 3) and, instead of contacting the newly found address itself, returns the address to the
caller (step 4), which is then acknowledged via anACK request (step 5). The caller issues a new request,
with the samecall-ID but a higherCSeq, to the address returned by the first server (step 6). In the example,
the call succeeds (step 7). The caller and callee complete the handshake with anACK (step 8).

The next section discusses what happens if the location service returns more than one possible alterna-

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 15]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

7

1

3

5

62

8

4

lion

cz@cs.tu−berlin.de

cs.tu−berlin.de

?
cs.columbia.edu

tune

location server

hg
s@

pl
ay

he
nn

in
g

Call−ID: 19970827@lion.cs

INVITE sip:henning@cs.columbia.edu SIP/2.0

To: sip:henning@cs.columbia.edu

Call−ID: 19970827@lion.cs

SIP/2.0 200 OK

From: <sip:cz@cs.tu−berlin.de>;tag=17

From: <sip:cz@cs.tu−berlin.de>;tag=17
To: <sip:henning@cs.columbia.edu>;tag=42

hgs

SIP/2.0 200 OK
From: <sip:cz@cs.tu−berlin.de>;tag=17
To: <sip:henning@cs.columbia.edu>;tag=42
Call−ID: 19970827@lion.cs
Contact: <sip:hgs@play.cs.columbia.edu>

INVITE sip:hgs@play SIP/2.0
From: <sip:cz@cs.tu−berlin.de>;tag=17
To: sip:henning@cs.columbia.edu
Call−ID: 19970827@lion.cs

play

Contact: <sip:hgs@play.cs.columbia.edu>

From: <sip:cz@cs.tu−berlin.de>;tag=17

Call−ID: 19970827@lion.cs
To: <sip:henning@cs.columbia.edu>;tag=42

ACK sip:hgs@play.cs.columbia.edu SIP/2.0

Figure 1: Example of SIP proxy server

1

4

7

5

8

6

2 3

cz@cs.tu-berlin

cs.tu-berlin.de

lion

Call-ID: 970827@lion.cs

Call-ID: 970827@lion.cs

Contact: sip:hgs@play.cs.columbia.edu
From: sip:cz@cs.tu-berlin.de

From: sip:cz@cs.tu-berlin.de
To: sip:henning@cs.columbia.edu

To: sip:henning @cs.columbia.edu

Call-ID: 970827@lion.cs

Call-ID: 970827@lion.cs

From: sip:cz@cs.tu-berlin.de
To: sip:henning@cs.columbia.edu

To: sip:henning@cs.columbia.edu
From: sip:cz@cs.tu-berlin.de

Call-ID: 970827@lion.cs

From: cz@cs.tu-berlin.de
To: henning@cs.columbia.edu
Call-ID: 970827@lion.cs

From: sip:cz@cs.tu-berlin.de
To: sip:henning @cs.columbia.edu

ACK sip:hgs@play.cs.columbia.edu SIP/2.0

SIP/2.0 200 OK

INVITE sip:hgs@play.cs.columbia.edu SIP/2.0

SIP/2.0 302 Moved temporarily

INVITE sip:henning@cs.columbia.edu SIP/2.0

ACK sip:henning@cs.columbia.edu SIP/2.0

location server?

tune

he
nn

in
g

pl
ay

.c
s.

co
lu

m
bi

a.
ed

u

play

cs.columbia.edu

hgs@play

Figure 2: Example of SIP redirect server

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 16]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

tive.

1.4.5 Locating a User

A callee may move between a number of different end systems over time. These locations can be dynam-
ically registered with the SIP server (Sections 1.4.7, 7). A location serverMAY also use one or more other
protocols, such as finger (RFC 1288 [14]), rwhois (RFC 2167 [15]), LDAP (RFC 1777 [16]), multicast-based
protocols [17] or operating-system dependent mechanisms to actively determine the end system where a user
might be reachable. A location serverMAY return several locations because the user is logged in at several
hosts simultaneously or because the location server has (temporarily) inaccurate information. The SIP server
combines the results to yield a list of a zero or more locations.

The action taken on receiving a list of locations varies with the type of SIP server. A SIP redirect server
returns the list to the client asContact headers (Section 10.14). A SIP proxy server can sequentially or in
parallel try the addresses until the call is successful (2xx response) or the callee has declined the call (6xx
response). With sequential attempts, a proxy server can implement an “anycast” service.

If a proxy server forwards a SIP request, itMUST add itself to the beginning of the list of forwarders
noted in theVia (Section 10.46) headers. TheVia trace ensures that replies can take the same path back,
ensuring correct operation through compliant firewalls and avoiding request loops. On the response path,
each hostMUST remove itsVia, so that routing internal information is hidden from the callee and outside
networks.

A SIP invitation may traverse more than one SIP proxy server. If one of these “forks” the request, i.e.,
issues more than one request in response to receiving the invitation request, it is possible that a client is
reached, independently, by more than one copy of the invitation request. Each of these copies bears the
sameCall-ID, but a different topmostVia header branch parameter (see Section 10.46). The user agentMAY

choose which final response to return for each such request, typically returning a 200 (OK) for only one of
them.

1.4.6 Changing an Existing Session

In some circumstances, it is desirable to change the parameters of an existing session. This is done by re-
issuing theINVITE within the same call leg, but within a new or different body or header fields to convey
the new information. This reINVITE MUST have a higherCSeq than any previous request from the client
to the server.

For example, two parties may have been conversing and then want to add a third party, switching to
multicast for efficiency. One of the participants invites the third party with the new multicast address and
simultaneously sends anINVITE to the second party, with the new multicast session description, but with
the old call identifier.

1.4.7 Registration Services

TheREGISTER request allows a client to let a proxy or redirect server know at which address(es) it can be
reached. A clientMAY also use it to install call handling features at the server.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 17]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

1.5 Protocol Properties

1.5.1 Minimal State

A single conference session or call involves one or more SIP request-response transactions. Proxy servers
do not have to keep state for a particular call, however, theyMAY maintain state for a single SIP transaction,
as discussed in Section 17. For efficiency, a serverMAY cache the results of location service requests.

1.5.2 Lower-Layer-Protocol Neutral

SIP makes minimal assumptions about the underlying transport and network-layer protocols. The lower-
layer can provide either a packet or a byte stream service, with reliable or unreliable service.

In an Internet context, SIP is able to utilize both UDP and TCP as transport protocols, among others.
UDP allows the application to more carefully control the timing of messages and their retransmission, to
perform parallel searches without requiring TCP connection state for each outstanding request, and to use
multicast. Routers can more readily snoop SIP UDP packets. TCP allows easier passage through existing
firewalls.

When TCP is used, SIP can use one or more connections to attempt to contact a user or to modify
parameters of an existing conference. Different SIP requests for the same SIP callMAY use different TCP
connections or a single persistent connection, as appropriate.

For concreteness, this document will only refer to Internet protocols. However, SIPMAY also be used
directly with protocols such as ATM AAL5, IPX, frame relay or X.25. The necessary naming conventions
are beyond the scope of this document. User agentsSHOULD implement both UDP and TCP transport.
Proxy, registrar, and redirect serversMUST implement both UDP and TCP transport.

1.5.3 Text-Based

SIP is text-based, using ISO 10646 in UTF-8 encoding throughout. This allows easy implementation in
languages such as Java, Tcl and Perl, allows easy debugging, and most importantly, makes SIP flexible
and extensible. As SIP is used for initiating multimedia conferences rather than delivering media data, it is
believed that the additional overhead of using a text-based protocol is not significant.

2 SIP Uniform Resource Locators

SIP URLs are used within SIP messages to indicate the originator (From), current destination (Request-
URI) and final recipient (To) of a SIP request, and to specify redirection addresses (Contact). A SIP URL
can also be embedded in web pages or other hyperlinks to indicate that a particular user or service can be
called via SIP. When used as a hyperlink, the SIP URL indicates the use of theINVITE method.

The SIP URL scheme is defined to allow setting SIPrequest-header fields and the SIPmessage-
body.

This corresponds to the use ofmailto: URLs. It makes it possible, for example, to specify the subject, urgency
or media types of calls initiated through a web page or as part of an email message.

A SIP URL follows the guidelines of RFC 2396 [9] and has the syntax shown in Fig. 3. The syntax is
described using Augmented Backus-Naur Form (see Section C). Although the ABNF described in Section
C uses implicit whitespace, unescaped whitespaceMUST NOT be present within a SIP URL. Anyreserved
characters have to be escaped and that the “set of characters reserved within any given URI component

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 18]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

is defined by that component. In general, a character is reserved if the semantics of the URI changes if
the character is replaced with its escaped US-ASCII encoding” [9]. Excluded US-ASCII characters [9,
Sec. 2.4.3], such as space and control characters and characters used as URL delimiters, alsoMUST be
escaped. URLsMUST NOT contain unescaped space and control characters.

The URI character classes referenced above are described in Appendix C.
The components of the SIP URI have the following meanings.

user : The name of the user addressed. Note that this fieldMAY be empty where the destination host does
not have a notion of users, e.g., for embedded devices.

telephone-subscriber : If the host is an Internet telephony gateway, atelephone-subscriber field MAY

be used instead of auser field. Thetelephone-subscriber field uses the notation of RFC 2806 [18].
Any characters of the un-escaped “telephone-subscriber” that are not either in the set “unreserved”
or “user-unreserved” MUST be escaped. The set of characters not reserved in the RFC 2806 descrip-
tion of telephone-subscriber contains a number of characters in various syntax elements that need
to be escaped when used in SIP URLs, for example quotation marks (%22), hash (%23), colon (%3a),
at-sign (%40) and the “unwise” characters, i.e., punctuation of %5b and above.

The telephone number is a special case of a user name and cannot be distinguished by a BNF. Thus, a
URL parameter,user, is added to distinguish telephone numbers from user names.

The user parameter value “phone” indicates that the user part contains a telephone number. Even
without this parameter, recipients of SIP URLsMAY interpret the pre-@ part as a telephone number
if local restrictions on the name space for user name allow it.

password : The SIP schemeMAY use the format “user:password” in the userinfo field. The use of
passwords in theuserinfo is NOT RECOMMENDED, because the passing of authentication information
in clear text (such as URIs) has proven to be a security risk in almost every case where it has been
used.

host : Thehost partSHOULD be a fully-qualified domain name or numeric IP address.

Themailto: URL and RFC 822 email addresses require that numeric host addresses (“host numbers”)
are enclosed in square brackets (presumably, since host names might be numeric), while host numbers
without brackets are used for all other URLs. The SIP URL requires the latter form, without brackets.

port : The port number to send a request to. If not present, the procedures outlined in Section 1.4.2 are used
to determine the port number to send a request to.

URL parameters: SIP URLs can define specific parameters of the request. URL parameters are added
after thehost component and are separated by semi-colons. Thetransport parameter determines the
the transport mechanism to be used for sending SIP requests and responses. SIP can use any network
transport protocol; parameter names are defined for UDP [19], TCP [20], TLS [21], and SCTP. UDP
is to be assumed when no explicit transport parameter is included. Themaddr parameter indicates
the server address to be contacted for this user, overriding the address supplied in thehost field. This
address is typically, but not necessarily, a multicast address.

The maddr field can be used to force requests from traveling users to visit a home proxy even if an
outbound proxy is used.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 19]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

SIP-URL = ”sip:” [userinfo ”@”] hostport
url-parameters [headers]

userinfo = [user | telephone-subscriber [”:” password]]
user = *(unreserved | escaped | user-unreserved)
user-unreserved = ”&” | ”=” | ”+” | ”$” | ”,” | ”;” | ”?” | ”/”
password = *(unreserved | escaped |

”&” | ”=” | ”+” | ”$” | ”,”)
hostport = host [”:” port]
host = hostname | IPv4address | IPv6reference
hostname = *(domainlabel ”.”) toplabel [”.”]
domainlabel = alphanum

| alphanum *(alphanum | ”-”) alphanum
toplabel = alpha | alpha *(alphanum | ”-”) alphanum
IPv4address = 1*3DIGIT ”.” 1*3DIGIT ”.” 1*3DIGIT ”.” 1*3DIGIT
IPv6reference = ”[” IPv6address ”]”
IPv6address = hexpart [”:” IPv4address]
hexpart = hexseq | hexseq ”::” [hexseq] | ”::” [hexseq]
hexseq = hex4 *(”:” hex4)
hex4 = 1*4HEX
port = 1*DIGIT
url-parameters = *(”;” url-parameter)
url-parameter = transport-param | user-param | method-param

| ttl-param | maddr-param | other-param
transport-param = ”transport=”

(”udp” | ”tcp” | ”sctp” | ”tls” | other-transport)
other-transport = token
user-param = ”user=” (”phone” | ”ip” | other-user)
other-user = token
method-param = ”method=” Method
ttl-param = ”ttl=” ttl
maddr-param = ”maddr=” host
other-param = pname [”=” pvalue]
pname = 1*paramchar
pvalue = 1*paramchar
paramchar = param-unreserved | unreserved | escaped
param-unreserved = ”[” | ”]” | ”/” | ”:” | ”&” | ”+” | ”$”
headers = ”?” header *(”&” header)
header = hname ”=” hvalue
hname = 1*(hnv-unreserved | unreserved | escaped)
hvalue = *(hnv-unreserved | unreserved | escaped)
hnv-unreserved = ”[” | ”]” | ”/” | ”?” | ”:” | ”+” | ”$”

Figure 3: SIP URL syntax

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 20]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

The ttl parameter determines the time-to-live value of the UDP multicast packet andMUST only be
used if maddr is a multicast address and the transport protocol is UDP. Theuser parameter was
described above. For example, to specify to callj.doe@big.com using multicast to 239.255.255.1
with a ttl of 15, the following URL would be used:

sip:j.doe@big.com;maddr=239.255.255.1;ttl=15

The transport, maddr, andttl parametersMUST NOT be used in theFrom andTo header fields; they
are ignored if present.

For Request-URIs, these parameters are useful primarily for outbound proxies.

ReceiversMUST silently ignore any URI parameters that they do not understand.

Headers: Headers of the SIP request can be defined with the “?” mechanism within a SIP URL. The special
hname “body” indicates that the associatedhvalue is themessage-body of the SIPINVITE request.
HeadersMUST NOT be used in theFrom andTo header fields and theRequest-URI; they are ignored
if present.hname andhvalue are encodings of a SIP header name and value, respectively. All URL
reserved characters in the header names and valuesMUST be escaped.

Method: The method of the SIP request can be specified with themethod parameter. This parameterMUST

NOT be used in theFrom andTo header fields and theRequest-URI; they are ignored if present.

Table 2 summarizes where the components of the SIP URL can be used. Entries marked “m” are
mandatory, those marked “o” are optional, and those marked “-” are not allowed. For optional elements, the
second column indicates the default value if the element is not present.

default Req.-URI To From Contact Rec.-Route external
user – o o o o o o
password – o o - o o o
host mandatory m m m m m m
port 5060 o o o o o o
user-param ip o o o o o o
method INVITE - - - o - o
maddr-param – o - - o m o
ttl-param 1 o - - o - o
transp.-param udp o - - o - o
other-param – o o o o o o
headers – - - - o - o

Table 2: Use and default values of URL components for SIP headers,Request-URI and references

Examples of SIP URLs are:

sip:j.doe@big.com
sip:j.doe:secret@big.com;transport=tcp

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 21]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

sip:j.doe@big.com?subject=project%20x&priority=urgent
sip:+1-212-555-1212:1234@gateway.com;user=phone
sip:1212@gateway.com
sip:alice@10.1.2.3
sip:alice@example.com
sip:alice%40example.com@gateway.com
sip:alice@registrar.com;method=REGISTER

2.1 SIP URL Comparison

SIP URLs are compared for equality according to the following rules:

• Comparisons of scheme name (“sip”), domain names, parameter names and header names are case-
insensitive, all other comparisons are case-sensitive.

• The ordering of parameters and headers is not significant in comparing SIP URLs.

• user or telephone-subscriber, password, host, port and anyurl-parameter parameters of the URI
must match. If a component is omitted, it matches based on its default value. (For example, otherwise
equivalent URLs without a port specification and with port 5060 match.) Components not found in
both URLs being compared, for which there is no default value, are ignored.

• Characters other than those in the “reserved” and “unsafe” sets (see RFC 2396 [9]) are equivalent to
their “”%” HEX HEX” encoding.

• An IP address that is the result of a DNS lookup of a host name doesnot match that host name.

• URL parameters that have no default value are compared only if they are present in both URLs.

Thus, the following URLs are equivalent:

sip:juser@%65xample.com:5060
sip:juser@ExAmPlE.CoM;Transport=udp

while

SIP:JUSER@ExAmPlE.CoM;Transport=udp
sip:juser@ExAmPlE.CoM;Transport=UDP

are not.
Header fields such asContact, From andTo are equal if and only if their URIs match under the rules

above and if their header parameters (such ascontact-param, from-param andto-param) match in name
and parameter value, where parameter names and token parameter values are compared ignoring case and
quoted-string parameter values are case-sensitive.

2.2 Non-SIP URLs

SIP header fields and theRequest-URI MAY contain non-SIP URLs, with the exceptions noted below. As
an example, if a call from a telephone is relayed to the Internet via SIP, the SIPFrom header field might
contain atel: URL [18].

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 22]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

In the following locations, only SIP URLs are allowed:

• Request-URI in aREGISTER request;

• Contact header field inINVITE, OPTIONS and and 2xx responses toINVITE andOPTIONS.

ImplementationsMAY compare non-SIP URLs by treating them as generic URIs [9] or, alternatively,
compare them byte-by-byte.

3 SIP Message Overview

SIP is a text-based protocol and uses the ISO 10646 character set in UTF-8 encoding (RFC 2279 [22]).
SendersMUST terminate lines with a CRLF, but receiversMUST also interpret CR and LF by themselves
as line terminators. Only the combinations CR CR, LF LF and CRLF CRLF terminate the message header.
ImplementationsMUST only send CRLF CRLF.

CR and LF instead of CRLF is for backwards-compatibility; their use is deprecated.

Except for the above difference in character sets and line termination, much of the message syntax is and
header fields are identical to HTTP/1.1; rather than repeating the syntax and semantics here we use [HX.Y]
to refer to Section X.Y of the current HTTP/1.1 specification (RFC 2616 [8]). In addition, we describe SIP
in both prose and an augmented Backus-Naur form (ABNF). See section C for an overview of ABNF.

Note, however, that SIP is not an extension of HTTP.
Unlike HTTP, SIPMAY use UDP or other unreliable datagram protocols. Each such datagram carries

one request or response. Datagrams, including all headers,SHOULD NOT be larger than the path maximum
transmission unit (MTU) if the MTU is known, or 1500 bytes if the MTU is unknown. However, implemen-
tationsMUST be able to handle messages up to the maximum datagram packet size. For UDP, this size is
65,535 bytes, including headers.

The MTU of 1500 bytes accommodates encapsulation within the “typical” ethernet MTU without IP fragmen-
tation. Recent studies [23, p. 154] indicate that an MTU of 1500 bytes is a reasonable assumption. The next lower
common MTU values are 1006 bytes for SLIP and 296 for low-delay PPP (RFC 1191 [24]). Thus, another reason-
able value would be a message size of 950 bytes, to accommodate packet headers within the SLIP MTU without
fragmentation.

A SIP message is either a request from a client to a server, or a response from a server to a client.

SIP-message = Request | Response

Both Request (section 4) andResponse (section 9) messages use thegeneric-message format of
RFC 822 [25] for transferring entities (the body of the message). Both types of messages consist of astart-
line, one or more header fields (also known as “headers”), an empty line (i.e., a line with nothing preceding
the carriage-return line-feed (CRLF)) indicating the end of the header fields, and an optionalmessage-
body. To avoid confusion with similar-named headers in HTTP, we refer to the headers describing the
message body as entity headers. These components are described in detail in the upcoming sections.

generic-message = start-line
*message-header
CRLF
[message-body]

start-line = Request-Line | ;Section 4.1
Status-Line ;Section 9.1

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 23]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

message-header = (general-header
| request-header
| response-header
| entity-header)

In the interest of robustness, any leading empty line(s)MUST be ignored. In other words, if theRequest
or Response message begins with one or moreCRLF, CR, or LFs, these charactersMUST be ignored.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 24]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

general-header = Accept ; Section 10.6
| Accept-Encoding ; Section 10.7
| Accept-Language ; Section 10.8
| Call-ID ; Section 10.12
| Call-Info ; Section 10.13
| Contact ; Section 10.14
| CSeq ; Section 10.20
| Date ; Section 10.21
| Encryption ; Section 10.22
| From ; Section 10.25
| MIME-Version ; Section 10.28
| Organization ; Section 10.29
| Record-Route ; Section 10.34
| Require ; Section 10.35
| Supported ; Section 10.41
| Timestamp ; Section 10.42
| To ; Section 10.43
| User-Agent ; Section 10.45
| Via ; Section 10.46

entity-header = Allow ; Section 10.10
| Content-Disposition ; Section 10.15
| Content-Encoding ; Section 10.16
| Content-Language ; Section 10.17
| Content-Length ; Section 10.18
| Content-Type ; Section 10.19
| Expires ; Section 10.24

request-header = Alert-Info ; Section 10.9
| Authorization ; Section 10.11
| In-Reply-To ; Section 10.26
| Max-Forwards ; Section 10.27
| Priority ; Section 10.30
| Proxy-Authorization ; Section 10.32
| Proxy-Require ; Section 10.33
| Route ; Section 10.38
| Response-Key ; Section 10.36
| Subject ; Section 10.40

response-header = Error-Info ; Section 10.23
| Proxy-Authenticate ; Section 10.31
| Retry-After ; Section 10.37
| Server ; Section 10.39
| Unsupported ; Section 10.44
| Warning ; Section 10.47
| WWW-Authenticate ; Section 10.48

Table 3: SIP headers

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 25]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

4 Request

TheRequest message format is shown below:

Request = Request-Line ; Section 4.1
*(general-header
| request-header
| entity-header)
CRLF
[message-body] ; Section 12

4.1 Request-Line

The Request-Line begins with a method token, followed by theRequest-URI and the protocol version,
and ending withCRLF. The elements are separated bySP characters. NoCR or LF are allowed except in
the finalCRLF sequence. No LWS is allowed in any of the elements. TheRequest-URI MUST NOT be
enclosed in ”<>”. absoluteURI is defined in [H3.2.1].

Request-Line = Method SP Request-URI SP SIP-Version CRLF
Request-URI = SIP-URL | absoluteURI
SIP-Version = ”SIP/2.0”

4.2 Methods

The methods are described in detail below:REGISTER 7 for registering contact information,INVITE,
ACK and CANCEL (Section 5.1) for setting up sessions,BYE (Section 6) for terminating sessions and
OPTIONS (Section 8) for querying servers about their capabilities. SIP extensions may define additional
methods (“extension-method”).

Proxy and redirect servers treat all methods other thanINVITE andCANCEL, whether the method is
defined in this specification or elsewhere, in the same way. Thus, no method-specific support is required in
these servers for methods other thanINVITE andCANCEL. Methods that are not supported by a user agent
server or registrar cause a 501 (Not Implemented) response to be returned (Section 11). As in HTTP, the
Method token is case-sensitive.

Method = ”INVITE” | ”ACK” | ”OPTIONS” | ”BYE”
| ”CANCEL” | ”REGISTER” | extension-method

extension-method = token

4.3 Request-URI

TheRequest-URI is a SIP URL as described in Section 2 or a general URI (RFC 2396 [9]). In particular,
it MUST NOT contain unescaped spaces or control characters. It indicates the user or service to which this
request is being addressed. Unlike theTo field, theRequest-URI MAY be re-written by proxies.

As shown in Table 2, theRequest-URI MAY contain theuser-param parameter as well as transport-
related parameters. A server that receives a SIP-URL with illegal elements removes them before further
processing.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 26]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

Transport-related parameters are needed when a UAC proxies all requests to a default proxy, which would then
need this information to generate the appropriate request.

Typically, the UAC sets theRequest-URI andTo to the same SIP URL, presumed to remain unchanged over
long time periods. However, if the UAC has cached a more direct path to the callee, e.g., from theContact header
field of a response to a previous request, theTo would still contain the long-term, “public” address, while the
Request-URI would be set to the cached address.

Proxy and redirect serversMAY use the information in theRequest-URI and request header fields to han-
dle the request and possibly rewrite theRequest-URI. For example, a request addressed to the generic address
sip:sales@acme.com is proxied to the particular person, e.g.,sip:bob@ny.acme.com , with theTo field
remaining assip:sales@acme.com. At ny.acme.com , Bob then designates Alice as the temporary substi-
tute.

The host part of theRequest-URI typically agrees with one of the host names of the receiving server.
If it does not, the serverSHOULD proxy the request to the address indicated or return a 404 (Not Found)
response if it is unwilling or unable to do so. For example, theRequest-URI and server host name can
disagree in the case of a firewall proxy that handles outgoing calls. This mode of operation is similar to that
of HTTP proxies.

SIP serversMAY supportRequest-URIs with schemes other than “sip”, for example the “tel” URI
scheme [18]. ItMAY translate non-SIP URIs using any mechanism at its disposal, resulting in either a SIP
URI or some other scheme.

If a SIP server receives a request with a URI indicating a scheme the server does not understand, the
serverMUST return a 400 (Bad Request) response. ItMUST do this even if theTo header field contains a
scheme it does understand, since proxies are responsible for processing theRequest-URI. (TheTo field is
only of interest to the UAS.)

4.3.1 SIP Version

Both request and response messages include the version of SIP in use, and follow [H3.1] (with HTTP re-
placed by SIP, and HTTP/1.1 replaced by SIP/2.0) regarding version ordering, compliance requirements,
and upgrading of version numbers. To be compliant with this specification, applications sending SIP mes-
sagesMUST include aSIP-Version of “SIP/2.0”. The string is case-insensitive, but implementationsMUST
use upper-case.

Unlike HTTP/1.1, SIP treats the version number as a literal string. In practice, this should make no difference.

4.4 Option Tags

Option tags are unique identifiers used to designate new options in SIP. These tags are used inRequire
(Section 10.35),Supported (Section 10.41) andUnsupported (Section 10.44) header fields.
Syntax:

option-tag = token

See Section C for the definition oftoken. The creator of a new SIP optionMUST either prefix the option
with their reverse domain name or register the new option with the Internet Assigned Numbers Authority
(IANA).

An example of a reverse-domain-name option is “com.foo.mynewfeature”, whose inventor can be reached
at “foo.com”. For these features, individual organizations are responsible for ensuring that option names do
not collide within the same domain. The host name part of the optionMUST use lower-case; the option name
is case-sensitive.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 27]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

Options registered with IANA do not contain periods and are globally unique. IANA option tags are
case-sensitive.

4.4.1 Registering New Option Tags with IANA

When registering a new SIP option, the following informationMUST be provided:

• Name and description of option. The nameMAY be of any length, butSHOULD be no more than
twenty characters long. The nameMUST consist of alphanum (See Figure 3) characters only;

• A listing of any new SIP header fields, header parameter fields or parameter values defined by this
option. A SIP optionMUST NOT redefine header fields or parameters defined in either RFC 2543, any
standards-track extensions to RFC 2543, or other extensions registered through IANA.

• Indication of who has change control over the option (for example, IETF, ISO, ITU-T, other interna-
tional standardization bodies, a consortium or a particular company or group of companies);

• A reference to a further description, if available, for example (in order of preference) an RFC, a
published paper, a patent filing, a technical report, documented source code or a computer manual;

• Contact information (postal and email address).

Registrations should be sent toiana@iana.org .

This procedure has been borrowed from RTSP [4] and the RTP AVP [26].

5 INVITE, ACK and CANCEL

5.1 INVITE

The INVITE method indicates that the user or service is being invited to participate in a session. The
message bodyMAY contain a description of the session to which the callee is being invited. For two-party
calls, the caller indicates the type of media it is able to receive and possibly the media it is willing to send
as well as their parameters such as network destination. A success responseMUST indicate in its message
body which media the callee wishes to receive andMAY indicate the media the callee is going to send.

Not all session description formats have the ability to indicate sending media.

The callerMAY choose to omit the request body (i.e., not send a session description) or send a session
description that does not list any media types. This indicates that the caller does not know its desired
media characteristics until the call has been accepted. In this case, the UASSHOULD still return a session
description in its informational (1xx) or success (2xx) response, containing those media streams and codecs
it supports.

If the INVITE request did not contain a complete session description, the callerMUST include one in the
ACK request. A UACMUST NOT send an updated session description in anACK request if it had already
sent a session description in theINVITE request. If the UAC wishes to modify the session after the call
setup has begun, itMUST initiate anotherINVITE transaction after the current one has completed.

Delaying the session description until theACK request is useful for gateways from H.323v1 to SIP, where the
H.323 media characteristics are not known until the call is established.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 28]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

A serverMAY automatically respond to an invitation for a conference the user is already participating
in, identified either by the SIPCall-ID or a globally unique identifier within the session description, with a
200 (OK) response.

The behavior of UAS depend on whether they are Internet telephony gateways to the PSTN. A UAS not
acting as a gateway which receives anINVITE with a Request-URI that does not correspond to one of its
configured addresses,MUST respond with 404 (Not Found).

A UAS acting as a gateway translates theINVITE request into a telephony signaling message. If the
INVITE has aCall-ID value that matches a recent call, the UAS compares theRequest-URI with the
Request-URI of the previousINVITE request for the sameCall-ID. If theRequest-URI contains additional
digits in the “user” part, the UAS treats theINVITE as adding additional digits to the original dialed string.
This is known as overlap dialing.

If the gateway knows that the telephone number is incomplete, it returns a 484 (Address Incomplete)
status response.

If a user agent receives anINVITE request for an existing call leg with a higherCSeq sequence number
than any previousINVITE for the sameCall-ID, it MUST check any version identifiers in the session de-
scription or, if there are no version identifiers, the content of the session description to see if it has changed.
It MUST also inspect any other header fields for changes. If there is a change, the user agentMUST update
any internal state or information generated as a result of that header. If the session description has changed,
the user agent serverMUST adjust the session parameters accordingly, possibly after asking the user for
confirmation. (Versioning of the session description can be used to accommodate the capabilities of new
arrivals to a conference, add or delete media or change from a unicast to a multicast conference.)

If an INVITE request for an existing session fails, the session description agreed upon in the last suc-
cessfulINVITE transaction remains in force.

A UAC MUST NOT issue anotherINVITE request for the same call leg before the previousINVITE
transaction has completed. A UAS that receives anINVITE before it sent the final response to anINVITE
with a lowerCSeq number on the same call legMUST return a 400 (Bad Request) response andMUST

include aRetry-After header field with a randomly chosen value of between 0 and 10 seconds.
If a UA A sends anINVITE request toB and receives anINVITE request fromB before it has received

the response to its request fromB, A MAY return a 500 (Internal Server Error), whichSHOULD include a
Retry-After header field specifying when the request should be resubmitted.

In most cases, a UA can assume that the order of messages received corresponds to the order they were sent. In
rare circumstances, the response fromB and the request fromB may be reordered on the wire.

In addition, ifA or B change multicast addresses, strict transaction ordering is necessary so that both sides agree
on the final result.

A UAC MUST be prepared to receive media data according to the session description as soon as it sends
anINVITE (or re-INVITE) and can start sending media data when it receives a provisional or final response
containing a session description.

The initial INVITE from the UACSHOULD contain theAllow andSupported header fields, andMAY

contain theAccept header field. A 200 (OK) response to the initialINVITE for a call SHOULD contain the
Allow andSupported header fields, andMAY contain theAccept header field.

Including these header fields allows the UAC to determine the features and extensions supported by the UAS for
the duration of the call, without probing.

This methodMUST be supported by SIP proxy, redirect and user agent servers as well as clients.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 29]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

5.1.1 ACK

TheACK request confirms that the client has received a final response to anINVITE request. (ACK is used
only with INVITE requests.) Treatment ofACK for a 200 class response differs significantly from that of
a non-200 class response. 2xx responses are acknowledged by client user agents, all other final responses
by the first stateful proxy or client user agent to receive the response. TheVia is always initialized to
the host that originates theACK request, i.e., the client user agent after a 2xx response or the first proxy
or UAC to receive a non-2xx final response. For a non-200 class response, theVia in the ACK that is
constructedMUST be the same as the request being acknowledged. TheACK for a 200 class response will
containRoute headers ifRecord-Route headers were present in the response. AnACK for a non-200
class response never containsRoute headers. TheACK request for a 200 class response is forwarded as the
correspondingINVITE request, based on itsRequest-URI or Route headers, and thusMAY take a different
path than the originalINVITE request, andMAY even cause a new transport connection to be opened in order
to send it. TheRequest-URI for the ACK is set to the top entry in the route set for a 200 class response
(see Section 16). For a non-200 class response, theRequest-URI MUST be the same as theRequest-URI
in the request being acknowledged.

TheACK request does not generate responses for any transport protocol.
TheACK request for a 200 class responseMAY contain a message body with the final session description

to be used by the callee. See Section 5.1 for further details on the relationship between session descriptions
in INVITE andACK requests.

A proxy server receiving anACK request after having sent a 3xx, 4xx, 5xx, or 6xx response must make
a determination about whether theACK is for it, or for some user agent or proxy server further downstream.
This determination is made by examining the tag in theTo field. If the tag in theACK To header field
matches the tag in theTo header field of the response, and theFrom, CSeq andCall-ID header fields in the
response match those in theACK, theACK is meant for the proxy server. Otherwise, theACK SHOULD be
proxied downstream as any other request. However, anACK not destined for the proxySHOULD NOT be
retransmitted.

It is possible for a user agent client or proxy server to receive multiple 3xx, 4xx, 5xx, and 6xx responses to
a request along a single branch. This can happen under various error conditions, typically when a forking proxy
transitions from stateful to stateless before receiving all responses. The various responses will all be identical, except
for the tag in theTo field, which is different for each one. It can therefore be used as a means to disambiguate them.

This methodMUST be supported by SIP user agents.

5.2 CANCEL

The CANCEL request cancels a pending request with the sameCall-ID, To, From, top Via header and
Request-URI andCSeq (sequence number only) header field values,but does not affect a completed re-
quest or existing calls. (A request is considered completed if the server has returned a final status response.)
The UAC can use aBYE request to terminate a call if theCANCEL arrived too late.

A user agent client or proxy clientMAY issue aCANCEL request at any time. A proxy client generates
a CANCEL request for branches without a final response after it has forked a request and receives a 2xx
or 6xx response from one of the branches. A UAC or proxy client also sends aCANCEL if the time noted
in the Expires header of the request has elapsed or no provisional or final response was received after a
client-determined timeout interval. Finally, internal logic such as scripts, can triggerCANCEL requests.

A stateful proxy that receives aCANCEL request immediately responds with a 200 class response.
It then generates a newCANCEL, and forwards the request to all destinations with pending requests. A

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 30]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

stateless proxy, or a stateful proxy with no transaction state for the cancelled request, proxies theCANCEL
request to the same set of destinations the original request was proxied to.

The Request-URI, topmostVia, Call-ID, To, the numeric part ofCSeq and From header fields in
the CANCEL request are identical to those in the original request being cancelled, including tags. This
allows aCANCEL request to be matched with the request it cancels. However, to allow the client to
distinguish responses to theCANCEL from those to the original request, theCSeq Method component
is set toCANCEL. TheVia header field is initialized to the proxy issuing theCANCEL request. (Thus,
responses to thisCANCEL request only reach the issuing proxy.)

The behavior of the user agent or redirect server on receiving aCANCEL request depends on whether
the server has already sent a final response for the original request. If it has, theCANCEL request has no
effect on the original request, any call state and on the responses generated for the original request. If the
server has not issued a final response for the original request, it immediately responds to the original request
with a 487 (Request Terminated), following normal rules for response retransmissions defined in Section
14. ForINVITE requests, the UAC as usual sends anACK request to confirm receipt of any final response.
The CANCEL request itself is answered with a 200 (OK) response in either case. If the UAS or redirect
server has no record of the request being cancelled, theCANCEL is responded to with a 481.

A proxy client or UAC cannot rely on receiving a 487 (Request Terminated) response, as a RFC 2543-
compliant UAS will not generate such a response. If there has been no final response after 32 seconds, the
client MAY consider the original transaction to have been cancelled.

The BYE request cannot be used to cancel branches of a parallel search, since several branches may, through
intermediate proxies, find the same user agent server and then terminate the call. To terminate a call instead of just
pending searches, the UAC must useBYE instead of or in addition toCANCEL. While CANCEL can terminate
any pending request other thanACK or CANCEL, it is typically useful only forINVITE. 200 responses toINVITE
and 200 responses toCANCEL can be distinguished by the method in theCseq header field.

This methodMUST be supported by proxy servers andSHOULD be supported by all other SIP server
types.

6 BYE

The user agent client usesBYE to indicate to the server that it wishes to release the call leg. ABYE
request is forwarded like anINVITE request andMAY be issued by either caller or callee. ABYE request
SHOULD NOT be sent to terminate a pending call request which has not generated either a final response or
a provisional response containing aTo tag. A party to a callSHOULD issue aBYE request before releasing
a call (“hanging up”). A party receiving aBYE requestMUST cease transmitting media streams specifically
directed at the party issuing theBYE request.

A UAS receiving aBYE requestMUST respond to any pending requests received for that call, including
INVITE. It is RECOMMENDED that a 487 response is generated.

This methodSHOULD be supported by user agent servers.

7 Registrars, Registrations and theREGISTER Method

A client uses theREGISTER method to bind the address listed in theTo header field with a SIP server to
one or more URIs where the client can be reached, contained in theContact header fields. These URIs may
use any URI scheme, not limited to SIP.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 31]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

It is particularly important thatREGISTER requests are authenticated since they allow to redirect future
requests (see Section 18.2).

7.1 Where to Register

A user agentSHOULD attempt to register periodically according to the rules below. A UA is said to be
“visiting” if its From address domain differs from the current network domain and is said to be “at home”
if the two are the same.

Local server: If an outbound proxy is configured, the UASHOULD send aREGISTER request to it. If the
UA is visiting, it uses theFrom address consisting of the URL-escaped user identity at the visited do-
main, e.g., the user identified asalice@wonderland.com would register asalice%40wonderland.com@ex a
if she is visiting theexample.com domain.

Multicast: If no local outbound proxy is configured, multicast registrations are addressed to the well-known
“all SIP servers” multicast address “sip.mcast.net” (224.0.1.75). This requestMUST be scoped to
ensure it is not forwarded beyond the boundaries of the administrative system. ThisMAY be done
with either TTL or administrative scopes [27], depending on what is implemented in the network. SIP
user agentsMAY listen to that address and use it to become aware of the location of other local users
[17]; however, they do not respond to the request.

Multicast registration may be inappropriate in some environments, for example, if multiple businesses
share the same local area network.

Home server: If the UA is visiting, it SHOULD also send a registration to its home SIP server, identified
by its home address. For example,alice@wonderland.com would send a registration to the SIP
server for the domainwonderland.com when she is visiting another network. TBD: What Contact
should be used?

A user agentSHOULD register with a local server on startup and periodically thereafter by sending a
REGISTER request. The period is given by the expiration time indicated in the registration response. It is
RECOMMENDED that the UA registers via multicast and send a registration to its “home” address, i.e., the
server for the domain that it uses as itsFrom address in outgoing requests.

7.2 REGISTER Header Fields

Request-URI : The Request-URI names the destination of the registration request, i.e., the domain of
the registrar. The user nameMUST be empty. Generally, the domains in theRequest-URI and the
To header field have the same value; however, it is possible to register as a “visitor”, while main-
taining one’s name. For example, a travelersip:alice@acme.com (To) might register under the
Request-URI sip:atlanta.hiayh.org , with the former as theTo header field and the latter
as theRequest-URI. TheREGISTER request is no longer forwarded once it has reached the server
whose authoritative domain is the one listed in theRequest-URI.

Call-ID : All registrations from a clientSHOULD use the sameCall-ID header value, at least within the same
reboot cycle.

Cseq : Registrations with the sameCall-ID MUST have increasingCSeq header values. However, the
server does not reject out-of-order requests.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 32]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

7.3 Registering Contact Locations

REGISTER requests are processed in the order received. ClientsSHOULD avoid sending a new registration
(as opposed to a retransmission) until they have received the response from the server for the previous one.

Clients may register from different locations, by necessity using differentCall-ID values. Thus, theCSeq value
cannot be used to enforce ordering. Since registrations are additive, ordering is less of a problem than if each
REGISTER request completely replaced all earlier ones.

We define “address-of-record” as the SIP address that the registry knows the registrand, typically of the
form “user@domain” rather than “user@host”. In third-party registration, the entity issuing the request is
different from the entity being registered.

To: TheTo header field contains the address-of-record whose registration is to be created or updated.

From : TheFrom header field contains the address-of-record of the person responsible for the registration.
For first-party registration, it is identical to theTo header field value. It isRECOMMENDED that
registrars authorize whether the entity in theFrom field is allowed to register addresses for the address-
of-record in theTo field.

Contact : The requestMAY contain aContact header field. Future non-REGISTER requests for the URI
given in theTo header fieldSHOULD be directed to the address(es) given in theContact header.

If the request does not contain aContact header, the registration remains unchanged.

This is useful to obtain the current list of registrations in the response, as described below.

If a SIP URI in a registrationContact header field differs from existing registrations according to the
rules in Section 2.1, it is added to the list of registration. If it is equivalent, according to these rules,
to an existing registration, allContact header field parameters for this entry are updated accordingly.
URIs other than SIP URIs are compared according to the standard URI equivalency rules for the URI
schema.

All current registrationsMUST share the sameaction value. Registrations that have a differentaction
than current registrations for the same userMUST be rejected with status of 409 (Conflict).

A proxy server ignores theq parameter when processing non-REGISTER requests, while a redirect
server simply returns that parameter in itsContact response header field.

Having the proxy server interpret theq parameter is not sufficient to guide proxy behavior, as it is not clear,
for example, how long it is supposed to wait between trying addresses.

If the registration is changed while a user agent or proxy server processes an invitation, the new infor-
mationSHOULD be used.

7.4 Registration Expiration

An optional “expires” Contact parameter indicates the desired expiration time of the registration. If a
Contact entry does not have an “expires” parameter, theExpires request and response header field is used
as the default value. If neither of these mechanisms is used, SIP URIs are assumed to expire after one hour.
Other URI schemes have no expiration times. Registrations not refreshed after this amount of timeSHOULD

be silently discarded.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 33]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

In a REGISTER request, the client indicates how long it wishes the registration to be valid. In the
response, the server indicates the earliest expiration time of all registrations. If a registration updates an
existing registration, theExpires value of the most recent registration is used, even if it is shorter than the
earlier registration.

The registrar determines the expiration time; it may be longer or shorter than the one requested by the
registrand. TheREGISTER response contains the actual registration lifetime; the clientMUST refresh at
least as often andSHOULD NOTrefresh more frequently. In general, the serverSHOULD honor the expiration
time offered by the user agent. A serverMAY decide to lengthen the expiration interval if, for example, the
refresh rate of a particular client exceeds a threshold.

This behavior is different from RFC 2543, which only allowed registrars to decrease, but not increase,
the interval.

Allowing the registrar to set the registration interval protects it against excessively frequent registration refreshes
while limiting the state that it needs to maintain and decreasing the chance for stale registrations that require proxying
effort.

Registration refreshesSHOULD be sent to the same address as the original registration, unless redirected.

7.5 List of Current Registrations

2xx REGISTER responsesSHOULD list all current registration in theContact header field. An “expires”
parameterMUST indicate the expiration time of the registration.

7.6 Removing Registrations

Registrations expire as described above or may be removed explicitly by setting theexpires parameter for
an existing registration to zero or including anExpires: 0 header field. Registrations are matched based
on theuser, host, port andmaddr parameters. A client can removeall registrations by including a single
Contact header field with the wildcard address “*”. This usage is only allowed inREGISTER requests
when aExpires header with value of zero is present.

Support of this method isRECOMMENDED; registrarsMUST support it.

8 OPTIONS

TheOPTIONS method is used to query a server as to its capabilities. A server that believes it can contact
the user, such as a user agent where the user is logged in and has been recently active,MAY respond to
this request with a capability set. A called user agentMAY return a status reflecting how it would have
responded to an invitation, e.g., 600 (Busy). A serverSHOULD returnAllow, Accept, Accept-Encoding,
Accept-Language andSupported header fields. The responseMAY contain a message body indicating
the capabilities of the end system (rather than properties of any existing call).

The use of theCall-ID header field is discussed in Section 10.12. AnOPTIONS requests for an existing
call-id has no impact on that call.

This methodMUST be supported by SIP user agents and registrars.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 34]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

9 Response

After receiving and interpreting a request message, the recipient responds with a SIP response message. The
response message format is shown below:

Response = Status-Line ; Section 9.1
*(general-header
| response-header
| entity-header)
CRLF
[message-body] ; Section 12

SIP’s structure of responses is similar to [H6], but is defined explicitly here.

9.1 Status-Line

The first line of aResponse message is theStatus-Line, consisting of the protocol version (Section 4.3.1)
followed by a numericStatus-Code and its associated textual phrase, with each element separated by SP
characters. NoCR or LF is allowed except in the finalCRLF sequence.

Status-Line = SIP-version SP Status-Code SP Reason-Phrase CRLF

9.1.1 Status Codes and Reason Phrases

TheStatus-Code is a 3-digit integer result code that indicates the outcome of the attempt to understand and
satisfy the request. TheReason-Phrase is intended to give a short textual description of theStatus-Code.
TheStatus-Code is intended for use by automata, whereas theReason-Phrase is intended for the human
user. The client is not required to examine or display theReason-Phrase.

Status-Code = Informational ;Fig. 4
| Success ;Fig. 4
| Redirection ;Fig. 5
| Client-Error ;Fig. 6
| Server-Error ;Fig. 7
| Global-Failure ;Fig. 8
| extension-code

extension-code = 3DIGIT

Reason-Phrase = *<TEXT-UTF8, excludingCR, LF>

We provide an overview of theStatus-Code below, and provide full definitions in Section 11. The first
digit of theStatus-Code defines the class of response. The last two digits do not have any categorization
role. SIP/2.0 allows 6 values for the first digit:

1xx: Informational – request received, continuing to process the request;

2xx: Success – the action was successfully received, understood, and accepted;

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 35]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

Informational = ”100” ; Trying
| ”180” ; Ringing
| ”181” ; Call Is Being Forwarded
| ”182” ; Queued
| ”183” ; Session Progress

Success = ”200” ; OK

Figure 4: Informational and success status codes

Redirection = ”300” ; Multiple Choices
| ”301” ; Moved Permanently
| ”302” ; Moved Temporarily
| ”305” ; Use Proxy
| ”380” ; Alternative Service

Figure 5: Redirection status codes

3xx: Redirection – further action needs to be taken in order to complete the request;

4xx: Client Error – the request contains bad syntax or cannot be fulfilled at this server;

5xx: Server Error – the server failed to fulfill an apparently valid request;

6xx: Global Failure – the request cannot be fulfilled at any server.

Figures 4 through 8 present the individual values of the numeric response codes, and an example set
of corresponding reason phrases for SIP/2.0. These reason phrases are only recommended; they may be
replaced by local equivalents without affecting the protocol. Note that SIP adopts many HTTP/1.1 response
codes. SIP/2.0 adds response codes in the range starting at x80 to avoid conflicts with newly defined HTTP
response codes, and adds a new class, 6xx, of response codes.

SIP response codes are extensible. SIP applications are not required to understand the meaning of all
registered response codes, though such understanding is obviously desirable. However, applicationsMUST

understand the class of any response code, as indicated by the first digit, and treat any unrecognized response
as being equivalent to the x00 response code of that class. However, proxiesSHOULD distinguish 100 from
other 1xx responses. (The formerSHOULD NOT be forwarded, while the latterMUST be. See Section 17.3.)
For example, if a client receives an unrecognized response code of 431, it can safely assume that there was

something wrong with its request and treat the response as if it had received a 400 (Bad Request) response
code. In such cases, user agentsSHOULD present to the user the message body returned with the response,
since that message body is likely to include human-readable information which will explain the unusual
status.

10 Header Field Definitions

SIP header fields are similar to HTTP header fields in both syntax and semantics. In particular, SIP header
fields follow the syntax for message-header as described in [H4.2]. The rules for extending header fields

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 36]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

Client-Error = ”400” ; Bad Request
| ”401” ; Unauthorized
| ”402” ; Payment Required
| ”403” ; Forbidden
| ”404” ; Not Found
| ”405” ; Method Not Allowed
| ”406” ; Not Acceptable
| ”407” ; Proxy Authentication Required
| ”408” ; Request Timeout
| ”409” ; Conflict
| ”410” ; Gone
| ”411” ; Length Required
| ”413” ; Request Entity Too Large
| ”414” ; Request-URI Too Large
| ”415” ; Unsupported Media Type
| ”420” ; Bad Extension
| ”480” ; Temporarily not available
| ”481” ; Call Leg/Transaction Does Not Exist
| ”482” ; Loop Detected
| ”483” ; Too Many Hops
| ”484” ; Address Incomplete
| ”485” ; Ambiguous
| ”486” ; Busy Here
| ”487” ; Request Terminated
| ”488” ; Not Acceptable Here

Figure 6: Client error status codes

Server-Error = ”500” ; Internal Server Error
| ”501” ; Not Implemented
| ”502” ; Bad Gateway
| ”503” ; Service Unavailable
| ”504” ; Server Time-out
| ”505” ; SIP Version not supported

Figure 7: Server error status codes

Global-Failure = ”600” ; Busy Everywhere
| ”603” ; Decline
| ”604” ; Does not exist anywhere
| ”606” ; Not Acceptable

Figure 8: Global failure status codes

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 37]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

over multiple lines, and use of multiple message-header fields with the same field-name, described in [H4.2]
also apply to SIP. The rules in [H4.2] regarding ordering of header fields apply to SIP, with the exception of
Via fields, see below, whose order matters.

The header fields required, optional and not applicable for each method are listed in Table 4 and Table 5.
The table uses “o” to indicate optional, “m” mandatory and “-” for not applicable. “Optional” means that a
UA MAY include the header field in a request or response, and a UAMAY ignore the header field if present
in the request or response. A “mandatory” request header fieldMUST be present in a request, andMUST be
understood by the UAS receiving the request. A mandatory response header fieldMUST be present in the
response, and the header fieldMUST be understood by the UAC processing the response. “Not applicable”
means for request header fields that the header fieldMUST NOT be present in a request. If one is placed in a
request by mistake, itMUST be ignored by the UAS receiving the request. Similarly, a header field labeled
“not applicable” for a response means that the UASMUST NOT place the header in the response, and the
UAC MUST ignore the header in the response. “m*” indicates a header thatSHOULD be sent, but servers
need to be prepared to receive requests without that header field. A “*” indicates that the header fields are
required if the message body is not empty. See sections 10.18, 10.19 and 12 for details.

The “where” column describes the request and response types with which the header field can be used.
“R” refers to header fields that can be used in requests (that is, request and general header fields). “r” desig-
nates a response or general-header field as applicable to all responses, while a list of numeric values indicates
the status codes with which the header field can be used. “g” and “e” designate general (Section 10.1) and
entity header (Section 10.2) fields, respectively. If a header field is marked “c”, it is copied from the request
to the response.

The “proxy” column describes whether proxies can add comma-separated elements to headers (“c”, for
concatenate or comma), can modify the header (“m”), can add the header if not present (“a”) or need to
read the header (“r”). Headers that need to be read cannot be encrypted. ProxiesMUST NOT alter any fields
that are authenticated (see Section 18.2), butMAY add copies of fields that were authenticated by the UA
if indicated in the table. Depending on local policy, proxiesMAY inspect any non-encrypted header fields
andMAY modify any non-authenticated header field, but proxies cannot rely on fields other than the ones
indicated in the table to be readable or modifiable.

If authentication is used, the rules in Section 18.2 apply. ProxiesSHOULD NOT re-order header fields.
Other header fields can be added as required; a serverMUST ignore header fields not defined in this

specification that it does not understand. A proxyMUST NOT remove or modify header fields not defined
in this specification that it does not understand. A compact form of these header fields is also defined in
Section 13 for use over UDP when the request has to fit into a single packet and size is an issue.

Table 6 in Appendix A lists those header fields that different client and server typesMUST be able to
parse.

10.1 General Header Fields

General header fields apply to both request and response messages. The “general-header” field names can
be extended reliably only in combination with a change in the protocol version. However, new or experi-
mental header fieldsMAY be given the semantics of general header fields if all parties in the communication
recognize them to be “general-header” fields. Unrecognized header fields are treated as “entity-header”
fields.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 38]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

Header field where proxy ACK BYE CAN INV OPT REG
Accept R - o o o o o
Accept 415 - o o o o o
Accept 2xx - - - o o o
Accept-Encoding R - o o o o o
Accept-Encoding 2xx - - - o o o
Accept-Encoding 415 - o o o o o
Accept-Language R - o o o o o
Accept-Language 2xx - - - o o o
Accept-Language 415 - o o o o o
Alert-Info R am - - - o - -
Allow R o o o o o o
Allow 200 - - - o o o
Allow 405 m m m m m m
Authorization R o o o o o o
Authorization r o o o o o o
Call-ID gc r m m m m m m
Call-Info g am - - - o o o
Contact R o - - m o o
Contact 1xx - - - o o -
Contact 2xx - - - m o o
Contact 3xx - o - o o o
Contact 485 - o - o o o
Content-Disposition e o o - o o o
Content-Encoding e o o - o o o
Content-Language e o o - o o o
Content-Length e r m* m* m* m* m* m*
Content-Type e * * - * * *
CSeq gc r m m m m m m
Date g a o o o o o o
Encryption g r o o o o o o
Error-Info R o o o o o o
Expires g - - - o - o
From gc r m m m m m m
In-Reply-To R - - - o - -
Max-Forwards R rm o o o o o o
MIME-Version g o o o o o o
Organization g am - - - o o o

Table 4: Summary of header fields, A–O

10.2 Entity Header Fields

The “entity-header” fields define meta-information about the message-body or, if no body is present, about
the resource identified by the request. The term “entity header” is an HTTP 1.1 term where the response

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 39]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

Header field where proxy ACK BYE CAN INV OPT REG
Priority R a - - - o - -
Proxy-Authenticate 401,407 o o o o o o
Proxy-Authorization R r o o o o o o
Proxy-Require R r o o o o o o
Record-Route R amr o o o o o o
Record-Route 2xx,401,484 o o o o o o
Require g acr o o o o o o
Response-Key R - o o o o o
Retry-After 404,413,480,486 o o o o o o

500,503 o o o o o o
600,603 o o o o o o

Route R r o o o o o o
Server r o o o o o o
Subject R - - - o - -
Supported g - o o o o o
Timestamp g o o o o o o
To gc(1) r m m m m m m
Unsupported R o o o o o o
Unsupported 420 o o o o o o
User-Agent g o o o o o o
Via gc acmr m m m m m m
Warning r o o o o o o
WWW-Authenticate R o o o o o o
WWW-Authenticate 401 o o o o o o

Table 5: Summary of header fields, P–Z; (1): copied with possible addition of tag

body can contain a transformed version of the message body. The original message body is referred to as
the “entity”. We retain the same terminology for header fields but usually refer to the “message body” rather
then the entity as the two are the same in SIP.

10.3 Request Header Fields

The “request-header” fields allow the client to pass additional information about the request, and about the
client itself, to the server. These fields act as request modifiers, with semantics equivalent to the parameters
of a programming language method invocation.

The “request-header” field names can be extended reliably only in combination with a change in
the protocol version. However, new or experimental header fieldsMAY be given the semantics of “request-
header” fields if all parties in the communication recognize them to be request-header fields. Unrecognized
header fields are treated as “entity-header” fields.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 40]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

10.4 Response Header Fields

The “response-header” fields allow the server to pass additional information about the response which
cannot be placed in theStatus-Line. These header fields give information about the server and about
further access to the resource identified by theRequest-URI.

Response-header field names can be extended reliably only in combination with a change in the
protocol version. However, new or experimental header fieldsMAY be given the semantics of “response-
header” fields if all parties in the communication recognize them to be “response-header” fields. Unrec-
ognized header fields are treated as “entity-header” fields.

10.5 Header Field Format

Header fields (“general-header”, “ request-header”, “ response-header”, and “entity-header”) follow
the same generic header format as that given in Section 3.1 of RFC 822 [25]. Each header field consists of
a name followed by a colon (”:”) and the field value. Field names are case-insensitive. The field valueMAY

be preceded by any amount of leading white space (LWS), though a single space (SP) is preferred. Header
fields can be extended over multiple lines by preceding each extra line with at least oneSP or horizontal
tab (HT). ApplicationsMUST follow HTTP “common form” when generating these constructs, since there
might exist some implementations that fail to accept anything beyond the common forms.

message-header = field-name ”:” [field-value] CRLF
field-name = token
field-value = *(field-content | LWS)
field-content = <theOCTETs making up the field-value

and consisting of either*TEXT-UTF8
or combinations oftoken,
separators, andquoted-string>

The relative order of header fields with different field names is not significant. Multiple header fields
with the same field-name may be present in a message if and only if the entire field-value for that header
field is defined as a comma-separated list (i.e.,#(values)). It MUST be possible to combine the multiple
header fields into one “field-name: field-value” pair, without changing the semantics of the message, by
appending each subsequentfield-value to the first, each separated by a comma. The order in which header
fields with the same field-name are received is therefore significant to the interpretation of the combined
field value, and thus a proxyMUST NOT change the order of these field values when a message is forwarded.

Unless otherwise stated, parameter names, parameter values and tokens are case-insensitive. Values
expressed as quoted strings are case-sensitive.

TheContact, From andTo header fields contain a URL. If the URL contains a comma, question mark
or semicolon, the URLMUST be enclosed in angle brackets (< and>). Any URL parameters are contained
within these brackets. If the URL is not enclosed in angle brackets, any semicolon-delimited parameters are
header-parameters, not URL parameters.

10.6 Accept

TheAccept header follows the syntax defined in [H14.1]. The semantics are also identical, with the excep-
tion that if noAccept header is present, the serverSHOULD assume a default value ofapplication/sdp .

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 41]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

As a request-header field, it is used only with those methods that take message bodies. In a 415 (Un-
supported Media Type) response, it indicates which content types are acceptable in requests. In 200 (OK)
responses forINVITE, it lists the content types acceptable for future requests in this call.

Example:

Accept: application/sdp;level=1, application/x-private, text/html

10.7 Accept-Encoding

The Accept-Encoding general-header field is similar toAccept, but restricts the content-codings [H3.5]
that are acceptable in the response. See [H14.3]. The syntax of this header is defined in [H14.3]. The
semantics in SIP are identical to those defined in [H14.3].

Note: An emptyAccept-Encoding header field is permissible, even though the syntax in [H14.3] does not
provide for it. It is equivalent toAccept-Encoding: identity, i.e., only the identity encoding, meaning no encoding,
is permissible.

If no Accept-Encoding header field is present in a request, the serverMUST use the “identity” encoding.

HTTP/1.1 [H14.3] states that the serverSHOULD use the “identity” encoding unless it has additional information
about the capabilities of the client. This is needed for backwards-compatibility with old HTTP clients and does not
affect SIP.

10.8 Accept-Language

The Accept-Language general-header follows the syntax defined in [H14.4]. The rules for ordering the
languages based on the q parameter apply to SIP as well. When used in SIP, theAccept-Language general-
header field can be used to allow the client to indicate to the server in which language it would prefer to
receive reason phrases, session descriptions or status responses carried as message bodies. A proxyMAY use
this field to help select the destination for the call, for example, a human operator conversant in a language
spoken by the caller.

Example:

Accept-Language: da, en-gb;q=0.8, en;q=0.7

10.9 Alert-Info

TheAlert-Info header field indicates that the content indicated in the URLs should be rendered instead of
ring tone. A userSHOULD be able to disable this feature selectively to prevent unauthorized disruptions.

Alert-Info = ”Alert-Info” ”:” # (”<” URI ”>” *(”;” generic-param))
generic-param = token [”=” (token | host | quoted-string)]

Example:

Alert-Info: <http://wwww.example.com/sounds/moo.wav>

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 42]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

10.10 Allow

The Allow header field lists the set of methods supported by the resource identified by the Request-URI.
The purpose of this field is strictly to inform the recipient of valid methods associated with the resource.
An Allow header fieldMUST be present in a 405 (Method Not Allowed) response,SHOULD be present in an
OPTIONS responseSHOULD be present in the 200 (OK) response to the initialINVITE for a call andMAY

be present in final responses for other methods. All methods, includingACK andCANCEL, understood by
the UAS are included.

TheAllow header fieldMAY also be included in requests, to indicate the requestor’s capabilities for this
Call-ID.

Supplying anAllow header in responses to methods other thanOPTIONS cuts down on the number of messages
needed.

Allow = ”Allow” ”:” 1#Method

10.11 Authorization

A user agent that wishes to authenticate itself with a UAS or registrar – usually, but not necessarily, after
receiving a 401 response –MAY do so by including anAuthorization header field with the request. The
Authorization field value consists of credentials containing the authentication information of the user agent
for the realm of the resource being requested.

Section 18.2 overviews the use of theAuthorization header field, and Section 19 describes the syntax
and semantics when used with HTTP Basic and Digest authentication.

10.12 Call-ID

TheCall-ID general-header field uniquely identifies a particular invitation or all registrations of a particular
client. Note that a single multimedia conference can give rise to several calls with differentCall-IDs, e.g., if
a user invites a single individual several times to the same (long-running) conference.

For anINVITE request, a callee user agent serverSHOULD NOT alert the user if the user has responded
previously to theCall-ID in the INVITE request. If the user is already a member of the conference and
the conference parameters contained in the session description have not changed, a callee user agent server
MAY silently accept the call, regardless of theCall-ID. An invitation for an existingCall-ID or session can
change the parameters of the conference. A client applicationMAY decide to simply indicate to the user that
the conference parameters have been changed and accept the invitation automatically or itMAY require user
confirmation.

A user may be invited to the same conference or call using several differentCall-IDs. If desired, the
client MAY use identifiers within the session description to detect this duplication. For example, SDP con-
tains a session id and version number in the origin (o) field.

The REGISTER and OPTIONS methods use theCall-ID value (in addition to theCSeq value) to
unambiguously match requests and responses. AllREGISTER requests issued by a single clientSHOULD

use the sameCall-ID, at least within the same boot cycle. For these requests, it makes no difference whether
theCall-ID value matches an existing call or not.

Since theCall-ID is generated by and for SIP, there is no reason to deal with the complexity of URL-encoding
and case-ignoring string comparison.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 43]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

callid = token [”@” token]
Call-ID = (”Call-ID” | ”i”) ”:” callid

Thecallid MUST be a globally unique identifier andMUST NOT be reused for later calls. Use of crypto-
graphically random identifiers [28] isRECOMMENDED. ImplementationsMAY use the form “localid@host”.
Call-IDs are case-sensitive and are simply compared byte-by-byte.

Using cryptographically random identifiers provides some protection against session hijacking.Call-ID, To and
From are needed to identify acall leg. The distinction between call and call leg matters in calls with third-party
control.

For systems which have tight bandwidth constraints, many of the mandatory SIP headers have a compact
form, as discussed in Section 13. These are alternate names for the headers which occupy less space in the
message. In the case ofCall-ID, the compact form isi.

For example, both of the following are valid:

Call-ID: f81d4fae-7dec-11d0-a765-00a0c91e6bf6@foo.bar.com

or

i:f81d4fae-7dec-11d0-a765-00a0c91e6bf6@foo.bar.com

10.13 Call-Info

The Call-Info general header field provides additional information about the caller or callee, depending
on whether it is found in a request or response. The purpose of the URI is described by the “purpose”
parameter. “icon” designates an image suitable as an iconic representation of the caller or callee; “info”
describes the caller or callee in general, e.g., through a web page; “card” provides a business card (e.g., in
vCard [29] or LDIF [30] formats).

Call-Info = ”Call-Info” ”:” # (”<” URI ”>” *(”;” info-param))
info-param = ”purpose” ”=” (”icon” | ”info” | ”card” | token)

| generic-param

Example:

Call-Info: <http://wwww.example.com/alice/photo.jpg> ;purpose=icon,
<http://www.example.com/alice/> ;purpose=info

10.14 Contact

Among the methods discussed in this specification, theContact general-header field can appear inINVITE,
OPTIONS, ACK, andREGISTER requests, and in 1xx, 2xx, 3xx, and 485 responses. Other methods
defined elsewhere may allow or require the use of theContact header field. This is generally necessary if
the recipient of this method needs to send requests to the originator. In general, it provides a URL where the
user can be reached for further communications.

In some of the cases below, the client uses information from theContact header field inRequest-URI
of future requests. In these cases, the client copies all but the “method-param” and “header” elements of
theaddr-spec part of theContact header field into theRequest-URI of the request. It uses the “header”

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 44]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

parameters to create headers for the request, replacing any default headers normally used. Unless the client
is configured to use a default proxy for all outgoing requests, it then directs the request to the address and
port specified by the “maddr” and “port” parameters, using the transport protocol given in the “transport”
parameter. If “maddr” is a multicast address, the value of “ttl” is used as the time-to-live value.

INVITE, OPTIONS and ACK requests: INVITE requestsMUST, andACK requestsMAY contain a single
Contact header indicating a single URI from which location the request is originating. The URI
SHOULD contain the address of the client itself (i.e., its IP address, or a FQDN for the host, or an
SRV record with the highest priority entry beingan FQDN of that host). See Section 16 for usage of
theContact header for routing subsequent requests.ForOPTIONS, Contact provides a hint where
future SIP requests can be sent or the user can be contacted via non-SIP means.

This allows the callee to send future requests, such asBYE, directly to the caller instead of through a series
of proxies. TheVia header is not sufficient since the desired address may be that of a proxy.

INVITE 1xx responses:A UAS sending a provisional response (1xx)MAY insert aContact response
header. It has the same semantics in a 1xx response as a 2xxINVITE response. Note thatCANCEL
requestsMUST NOT be sent to that address, but rather follow the same path as the original request.

INVITE and OPTIONS 2xx responses:A user agent server sending a definitive, positive response (2xx)
MUST insert a singleContact response header field indicating a single SIP URI under which it is
reachable most directly for future SIP requests, such asACK, within the same call leg. The URI
SHOULD contain the address of the server itself (i.e., its IP address, or a FQDN for the host, or an
SRV record with the highest priority entry beingan FQDN of that host). See Section 16 for usage of
theContact header for routing subsequent requests.

If a UA supports both UDP and TCP, itSHOULD NOT indicate a transport parameter in the URI.

TheContact valueSHOULD NOTbe cached across calls, as it may not represent the most desirable location
for a particular destination address.

REGISTER requests and responses:See Section 7. TheContact header value of “*” is only used in
REGISTER requests.

3xx and 485 responses:The Contact response-header field can be used with a 3xx or 485 (Ambiguous)
response codes to indicate one or more alternate addresses to try. It can appear in responses toBYE,
INVITE andOPTIONS methods. TheContact header field contains URIs giving the new locations
or user names to try, or may simply specify additional transport parameters. A 300 (Multiple Choices),
301 (Moved Permanently), 302 (Moved Temporarily) or 485 (Ambiguous) responseSHOULD contain
a Contact field containing URIs of new addresses to be tried. A 301 or 302 response may also give
the same location and username that was being tried but specify additional transport parameters such
as a different server or multicast address to try or a change of SIP transport from UDP to TCP or
vice versa. The client copies information from theContact header field into theRequest-URI as
described above.

4xx, 5xx and 6xx responses:The Contact response-header field can be used with a 4xx, 5xx or 6xx re-
sponse to indicate the location where additional information about the error can be found.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 45]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

Note that theContact header fieldMAY also refer to a different entity than the one originally called. For
example, a SIP call connected to GSTN gateway may need to deliver a special information announcement
such as “The number you have dialed has been changed.”

A Contact response header field can contain any suitable URI indicating where the called party can be
reached, not limited to SIP URLs. For example, it could contain URL’s for phones, fax, orirc (if they were
defined) or amailto: (RFC 2368, [31]) URL.

The following parameters are defined. Additional parameters may be defined in other specifications.

q: The “qvalue” indicates the relative preference among the locations given. “qvalue” values are decimal
numbers from 0 to 1, with higher values indicating higher preference. The default value is 0.5.

action : The “action” parameter is used only when registering with theREGISTER request. It indicates
whether the client wishes that the server proxy or redirect future requests intended for the client. If
this parameter is not specified the action taken depends on server configuration. In its response, the
registrarSHOULD indicate the mode used. This parameter is ignored for other requests.

expires : The “expires” parameter indicates how long the URI is valid. The parameter is either a number
indicating seconds or a quoted string containing aSIP-date. If this parameter is not provided, the
value of theExpires header field determines how long the URI is valid. ImplementationsMAY treat
values larger than 2**32-1 (4294967295 seconds or 136 years) as equivalent to 2**32-1.

Contact = (”Contact” | ”m”) ”:”
(”*” | (1# ((name-addr | addr-spec)
*(”;” contact-params))))

name-addr = [display-name] ”<” addr-spec ”>”
addr-spec = SIP-URL | URI
display-name = *token | quoted-string
contact-params = ”q” ”=” qvalue

| ”action” ”=” ”proxy” | ”redirect”
| ”expires” ”=” delta-seconds | <”> SIP-date <”>
| contact-extension

contact-extension = generic-param
qvalue = (”0” [”.” 0*3DIGIT])

| (”1” [”.” 0*3(”0”)])
Even if the “display-name” is empty, the “name-addr” form MUST be used if the “addr-spec” con-

tains a comma, semicolon or question mark. Note that there may or may not be LWS between thedisplay-
name and the “<”.

TheContact header field fulfills functionality similar to theLocation header field in HTTP. However, the HTTP
header only allows one address, unquoted. Since URIs can contain commas and semicolons as reserved characters,
they can be mistaken for header or parameter delimiters, respectively. The current syntax corresponds to that for the
To andFrom header, which also allows the use of display names.

Example:

Contact: "Mr. Watson" <sip:watson@worcester.bell-telephone.com>
;q=0.7; expires=3600,
"Mr. Watson" <mailto:watson@bell-telephone.com> ;q=0.1

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 46]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

10.15 Content-Disposition

Content-Disposition = ”Content-Disposition” ”:”
disposition-type *(”;” disposition-param)

disposition-type = ”render” | ”session” | ”icon” | ”alert”
| disp-extension-token

disposition-param = ”handling” ”=”
(”optional” | ”required” | other-handling)

| generic-param
other-handling = token
disp-extension-token = token

The Content-Disposition header field describes how the message body or, in the case of multipart
messages, a message body part is to be interpreted by the UAC or UAS. The SIP header extends the MIME
Content-Type (RFC 1806 [32]).

The value “session” indicates that the body part describes a session, for either calls or early (pre-call)
media. The value “render” indicates that the body part should be displayed or otherwise rendered to the
user. For backward-compatibility, if theContent-Disposition header is not missing, bodies ofContent-
Type application/sdp imply the disposition “session”, while other content types imply “render”.

The disposition type “icon” indicates that the body part contains an image suitable as an iconic repre-
sentation of the caller or callee. The value “alert” indicates that the body part contains information, such as
an audio clip, that should be rendered instead of ring tone.

The handling parameter,handling-parm, describes how the UAS should react if it receives a message
body whose content type or disposition type it does not understand. If the parameter has the value “op-
tional”, the UASMUST ignore the message body; if it has the value “required”, the UASMUST return 415
(Unsupported Media Type). If the handling parameter is missing, the value “required” is to be assumed.

If this header field is missing, the MIME type determines the default content disposition. If there is
none, “render” is assumed.

10.16 Content-Encoding

Content-Encoding = (”Content-Encoding” | ”e”) ”:”
1#content-coding

TheContent-Encoding entity-header field is used as a modifier to the “media-type”. When present,
its value indicates what additional content codings have been applied to the entity-body, and thus what
decoding mechanismsMUST be applied in order to obtain the media-type referenced by theContent-Type
header field.Content-Encoding is primarily used to allow a body to be compressed without losing the
identity of its underlying media type.

If multiple encodings have been applied to an entity, the content codingsMUST be listed in the order in
which they were applied.

All content-coding values are case-insensitive. The Internet Assigned Numbers Authority (IANA) acts
as a registry for content-coding value tokens. See [H3.5] for a definition of the syntax forcontent-coding.

ClientsMAY apply content encodings to the body in requests. If the server is not capable of decoding
the body, or does not recognize any of the content-coding values, itMUST send a 415 “Unsupported Media
Type” response, listing acceptable encodings in theAccept-Encoding header. A serverMAY apply content

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 47]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

encodings to the bodies in responses. The serverMUST only use encodings listed in theAccept-Encoding
header in the request.

10.17 Content-Language

See [H14.12].

10.18 Content-Length

TheContent-Length entity-header field indicates the size of the message-body, in decimal number of octets,
sent to the recipient.

Content-Length = (”Content-Length” | ”l”) ”:” 1*DIGIT

An example is

Content-Length: 3495

ApplicationsSHOULD use this field to indicate the size of the message-body to be transferred, regardless
of the media type of the entity. (The size of the message-body doesnot include the CRLF separating headers
and body.) AnyContent-Length greater than or equal to zero is a valid value. If no body is present in a
message, then theContent-Length header fieldMUST be set to zero. If a server receives a datagram request
without Content-Length, it MUST assume that the request encompasses the remainder of the packet. If a
server receives a datagram request with aContent-Length, but the value differs from the size of the body
sent in the request, the serverSHOULD return a 400 (Bad Request) response.

If a response does not contain aContent-Length, the client assumes that it encompasses the remainder
of the datagram packet or the data until the stream connection is closed, as applicable. Section 12 describes
how to determine the length of the message body.

The ability to omitContent-Length simplifies the creation of cgi-like scripts that dynamically generate re-
sponses.

10.19 Content-Type

TheContent-Type entity-header field indicates the media type of the message-body sent to the recipient.
The “media-type” element is defined in [H3.7]. TheContent-Type headerMUST be present if the body is
not empty. If the body is empty, and aContent-Length header is present, it indicates that the body of the
specific type has zero length (for example, if it is an emtpy audio file).

Content-Type = (”Content-Type” | ”c”) ”:” media-type

Examples of this header field are

Content-Type: application/sdp
Content-Type: text/html; charset=ISO-8859-4

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 48]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

10.20 CSeq

Clients MUST add theCSeq (command sequence) general-header field to every request. ACSeq header
field in a request contains the request method and a single decimal sequence number. The sequence number
MUST be expressible as a 32-bit unsigned integer. A serverMUST echo theCSeq value from the request
in its response. TheCSeq header serves to order transactions within a call leg, and to provide a means to
uniquely identify transactions.

CSeq = ”CSeq” ”:” 1*DIGIT Method

For requests that are outside of a call leg, or for a request that initiates a session, the value of the
sequence number is arbitrary, butMUST be less than 2**31. For requests which are subsequent ones within
an existing call leg (such as a re-INVITE or BYE), theCSeq headerMUST contain strictly monotonically
increasing and contiguous (increasing-by-one) sequence numbers; sequence numbers do not wrap around.
Retransmissions of the same request carry the sameCSeq value.

For requests outside of a call leg, ordering is irrelevant, and so the value of theCSeq number in requests
received by a UAS is not important. For requests within a call leg, ordering is important. Therefore, a UAS
MUST remember the highest sequence number for any request received within a call leg. The serverMUST

reject, using a 400 class response, any request within a call leg with a lower sequence number. Any request
that is received with a sequence number higher than the highest received so far (even it is higher by more
than one),SHOULD be accepted.

If a client initiates a session, and receives multiple 200 class responses, each establishes a separate
call leg. For subsequent requests within each of those call legs (each of which differs only by the tag
in the To field), theCSeq numbers increment independently from the other call legs. Furthermore, the
CSeq numbering space is unique in each direction. That is, theCSeq values in requests from A to B are
independent of the values in requests from B to A.

TheACK requestMUST contain the sameCSeq numeric value as theINVITE request that it refers to,
but with a Method of “ACK”. TheCANCEL requestMUST contain the sameCSeq numeric value as the
request it cancels, but with a Method of “CANCEL”.

The Method value allows the client to distinguish the response to aCANCEL request from that of
the request it is cancelling.CANCEL requests can be generated by proxies; if they were to increase the
sequence number, it might conflict with a later request issued by the user agent for the same call.

With a length of 32 bits, a server could generate, within a single call, one request a second for about 136
years before needing to wrap around. The initial value of the sequence number is chosen so that subsequent
requests within the same call will not wrap around. A non-zero initial value allows to use a time-based initial
sequence number, if the client desires. A client could, for example, choose the 31 most significant bits of a
32-bit second clock as an initial sequence number.

Example:

CSeq: 4711 INVITE

10.21 Date

Date is a general-header field. Its syntax is:

Date = ”Date” ”:” SIP-date
SIP-date = rfc1123-date

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 49]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

See [H14.18] for a definition of rfc1123-date. Note that unlike HTTP/1.1, SIP only supports the most
recent RFC 1123 [33] formatting for dates. As in [H3.3], SIP restricts the timezone inSIP-date to “GMT”,
while RFC 1123 allows any timezone.

The consistent use of GMT betweenDate, Expires andRetry-After headers allows implementation of simple
clients that do not have a notion of absolute time.

Note thatrfc1123-date is case-sensitive.
TheDate header field reflects the time when the request or response is first sent. Thus, retransmissions

have the sameDate header field value as the original.
RegistrarsMUST include this header inREGISTER responses if they use absolute expiration times and

SHOULD include it for all responses.

TheDate header field can be used by simple end systems without a battery-backed clock to acquire a notion of
current time. However, in its GMT-form, it requires clients to know their offset from GMT.

10.22 Encryption

The Encryption general-header field specifies that the content has been encrypted. Section 18 describes
the overall SIP security architecture and algorithms. This header field is intended for end-to-end encryption
of requests and responses. Requests are encrypted based on the public key belonging to the entity named
in the To header field. Responses are encrypted based on the public key conveyed in theResponse-Key
header field. Note that the public keys themselves may not be used for the encryption. This depends on the
particular algorithms used.

For any encrypted message, at least the message body and possibly other message header fields are
encrypted. An application receiving a request or response containing anEncryption header field decrypts
the body and then concatenates the plaintext to the request line and headers of the original message. Message
headers in the decrypted part completely replace those with the same field name in the plaintext part. (Note:
If only the body of the message is to be encrypted, the body has to be prefixed withCRLF to allow proper
concatenation.) Note that the request method andRequest-URI cannot be encrypted.

Encryption only provides privacy; the recipient has no guarantee that the request or response came from the
party listed in theFrom message header, only that the sender used the recipient’s public key. However, proxies will
not be able to modify the request or response.

Encryption = ”Encryption” ”:” encryption-scheme 1*SP
#encryption-params

encryption-scheme = token
encryption-params = generic-param

The token indicates the form of encryption used; it is described in Section 18.
Since proxies can base their forwarding decision on any combination of SIP header fields, there is no

guarantee that an encrypted request “hiding” header fields will reach the same destination as an otherwise
identical un-encrypted request.

10.23 Error-Info

TheError-Info response header provides a pointer to additional information about the error status response.
This header field is only contained in 3xx, 4xx, 5xx and 6xx responses.

Error-Info = ”Error-Info” ”:” # (”<” URI ”>” *(”;” generic-param))

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 50]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

10.24 Expires

TheExpires entity-header field gives the date and time after which the message content expires.
This header field is currently defined only for theREGISTER, as described in Section 7, andINVITE

methods.
For INVITE requests, it is a request and response-header field. In a request, the caller can limit the

validity of an invitation, for example, if a client wants to limit the time duration of a search or a conference
invitation. A user interfaceMAY take this as a hint to leave the invitation window on the screen even if the
user is not currently at the workstation. This also limits the duration of a search. If the request expires before
the search completes, the proxy returns a 408 (Request Timeout) status. In a 302 (Moved Temporarily)
response, a server can advise the client of the maximal duration of the redirection.

Note that the expiration time doesnot affect the duration of the actual session that may result from the
invitation. Session description protocols may offer the ability to express time limits on the session duration,
however.

The value of this field can be either aSIP-date or an integer number of seconds (in decimal), measured
from the receipt of the request. The latter approach is preferable for short durations, as it does not depend
on clients and servers sharing a synchronized clock. ImplementationsMAY treat values larger than 2**32-1
(4294967295 or 136 years) as equivalent to 2**32-1.

Expires = ”Expires” ”:” (SIP-date | delta-seconds)

Two examples of its use are

Expires: Thu, 01 Dec 1994 16:00:00 GMT
Expires: 5

10.25 From

Requests and responsesMUST contain aFrom general-header field, indicating the initiator of the request.
(Note that this may be different from the initiator of the call leg. Requests sent by the callee to the caller
use the callee’s address in theFrom header field.) TheFrom field MUST contain the “tag” parameter.
However, a serverMUST be prepared to receive a request without a tag, in which case the tag is considered
to effectively have a value of zero. This is to maintain backwards compatibility with RFC2543, which did
not mandate From tags. .The server copies theFrom header field from the request to the response. The
optional “display-name” is meant to be rendered by a human-user interface. A systemSHOULD use the
display name “Anonymous” if the identity of the client is to remain hidden.

TheSIP-URL MUST NOTcontain the “transport-param”, “ maddr-param”, “ ttl-param”, or “headers”
elements. A server that receives a SIP-URL with these elements ignores them.

Even if the “display-name” is empty, the “name-addr” form MUST be used if the “addr-spec” con-
tains a comma, question mark, or semicolon. Syntax issues are discussed in Section 10.5.

From = (”From” | ”f”) ”:” (name-addr | addr-spec)
*(”;” from-param)

from-param = tag-param | generic-param
tag-param = ”tag” ”=” token

Examples:

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 51]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

From: "A. G. Bell" <sip:agb@bell-telephone.com> ;tag=a48s
From: sip:+12125551212@server.phone2net.com;tag=887s
From: Anonymous <sip:c8oqz84zk7z@privacy.org>;tag=hyh8

The “tag” value MUST be globally unique and cryptographically random with at least 32 bits of ran-
domness. ItSHOULD differ for each call leg.

For the purpose of identifying call legs, twoFrom or To header fields are equal if and only if:

• Theaddr-spec component is equal, according to the rules in Section 2.1.

• Any “ tag” and “generic-param” parameters are equal, compared according to the case-sensitivity
rules in Section 10. Only parameters that appear in both header fields are compared.

Call-ID, To andFrom are needed to identify acall leg. The distinction between call and call leg matters in calls
with multiple responses to a forked request. The format is similar to the equivalent RFC 822 [25] header, but with a
URI instead of just an email address.

10.26 In-Reply-To

TheIn-Reply-To request header field enumerates the call-IDs that this call references or returns.

This allows automatic call distribution systems to route return calls to the originator of the first call and allows
callees to filter calls, so that only calls that return calls they have originated will be accepted. This field is not a
substitute for request authentication.

In-Reply-To = ”In-Reply-To” ”:” 1# callid

Example:

In-Reply-To: 70710@saturn.bell-tel.com, 17320@saturn.bell-tel.com

10.27 Max-Forwards

TheMax-Forwards request-header field may be used with any SIP method to limit the number of proxies
or gateways that can forward the request to the next downstream server. This can also be useful when the
client is attempting to trace a request chain which appears to be failing or looping in mid-chain.

Max-Forwards = ”Max-Forwards” ”:” 1*DIGIT

The Max-Forwards value is a decimal integer indicating the remaining number of times this request
message is allowed to be forwarded.

Each proxy or gateway recipient of a request containing aMax-Forwards header fieldMUST check and
update its value prior to forwarding the request. If the received value is zero (0), the recipientMUST NOT

forward the request and returns 483 (Too many hops). Instead, a serverMAY act as a final recipient for
OPTIONS requests. It isRECOMMENDED that the server includeSupported, Server andAllow header
fields in the response.

If the receivedMax-Forwards value is greater than zero, then the forwarded messageMUST contain an
updated Max-Forwards field with a value decremented by one (1).

Example:

Max-Forwards: 6

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 52]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

10.28 MIME-Version

See [H19.4.1].

10.29 Organization

TheOrganization general-header field conveys the name of the organization to which the entity issuing the
request or response belongs. ItMAY also be inserted by proxies at the boundary of an organization.

The fieldMAY be used by client software to filter calls.

Organization = ”Organization” ”:” TEXT-UTF8-TRIM

10.30 Priority

ThePriority request-header field indicates the urgency of the request as perceived by the client.

Priority = ”Priority” ”:” priority-value
priority-value = ”emergency” | ”urgent” | ”normal”

| ”non-urgent” | other-priority
other-priority = token

It is RECOMMENDED that the value of “emergency” only be used when life, limb or property are in
imminent danger.

Examples:

Subject: A tornado is heading our way!
Priority: emergency

Subject: Weekend plans
Priority: non-urgent

These are the values of RFC 2076 [34], with the addition of “emergency”.

10.31 Proxy-Authenticate

The Proxy-Authenticate response-header fieldMUST be included as part of a 407 (Proxy Authentication
Required) response. It may also occur in a 401 (Unauthorized) response if the request was forked. The field
value consists of a challenge that indicates the authentication scheme and parameters applicable to the proxy
for this Request-URI.

Unlike its usage within HTTP, theProxy-Authenticate headerMUST be passed upstream in the response
to the UAC. In SIP, only UAC’s can authenticate themselves to proxies.

The syntax for this header is defined in [H14.33]. See 19 for further details on its usage.
A client SHOULD cache the credentials used for a particular proxy server and realm for the next request

to that server. Credentials are, in general, valid for a specific value of theRequest-URI at a particular proxy
server. If a client contacts a proxy server that has required authentication in the past, but the client does not
have credentials for the particularRequest-URI, it MAY attempt to use the most-recently used credential.
The server responds with 401 (Unauthorized) if the client guessed wrong.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 53]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

This suggested caching behavior is motivated by proxies restricting phone calls to authenticated users. It seems
likely that in most cases, all destinations require the same password. Note that end-to-end authentication is likely to
be destination-specific.

10.32 Proxy-Authorization

The Proxy-Authorization request-header field allows the client to identify itself (or its user) to a proxy
which requires authentication. TheProxy-Authorization field value consists of credentials containing the
authentication information of the user agent for the proxy and/or realm of the resource being requested.

Unlike Authorization, theProxy-Authorization header field applies only to the next outbound proxy
that demanded authentication using theProxy- Authenticate field. When multiple proxies are used in a
chain, theProxy-Authorization header field is consumed by the first outbound proxy that was expecting to
receive credentials. A proxyMAY relay the credentials from the client request to the next proxy if that is the
mechanism by which the proxies cooperatively authenticate a given request.

See [H14.34] for a definition of the syntax, and section 19 for a discussion of its usage.

10.33 Proxy-Require

The Proxy-Require header field is used to indicate proxy-sensitive features thatMUST be supported by
the proxy. If a proxy server does not understand the option, itMUST respond by returning status code 420
(Bad Extension) and list those options it does not understand in theUnsupported header. A UACSHOULD

attempt to retry the request, without using the features listed in theUnsupported header.
See Section 10.35 for more details on the mechanics of this message and a usage example.

Proxy-Require = ”Proxy-Require” ”:” 1#option-tag

10.34 Record-Route

TheRecord-Route header field has the following syntax:

Record-Route = ”Record-Route” ”:” 1# (name-addr *(”;” rr-param))
rr-param = generic-param

Details of its use are described in Section 16.

10.35 Require

TheRequire general-header field is used by clients to tell user agent servers about options that the client
expects the server to support in order to properly process the request. If a server does not understand the
option, it MUST respond by returning status code 420 (Bad Extension) and list those options it does not
understand in theUnsupported header. A UACSHOULD attempt to retry the request, without using the
features listed in theUnsupported header.

Require = ”Require” ”:” 1#option-tag

Example:

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 54]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

C->S: INVITE sip:watson@bell-telephone.com SIP/2.0
Require: com.example.billing
Payment: sheep_skins, conch_shells

S->C: SIP/2.0 420 Bad Extension
Unsupported: com.example.billing

This is to make sure that the client-server interaction will proceed without delay when all options are understood
by both sides, and only slow down if options are not understood (as in the example above). For a well-matched
client-server pair, the interaction proceeds quickly, saving a round-trip often required by negotiation mechanisms.
In addition, it also removes ambiguity when the client requires features that the server does not understand. Some
features, such as call handling fields, are only of interest to end systems.

Proxy and redirect serversMUST ignore features that are not understood. If a particular extension re-
quires that intermediate devices support it, the extensionMUST be tagged in theProxy-Require field as
well (see Section 10.33).

10.36 Response-Key

TheResponse-Key request-header field can be used by a client to request the key that the called user agent
SHOULD use to encrypt the response with. The syntax is:

Response-Key = ”Response-Key” ”:” key-scheme 1*SP #key-param
key-scheme = token
key-param = generic-param

The “key-scheme” gives the type of encryption to be used for the response. Section 18 describes
security schemes.

If the client insists that the server return an encrypted response, it includes a

Require: org.ietf.sip.encrypt-response

header field in its request. If the server cannot encrypt for whatever reason, itMUST follow normal
Require header field procedures and return a 420 (Bad Extension) response. If thisRequire header field is
not present, a serverSHOULD still encrypt if it can.

10.37 Retry-After

The Retry-After response-header field can be used with a 503 (Service Unavailable) response to indicate
how long the service is expected to be unavailable to the requesting client and with a 404 (Not Found), 600
(Busy), or 603 (Decline) response to indicate when the called party anticipates being available again. The
value of this field can be either anSIP-date or an integer number of seconds (in decimal) after the time of
the response.

An optional comment can be used to indicate additional information about the time of callback. An
optional “duration” parameter indicates how long the called party will be reachable starting at the initial
time of availability. If no duration parameter is given, the service is assumed to be available indefinitely.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 55]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

Retry-After = ”Retry-After” ”:” (SIP-date | delta-seconds)
[comment] *(”;” retry-param)

retry-param = ”duration” ”=” delta-seconds
| generic-param

Examples of its use are

Retry-After: Mon, 21 Jul 1997 18:48:34 GMT (I’m in a meeting)
Retry-After: Mon, 01 Jan 9999 00:00:00 GMT

(Dear John: Don’t call me back, ever)
Retry-After: Fri, 26 Sep 1997 21:00:00 GMT;duration=3600
Retry-After: 120

In the third example, the callee is reachable for one hour starting at 21:00 GMT. In the last example, the
delay is 2 minutes.

10.38 Route

TheRoute header field has the following syntax:

Route = ”Route” ”:” 1# (name-addr *(”;” rr-param))

Details of its use are described in Section 16.

10.39 Server

TheServer response-header field contains information about the software used by the user agent server to
handle the request. The syntax for this field is defined in [H14.38].

10.40 Subject

This header field provides a summary or indicates the nature of the call, allowing call filtering without having
to parse the session description. (Note that the session description does not have to use the same subject
indication as the invitation.)

Subject = (”Subject” | ”s”) ”:” TEXT-UTF8-TRIM

Example:

Subject: Tune in - they are talking about your work!

10.41 Supported

TheSupported general-header field enumerates all the capabilities of the client or server. This header field
SHOULD be included in all requests (exceptACK) and in all responses.

Including the header field in all responses greatly simplifies the use of extensions for call control in subsequent
transactions with the same server.

Syntax:

Supported = (”Supported” | ”k”) ”:” 1#option-tag

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 56]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

10.42 Timestamp

The Timestamp general-header field describes when the client sent the request to the server. The client
uses the current time value at the time of transmission, i.e., each retransmission of a request is likely to have
a different timestamp value.

The value of the timestamp is of significance only to the client and itMAY use any timescale. The
serverMUST echo the exact same value in all provisional and final responses andMAY , if it has accurate
information about this, add a floating point number indicating the number of seconds that have elapsed since
it has received the request. The timestamp is used by the client to compute the round-trip time to the server
so that it can adjust the timeout value for retransmissions.

Timestamp = ”Timestamp” ”:” *(DIGIT) [”.” *(DIGIT)] [delay]
delay = *(DIGIT) [”.” *(DIGIT)]

Note that thereMUST NOT be any LWS between a DIGIT and the decimal point.

10.43 To

TheTo general-header field specifies the “logical” recipient of the request.

To = (”To” | ”t”) ”:” (name-addr | addr-spec)
*(”;” to-param)

to-param = tag-param | generic-param

Requests and responsesMUST contain aTo general-header field, indicating the desired recipient of the
request. The optional “display-name” is meant to be rendered by a human-user interface. The UAS or
redirect server copies theTo header field into its response, andMUST add a “tag” parameter.

If there was more than oneVia header field, the request was handled by at least one proxy server. Since the
receiver cannot know whether any of the proxy servers forked the request, it is safest to assume that they might
have.

TheSIP-URL MUST NOTcontain the “transport-param”, “ maddr-param”, “ ttl-param”, or “headers”
elements. A server that receives a SIP-URL with these elements removes them before further processing.

The “tag” parameter serves as a general mechanism to distinguish multiple instances of a user identified
by a single SIP URL. As proxies can fork requests, the same request can reach multiple instances of a user
(mobile and home phones, for example). As each can respond, there needs to be a means to distinguish
the responses from each at the caller. The situation also arises with multicast requests. The tag in theTo
header field serves to distinguish responses at the UAC. ItMUST be placed in theTo field of the response by
user agent, registrar and redirect servers, butMUST NOT be inserted into responses forwarded upstream by
proxies. However, responses generated locally by a proxy, and then sent upstream,MUST contain a tag.

A UAS or redirect serverMUST add a “tag” parameter for all final responses for all transactions within
a call leg. All such parameters have the same value within the same call leg. These serversSHOULD add the
tag for informational responses during the initialINVITE transaction, butMUST add a tag to informational
responses for all subsequent transactions.

See Section 10.25 for details of the “tag” parameter. The “tag” parameter inTo headers is ignored when
matching responses to requests that did not contain a “tag” in their To header.

Section 15 describes when the “tag” parameterMUST appear in subsequent requests. Note that if a
request already contained a tag, this tagMUST be mirrored in the response; a new tagMUST NOT be inserted.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 57]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

Section 10.25 describes howTo and From header fields are compared for the purpose of matching
requests to call legs.

UAS SHOULD accept requests even if they do not recognize the URI scheme (e.g., atel: URI) or if
theTo header does not address the user. OnlyRequest-URI that do not match the recipient should cause
requests to be rejected.

Even if the “display-name” is empty, the “name-addr” form MUST be used if the “addr-spec” con-
tains a comma, question mark, or semicolon. Note that LWS is common, butnot mandatory between the
display-name and the “<”.

The following are examples of validTo headers:

To: The Operator <sip:operator@cs.columbia.edu>;tag=287447
To: sip:+12125551212@server.phone2net.com

Call-ID, To andFrom are needed to identify acall leg. The distinction between call and call leg matters in calls
with multiple responses from a forked request. The “tag” is added to theTo header field in the response to allow
forking of future requests for the same call by proxies, while addressing only one of the possibly several responding
user agent servers. It also allows several instances of the callee to send requests that can be distinguished.

10.44 Unsupported

The Unsupported response-header field lists the features not supported by the server. See Section 10.35
for a usage example and motivation.

Syntax:

Unsupported = ”Unsupported” ”:” 1#option-tag

10.45 User-Agent

The User-Agent general-header field contains information about the client user agent originating the re-
quest. The syntax and semantics are defined in [H14.43].

10.46 Via

TheVia field indicates the path taken by the request so far. This prevents request looping and ensures replies
take the same path as the requests, which assists in firewall traversal and other unusual routing situations.

10.46.1 Requests

The client originating the requestMUST insert into the request aVia field containing the transport protocol
used to send the message, the client’s host name or network address and, if not the default port number, the
port number at which it wishes to receive responses. (Note that this port number can differ from the UDP
source port number of the request.) A fully-qualified domain name isRECOMMENDED. Each subsequent
proxy server that sends the request onwardsMUST add its own additionalVia field before any existingVia
fields. A proxy that receives a redirection (3xx) response and then searches recursively,MUST use the same
Via headers as on the original proxied request.

A client that sends a request to a multicast addressMUST add the “maddr” parameter to itsVia header
field, andSHOULD add the “ttl” parameter. (In that case, themaddr parameterSHOULD contain the desti-
nation multicast address, although under exceptional circumstances itMAY contain a unicast address.) If a

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 58]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

server receives a request which contained an “maddr” parameter in the topmostVia field, it SHOULD send
the response to the address listed in the “maddr” parameter.

Loop detection is described in Section 17.3.1.

10.46.2 Receiver-taggedVia Header Fields

A proxy or UAS receiving a requestSHOULD check the firstVia header field to ensure that it contains the
sender’s correct network address, as seen from that proxy. If theVia header contains a domain name or
if it contains an IP address that differs from the packet source address, the proxy or UASSHOULD add a
“ received” attribute to thatVia header field.

A multi-homed host may not be able to insert a network address into theVia header field that can be reached
by the next hop, for example because if one of the networks is private. The address placed into theVia header
may differ from the interface actually used, as that interface is selected only at packet sending time by the IP layer.
Similarly, a request traversing a network address translator (NAT) will also cause the sending address to differ from
the address seen by the next hop. The mechanism described here is unlikely to be sufficient, however, for allowing
packets to traverse a NAT in the reverse direction.

An example is:

Via: SIP/2.0/UDP erlang.bell-telephone.com:5060
Via: SIP/2.0/UDP 128.59.16.1:5060 ;received=128.59.19.3

In this example, the message originated from a multi-homed host with two addresses, 128.59.16.1
and 128.59.19.3. The sender guessed wrong as to which network interface would be used. Erlang.bell-
telephone.com noticed the mismatch, and added a parameter to the previous hop’sVia header field, contain-
ing the address that the packet actually came from.

10.46.3 Receiving Responses

Via header fields in responses received are processed by a proxy or UAC according to the following rules:

1. The firstVia header field should indicate the proxy or client processing this response. Specifically, the
sent-by value should equal the value inserted by the proxy or UAC. Therecevied parameterMUST

NOT be used by a proxy or UAC to determine if the response is for a request it sent. If thesent-by
value is not equal to the value inserted by the proxy or UAC, discard the message. Otherwise, remove
this Via field.

2. If there is no secondVia header field, this response is destined for this client. Otherwise, use thisVia
field as the destination, as described in Section 10.46.5.

10.46.4 Generating Responses

A UAS, proxy or redirect that server that generates a response copies theVia header fields from the request
into the response, without changing their order, and uses the top (first)Via element as the destination, as
described in the next section.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 59]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

10.46.5 Sending Responses

Given a destination described by aVia header field, the response is sent according to the following rules:

• If the “sent-protocol” is a reliable transport protocol such as TCP, TLS or SCTP, send the response
using the existing TCP connection to the source of the original request. If no connection is open,
open a connection to the IP address in thereceived parameter, if present using the port in thesent-
by value, or port 5060 if none is present. If the connection attempt fails, or if there was noreceived
parameter, the serverSHOULD attempt to open a connection to the address in thesent-by value, which
may be a domain name. To do this, it constructs a SIP URL of the form “sip:¡sent-by¿;transport=¡sent-
protocol¿” and then uses the procedures defined in [35] to determine the IP address and port to open
the connection and send the response to.

• Otherwise, if theVia header field contains a “maddr” parameter, forward the response to the address
listed there, using the port indicated in “sent-by”, or port 5060 if none is present. If the address is
a multicast address, the responseSHOULD be sent using the TTL indicated in the “ttl” parameter, or
with a TTL of 1 if that parameter is not present.

• Otherwise, if it is a receiver-tagged field (Section 10.46.2), send the response to the address in the
“ received” parameter, using the port indicated in the “sent-by” value, or using port 5060 if none is
specified explicitly. If this fails, e.g., elicits an ICMP “port unreachable” response, send the response
to the address in the “sent-by” parameter. The address to send to is determined by constructing a
SIP URL of the form “sip:¡sent-by¿”, and then using the DNS procedures defined in [35] to send the
response.

• Otherwise, if it is not receiver-tagged, send the response to the address indicated by the “sent-by”
value.

Note that the response to an unreliable datagram request isnot returned to the port from which the
request came, but it is always returned to the source IP that that request came from.

10.46.6 Syntax

The format for aVia header field is shown in Fig. 9. The “maddr” parameter, designating the multicast ad-
dress, and the “ttl” parameter, designating the time-to-live (TTL) value, are included only if the request was
sent via multicast. The “received” parameter is added only for receiver-addedVia fields (Section 10.46.2).

The “branch” parameter is included by every proxy. The tokenMUST be unique for each distinct
request. The precise format of the token is implementation-defined. In order to be able to both detect
loops and associate responses with the corresponding request, the parameterSHOULD consist of two parts
separable by the implementation. One part, used for loop detection (Section 17.3.1),MAY be computed
as a cryptographic hash of theTo, From, Call-ID header fields, theRequest-URI of the request received
(before translation) and the sequence number from theCSeq header field. The hashSHOULD also include
any other fields the proxy uses to make a routing decision on the request. This is to ensure that if the request
is routed back to the proxy, and one of those fields changes, it is treated as a spiral, and not a loop.The
algorithm used to compute the hash is implementation-dependent, but MD5 [36], expressed in hexadecimal,
is a reasonable choice. (Note that base64 is not permissible for atoken.) The other part, used for matching
responses to requests, is a globally unique function of the branch taken, for example, a hash of a sequence
number, local IP address andrequest-URI of the request sent on the branch.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 60]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

Via = (”Via” | ”v”) ”:” 1#(sent-protocol sent-by
*(”;” via-params) [comment])

via-params = via-hidden | via-ttl | via-maddr
| via-received | via-branch | via-extension

via-hidden = ”hidden”
via-ttl = ”ttl” ”=” ttl
via-maddr = ”maddr” ”=” host
via-received = ”received” ”=” host
via-branch = ”branch” ”=” token
via-extension = generic-param
sent-protocol = protocol-name ”/” protocol-version

”/” transport
protocol-name = ”SIP” | token
protocol-version = token
transport = ”UDP” | ”TCP” | ”TLS” | ”SCTP” | other-transport
sent-by = host [”:” port]
ttl = 1*3DIGIT ; 0 to 255

Figure 9: Syntax ofVia header field

For example:7a83e5750418bce23d5106b4c06cc632.1

The “branch” parameterMUST depend on the incomingrequest-URI, or any other headers used for routing, to
distinguish looped requests from requests whoserequest-URI (or whatever headers are used for routing) is changed
and which then reach a server visited earlier.

CANCEL and ACK requestsMUST have the samebranch value as the corresponding request they
cancel or acknowledge. When a response arrives at the proxy it can use the branch value to figure out which
branch the response corresponds to.

Via: SIP/2.0/UDP first.example.com:4000;ttl=16
;maddr=224.2.0.1 ;branch=a7c6a8dlze.1 (Acme server)

Via: SIP/2.0/UDP adk8%20.8x%fe%03 ;hidden

10.47 Warning

TheWarning response-header field is used to carry additional information about the status of a response.
Warning headers are sent with responses and have the following format:

Warning = ”Warning” ”:” 1#warning-value
warning-value = warn-code SP warn-agent SP warn-text
warn-code = 3DIGIT
warn-agent = (host [”:” port]) | pseudonym

; the name or pseudonym of the server adding
; the Warning header, for use in debugging

warn-text = quoted-string
pseudonym = token

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 61]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

A responseMAY carry more than oneWarning header.
The “warn-text” should be in a natural language that is most likely to be intelligible to the human user

receiving the response. This decision can be based on any available knowledge, such as the location of the
cache or user, theAccept-Language field in a request, or theContent-Language field in a response. The
default language is i-default [37].

Any serverMAY addWarning headers to a response. Proxy serversMUST place additionalWarning
headers before anyAuthorization headers. Within that constraint,Warning headersMUST be added after
any existingWarning headers not covered by a signature. A proxy serverMUST NOT delete anyWarning
header field that it received with a response.

When multipleWarning headers are attached to a response, the user agentSHOULD display as many
of them as possible, in the order that they appear in the response. If it is not possible to display all of the
warnings, the user agent first displays warnings that appear early in the response.

The warn-code consists of three digits. A first digit of “3” indicates warnings specific to SIP.
This is a list of the currently-defined “warn-code”s, each with a recommended warn-text in English, and

a description of its meaning. Note that these warnings describe failures induced by the session description.
Warnings 300 through 329 are reserved for indicating problems with keywords in the session description,

330 through 339 are warnings related to basic network services requested in the session description, 370
through 379 are warnings related to quantitative QoS parameters requested in the session description, and
390 through 399 are miscellaneous warnings that do not fall into one of the above categories.

300 Incompatible network protocol: One or more network protocols contained in the session description
are not available.

301 Incompatible network address formats: One or more network address formats contained in the ses-
sion description are not available.

302 Incompatible transport protocol: One or more transport protocols described in the session descrip-
tion are not available.

303 Incompatible bandwidth units: One or more bandwidth measurement units contained in the session
description were not understood.

304 Media type not available: One or more media types contained in the session description are not avail-
able.

305 Incompatible media format: One or more media formats contained in the session description are not
available.

306 Attribute not understood: One or more of the media attributes in the session description are not sup-
ported.

307 Session description parameter not understood:A parameter other than those listed above was not
understood.

330 Multicast not available: The site where the user is located does not support multicast.

331 Unicast not available: The site where the user is located does not support unicast communication (usu-
ally due to the presence of a firewall).

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 62]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

370 Insufficient bandwidth: The bandwidth specified in the session description or defined by the media
exceeds that known to be available.

399 Miscellaneous warning:The warning text can include arbitrary information to be presented to a hu-
man user, or logged. A system receiving this warningMUST NOT take any automated action.

1xx and 2xx have been taken by HTTP/1.1.

If the warning is caused by the session description, the status responseSHOULD include a session de-
scription similar to that included inOPTIONS responses indicating the capabilities of the UAS.

Additional “warn-code”s, as in the example below, can be defined through IANA.
Examples:

Warning: 307 isi.edu "Session parameter ’foo’ not understood"
Warning: 301 isi.edu "Incompatible network address type ’E.164’"

10.48 WWW-Authenticate

The WWW-Authenticate response-header fieldMUST be included in 401 (Unauthorized) response mes-
sages. The field value consists of at least one challenge that indicates the authentication scheme(s) and
parameters applicable to theRequest-URI. See [H14.47] for a definition of the syntax, and Section 19 for
an overview of usage.

The content of the “realm” parameterSHOULD be displayed to the user. A user agentSHOULD cache
the authorization credentials for a given value of the destination (To header) and “realm” and attempt to
re-use these values on the next request for that destination.

11 Status Code Definitions

The response codes are consistent with, and extend, HTTP/1.1 response codes. Not all HTTP/1.1 response
codes are appropriate, and only those that are appropriate are given here. Other HTTP/1.1 response codes
SHOULD NOT be used. Response codes not defined by HTTP/1.1 have codes x80 upwards to avoid clashes
with future HTTP response codes. Also, SIP defines a new class, 6xx. The default behavior for unknown
response codes is given for each category of codes.

11.1 Informational 1xx

Informational responses indicate that the server or proxy contacted is performing some further action and
does not yet have a definitive response. The clientSHOULD wait for a further response from the server, and
the serverSHOULD send such a response without further prompting. A serverSHOULD send a 1xx response
if it expects to take more than 200 ms to obtain a final response. A serverMAY issue zero or more 1xx
responses, with no restriction on their ordering or uniqueness. Note that 1xx responses are not transmitted
reliably, that is, they do not cause the client to send anACK. Servers are free to retransmit informational
responses and clients can inquire about the current state of call processing by re-sending the request.

Informational (1xx) responses other than 100 (Trying)MAY contain message bodies, including session
descriptions. If a 1xx response contains a session description, a UACSHOULD cease generating local
ringback tone. Session descriptions in 1xx responses are interpreted in the same manner as those in 2xx

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 63]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

responses. In particular, the session descriptionMUST be formatted in such a way that it would be valid in a
2xx response. Thus, the UAS can only include a session description in its provisional response if the UAC
has included one in an earlierINVITE. (SIP extensions may specify additional circumstances where session
descriptions may be included.) If a later provisional response or 2xx contains a different session description,
this new description is treated as if it were the original response to the session description in theINVITE.

The UAS can remove the media stream by setting the port number to zero in a subsequent session
description contained in a provisional response and thus restore normal ringback behavior. The UAS cannot
add media streams beyond those offered by the UAC in theINVITE. A provisional response without a
session description has no effect on any early media that have already been set up.

The media streams are assumed to be bidirectional unless marked as send-only or receive-only. For SDP,
this is described in Section B. Client behavior when receiving several different session descriptions from
different branches is undefined.

11.1.1 100 Trying

Some unspecified action is being taken on behalf of this call (e.g., a database is being consulted), but the
user has not yet been located.

11.1.2 180 Ringing

The called user agent has located a possible location where the user has registered recently and is trying to
alert the user.

11.1.3 181 Call Is Being Forwarded

A proxy serverMAY use this status code to indicate that the call is being forwarded to a different set of
destinations.

11.1.4 182 Queued

The called party is temporarily unavailable, but the callee has decided to queue the call rather than reject it.
When the callee becomes available, it will return the appropriate final status response. The reason phrase
MAY give further details about the status of the call, e.g., “5 calls queued; expected waiting time is 15
minutes”. The serverMAY issue several 182 responses to update the caller about the status of the queued
call.

11.1.5 183 Session Progress

The 183 (Session Progress) response is used to convey information about the progress of the call which is
not otherwise classified. TheReason-Phrase MAY be used to convey more details about the call progress.

11.2 Successful 2xx

The request was successful andMUST terminate a search.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 64]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

11.2.1 200 OK

The request has succeeded. The information returned with the response depends on the method used in the
request, for example:

BYE: The call has been terminated. The message body is empty.

CANCEL : The search has been cancelled. The message body is empty.

INVITE: The callee has agreed to participate; the message body indicates the callee’s capabilities.

OPTIONS: The callee has agreed to share its capabilities, included in the message body.

REGISTER: The registration has succeeded. The client treats the message body according to itsContent-
Type.

11.3 Redirection 3xx

3xx responses give information about the user’s new location, or about alternative services that might be
able to satisfy the call. TheySHOULD terminate an existing search, andMAY cause the initiator to begin a
new search if appropriate.

To avoid forwarding loops, a user agent client or proxyMUST check whether the address returned by a
redirect server equals an address tried earlier.

11.3.1 300 Multiple Choices

The address in the request resolved to several choices, each with its own specific location, and the user (or
user agent) can select a preferred communication end point and redirect its request to that location.

The responseSHOULD include an entity containing a list of resource characteristics and location(s) from
which the user or user agent can choose the one most appropriate, if allowed by theAccept request header.
The entity format is specified by the media type given in theContent-Type header field. The choices
SHOULD also be listed asContact fields (Section 10.14). Unlike HTTP, the SIP responseMAY contain
severalContact fields or a list of addresses in aContact field. User agentsMAY use theContact header
field value for automatic redirection orMAY ask the user to confirm a choice. However, this specification
does not define any standard for such automatic selection.

This status response is appropriate if the callee can be reached at several different locations and the server cannot
or prefers not to proxy the request.

11.3.2 301 Moved Permanently

The user can no longer be found at the address in theRequest-URI and the requesting clientSHOULD retry
at the new address given by theContact header field (Section 10.14). The callerSHOULD update any local
directories, address books and user location caches with this new value and redirect future requests to the
address(es) listed.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 65]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

11.3.3 302 Moved Temporarily

The requesting clientSHOULD retry the request at the new address(es) given by theContact header field
(Section 10.14). TheRequest-URI of the new request uses the value of theContact header in the response.
The new request can take two different forms. In the first approach, theTo, From, Call-ID, andCSeq
header fields in the new request are the same as in the original request, with a newbranch identifier in
theVia header field. ProxiesMUST follow this behavior and UACsMAY . UAs MAY also use theContact
information for theTo header field, as well as a newCall-ID value.

Reusing theCSeq value allows proxies to avoid forwarding the request to the same destination twice, as a proxy
will consider it a retransmission.

The duration of the redirection can be indicated through anExpires (Section 10.24) header. If there is
no explicit expiration time, the address is only valid for this call andMUST NOT be cached for future calls.

11.3.4 305 Use Proxy

The requested resourceMUST be accessed through the proxy given by theContact field. TheContact
field gives the URI of the proxy. The recipient is expected to repeat this single request via the proxy. 305
responsesMUST only be generated by user agent servers.

11.3.5 380 Alternative Service

The call was not successful, but alternative services are possible. The alternative services are described in
the message body of the response. Formats for such bodies are not defined here, and may be the subject of
future standardization.

11.4 Request Failure 4xx

4xx responses are definite failure responses from a particular server. The clientSHOULD NOT retry the
same request without modification (e.g., adding appropriate authorization). However, the same request to a
different server might be successful.

11.4.1 400 Bad Request

The request could not be understood due to malformed syntax. TheReason-Phrase SHOULD identify the
syntax problem in more detail, e.g., “Missing Call-ID header”.

11.4.2 401 Unauthorized

The request requires user authentication. This response is issued by user agent servers and registrars, while
407 (Proxy Authentication Required) is used by proxy servers.

11.4.3 402 Payment Required

Reserved for future use.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 66]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

11.4.4 403 Forbidden

The server understood the request, but is refusing to fulfill it. Authorization will not help, and the request
SHOULD NOT be repeated.

11.4.5 404 Not Found

The server has definitive information that the user does not exist at the domain specified in theRequest-
URI. This status is also returned if the domain in theRequest-URI does not match any of the domains
handled by the recipient of the request.

11.4.6 405 Method Not Allowed

The method specified in theRequest-Line is not allowed for the address identified by theRequest-URI.
The responseMUST include anAllow header field containing a list of valid methods for the indicated address.

11.4.7 406 Not Acceptable

The resource identified by the request is only capable of generating response entities which have content
characteristics not acceptable according to the accept headers sent in the request.

11.4.8 407 Proxy Authentication Required

This code is similar to 401 (Unauthorized), but indicates that the clientMUST first authenticate itself with the
proxy. The proxyMUST return aProxy-Authenticate header field (section 10.31) containing a challenge
applicable to the proxy for the requested resource. The clientMAY repeat the request with a suitable Proxy-
Authorization header field (section 10.32). SIP access authentication is explained in section 18.2 and 19.

This status code is used for applications where access to the communication channel (e.g., a telephony
gateway) rather than the callee requires authentication.

11.4.9 408 Request Timeout

The server could not produce a response within a suitable amount of time, for example, since it could not
determine the location of the user in time. The amount of time may have been indicated in theExpires
request-header field or may be set by the server. The clientMAY repeat the request without modifications at
any later time.

11.4.10 409 Conflict

The request could not be completed due to a conflict with the current state of the resource. This response is
returned if theaction parameter in aREGISTER request conflicts with existing registrations.

11.4.11 410 Gone

The requested resource is no longer available at the server and no forwarding address is known. This
condition is expected to be considered permanent. If the server does not know, or has no facility to determine,
whether or not the condition is permanent, the status code 404 (Not Found)SHOULD be used instead.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 67]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

11.4.12 413 Request Entity Too Large

The server is refusing to process a request because the request entity is larger than the server is willing or
able to process. The server MAY close the connection to prevent the client from continuing the request.

If the condition is temporary, the serverSHOULD include aRetry-After header field to indicate that it is
temporary and after what time the clientMAY try again.

11.4.13 414 Request-URI Too Long

The server is refusing to service the request because the Request-URI is longer than the server is willing to
interpret.

11.4.14 415 Unsupported Media Type

The server is refusing to service the request because the message body of the request is in a format not
supported by the server for the requested method. The serverSHOULD return a list of acceptable formats
using theAccept, Accept-Encoding andAccept-Language header fields. The clientSHOULD retry the
request, this time omitting any bodies not supported by the server.

11.4.15 420 Bad Extension

The server did not understand the protocol extension specified in aProxy-Require (Section 10.33) orRe-
quire (Section 10.35) header field.

11.4.16 480 Temporarily Unavailable

The callee’s end system was contacted successfully but the callee is currently unavailable (e.g., not logged
in, logged in in such a manner as to preclude communication with the callee or activated the “do not disturb”
feature). The responseMAY indicate a better time to call in theRetry-After header. The user could also
be available elsewhere (unbeknownst to this host), thus, this response does not terminate any searches. The
reason phraseSHOULD indicate a more precise cause as to why the callee is unavailable. This valueSHOULD

be setable by the user agent. Status 486 (Busy Here)MAY be used to more precisely indicate a particular
reason for the call failure.

This status is also returned by a redirect server that recognizes the user identified by theRequest-URI,
but does not currently have a valid forwarding location for that user.

11.4.17 481 Call Leg/Transaction Does Not Exist

This status is returned under three conditions: The server received aBYE request that does not match any
existing call leg, the server received aCANCEL request that does not match any existing transaction or the
server received anINVITE with a To tag that does not match the local tag value. (A server simply discards
anACK referring to an unknown transaction.) A UAC receiving a 481 to a request sent for an existing call
leg MUST consider that call leg terminated.

11.4.18 482 Loop Detected

The server received a request with aVia (Section 10.46) path containing itself.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 68]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

11.4.19 483 Too Many Hops

The server received a request that contains aMax-Forwards (Section 10.27) header with the value zero.

11.4.20 484 Address Incomplete

The server received a request with aTo (Section 10.43) address orRequest-URI that was incomplete.
Additional informationSHOULD be provided.

This status code allows overlapped dialing. With overlapped dialing, the client does not know the length of the
dialing string. It sends strings of increasing lengths, prompting the user for more input, until it no longer receives a
484 status response.

11.4.21 485 Ambiguous

The callee address provided in the request was ambiguous. The responseMAY contain a listing of possible
unambiguous addresses inContact headers.

Revealing alternatives can infringe on privacy concerns of the user or the organization. ItMUST be
possible to configure a server to respond with status 404 (Not Found) or to suppress the listing of possible
choices if the request address was ambiguous.

Example response to a request with the URLlee@example.com :

485 Ambiguous SIP/2.0
Contact: Carol Lee <sip:carol.lee@example.com>
Contact: Ping Lee <sip:p.lee@example.com>
Contact: Lee M. Foote <sip:lee.foote@example.com>

Some email and voice mail systems provide this functionality. A status code separate from 3xx is used since
the semantics are different: for 300, it is assumed that the same person or service will be reached by the choices
provided. While an automated choice or sequential search makes sense for a 3xx response, user intervention is
required for a 485 response.

11.4.22 486 Busy Here

The callee’s end system was contacted successfully but the callee is currently not willing or able to take
additional calls at this end system. The responseMAY indicate a better time to call in theRetry-After
header. The user could also be available elsewhere, such as through a voice mail service, thus, this response
does not terminate any searches. Status 600 (Busy Everywhere)SHOULD be used if the client knows that no
other end system will be able to accept this call.

11.4.23 487 Request Terminated

The request was terminated by aBYE or CANCEL request. This response is never returned for aCANCEL
request itself.

11.4.24 488 Not Acceptable Here

The response has the same meaning as 606 (Not Acceptable), but only applies to the specific entity addressed
by theRequest-URI and the request may succeed elsewhere.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 69]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

11.5 Server Failure 5xx

5xx responses are failure responses given when a server itself has erred. They are not definitive failures, and
MUST NOT terminate a search if other possible locations remain untried.

11.5.1 500 Server Internal Error

The server encountered an unexpected condition that prevented it from fulfilling the request. The clientMAY

display the specific error condition, andMAY retry the request after several seconds.
If the condition is temporary, the serverMAY indicate when the client may retry the request using the

Retry-After header.

11.5.2 501 Not Implemented

The server does not support the functionality required to fulfill the request. This is the appropriate response
when a UAS does not recognize the request method and is not capable of supporting it for any user. (Proxies
forward all requests regardless of method.)

11.5.3 502 Bad Gateway

The server, while acting as a gateway or proxy, received an invalid response from the downstream server it
accessed in attempting to fulfill the request.

11.5.4 503 Service Unavailable

The server is currently unable to handle the request due to a temporary overloading or maintenance of the
server. The implication is that this is a temporary condition which will be alleviated after some delay. If
known, the length of the delayMAY be indicated in aRetry-After header. If noRetry-After is given, the
client MUST handle the response as it would for a 500 response.

Note: The existence of the 503 status code does not imply that a server has to use it when becoming
overloaded. Some serversMAY wish to simply refuse the connection.

11.5.5 504 Server Time-out

The server did not receive a timely response from the server (e.g., a location server) it accessed in attempting
to process the request. Note that 408 (Request Timeout) should be used if there was no response within the
period specified in theExpires header field from the upstream server.

11.5.6 505 Version Not Supported

The server does not support, or refuses to support, the SIP protocol version that was used in the request
message. The server is indicating that it is unable or unwilling to complete the request using the same major
version as the client, other than with this error message. The responseMAY contain an entity describing why
that version is not supported and what other protocols are supported by that server. The format for such an
entity is not defined here and may be the subject of future standardization.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 70]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

11.5.7 513 Message Too Large

The server was unable to process the request since the message length exceeded its capabilities.

11.6 Global Failures 6xx

6xx responses indicate that a server has definitive information about a particular user, not just the particular
instance indicated in theRequest-URI. All further searches for this user are doomed to failure and pending
searchesSHOULD be terminated.

11.6.1 600 Busy Everywhere

The callee’s end system was contacted successfully but the callee is busy and does not wish to take the call
at this time. The responseMAY indicate a better time to call in theRetry-After header. If the callee does
not wish to reveal the reason for declining the call, the callee uses status code 603 (Decline) instead. This
status response is returned only if the client knows that no other end point (such as a voice mail system) will
answer the request. Otherwise, 486 (Busy Here) should be returned.

11.6.2 603 Decline

The callee’s machine was successfully contacted but the user explicitly does not wish to or cannot partici-
pate. The responseMAY indicate a better time to call in theRetry-After header.

11.6.3 604 Does Not Exist Anywhere

The server has authoritative information that the user indicated in theTo request field does not exist any-
where. Searching for the user elsewhere will not yield any results.

11.6.4 606 Not Acceptable

The user’s agent was contacted successfully but some aspects of the session description such as the requested
media, bandwidth, or addressing style were not acceptable.

A 606 (Not Acceptable) response means that the user wishes to communicate, but cannot adequately sup-
port the session described. The 606 (Not Acceptable) responseMAY contain a list of reasons in aWarning
header field describing why the session described cannot be supported. Reasons are listed in Section 10.47.
It is hoped that negotiation will not frequently be needed, and when a new user is being invited to join an
already existing conference, negotiation may not be possible. It is up to the invitation initiator to decide
whether or not to act on a 606 (Not Acceptable) response.

12 SIP Message Body

12.1 Body Inclusion

RequestsMAY contain message bodies unless otherwise noted. In this specification, theCANCEL request
MUST NOT contain a message body.

The use of message bodies forREGISTER requests is for further study.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 71]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

For response messages, the request method and the response status code determine the type and interpre-
tation of any message body. All responsesMAY include a body. Message bodies for 1xx responses contain
advisory information about the progress of the request. 1xx responses toINVITE requestsMAY contain
session descriptions. Their interpretation depends on the response status code, but generally informs the
caller what kind of session the callee is likely to establish, subject to later modification in the 2xx response.
Request methods not defined in this specificationMAY also contain session descriptions. 2xx responses to
INVITE requests contain session descriptions. In 3xx responses, the message bodyMAY contain the descrip-
tion of alternative destinations or services, as described in Section 11.3. For responses with status 400 or
greater, the message bodyMAY contain additional, human-readable information about the reasons for fail-
ure. It isRECOMMENDED that information in 1xx and 300 and greater responses be of typetext/plain
or text/html .

12.2 Message Body Type

The Internet media type of the message bodyMUST be given by theContent-Type header field. If the body
has undergone any encoding (such as compression) then thisMUST be indicated by theContent-Encoding
header field, otherwiseContent-Encoding MUST be omitted. If applicable, the character set of the message
body is indicated as part of theContent-Type header-field value.

The “multipart” MIME type [38]MAY be used within the body of the message. Clients that send requests
containing multipart message bodiesMUST be able to send a session description as a non-multipart message
body if the server requests this through anAccept header field.

12.3 Message Body Length

The body length in bytesSHOULD be given by theContent-Length header field. Section 10.18 describes
the behavior in detail.

The “chunked” transfer encoding of HTTP/1.1MUST NOT be used for SIP. (Note: The chunked encoding
modifies the body of a message in order to transfer it as a series of chunks, each with its own size indicator.)

13 Compact Form

When SIP is carried over UDP with authentication and a complex session description, it may be possible
that the size of a request or response is larger than the MTU. To address this problem, a more compact form
of SIP is also defined by using abbreviations for the common header fields listed below:

short field name long field name note
c Content-Type
e Content-Encoding
f From
i Call-ID
k Supported from “know”
l Content-Length
m Contact from “moved”
s Subject
t To
v Via

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 72]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

Thus, the message in section 20.2 could also be written:

INVITE sip:bob@example.com SIP/2.0
v:SIP/2.0/UDP 131.215.131.131;maddr=239.128.16.254;ttl=16
v:SIP/2.0/UDP 216.112.6.38
f:sip:alice@wonderland.com
t:sip:bob@example.com
m:sip:alice@mouse.wonderland.com
i:62729-27@216.112.6.38
c:application/sdp
CSeq: 4711 INVITE
l:187

v=0
o=user1 53655765 2353687637 IN IP4 128.3.4.5
s=Mbone Audio
i=Discussion of Mbone Engineering Issues
e=mbone@somewhere.com
c=IN IP4 224.2.0.1/127
t=0 0
m=audio 3456 RTP/AVP 0
a=rtpmap:0 PCMU/8000

ClientsMAY mix short field names and long field names within the same request. ServersMUST accept
both short and long field names for requests. ProxiesMAY change header fields between their long and short
forms, but thisMUST NOT be done to fields following anAuthorization header.

14 Behavior of SIP Clients and Servers

14.1 Multicast Unreliable Transport Protocols

RequestsMAY be multicast; multicast requests likely feature a host-independentRequest-URI. This request
SHOULD be scoped to ensure it is not forwarded beyond the boundaries of the administrative scope. This
MAY be done with either TTL or administrative scopes [27], depending on what is implemented in the
network.

A client receiving a multicast query does not have to check whether thehost part of theRequest-
URI matches its own host or domain name. If the request was received via multicast, the responseMUST be
returned to the address listed in themaddr parameter of theVia header field. (This parameter isREQUIRED.)
Generally, this will be a multicast address. Such multicast responses are multicast with the same TTL as the
request, where the TTL is derived from thettl parameter in theVia header (Section 10.46).

To avoid response implosion, serversMUST NOT answer multicast requests with a status code other than
2xx, 401, 407, 484 or 6xx. The server delays its response by a random interval uniformly distributed between
zero and one second. ServersMAY suppress responses if they hear a lower-numbered or 6xx response from
another group member prior to sending. Servers do not respond toCANCEL requests received via multicast
to avoid request implosion. A proxy or UACSHOULD send aCANCEL on receiving the first 2xx, 401, 407

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 73]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

or 6xx response to a multicast request.

Server response suppression is aMAY since it requires a server to violate some basic message processing rules.
Lets say A sends a multicast request, and it is received by B, C, and D. B sends a 200 response. The topmostVia
field in the response will contain the address of A. C will also receive this response, and could use it to suppress its
own response. However, C would normally not examine this response, as the topmostVia is not its own. Normally,
a response received with an incorrect topmostVia MUST be dropped, but not in this case. To distinguish this packet
from a misrouted or multicast looped packet is fairly complex, and for this reason the procedure is aMAY . The
CANCEL, instead, provides a simpler and more standard way to perform response suppression. It is for this reason
that the use ofCANCEL here is aSHOULD.

14.2 Reliable Transport Protocols

A single reliable transport connection such as TCP can serve one or more SIP transactions. A transaction
contains zero or more provisional responses followed by one or more final responses. (Typically, trans-
actions contain exactly one final response, but there are exceptional circumstances, where, for example,
multiple 200 responses can be generated.) The clientSHOULD keep the connection open at least until the
first final response arrives.

The serverSHOULD NOT close the connection until it has sent its final response (and possibly received
the ACK), at which point itMAY close the TCP connection if it wishes to. However, normally it is the
client’s responsibility to close the connection.

If the server leaves the connection open, and if the client so desires itMAY re-use the connection for
further SIP requests. These requests can be for the same transaction or call, or for totally different trans-
actions or calls. There is no requirement that a transaction must complete before a new one is initiated on
an existing connection. As a result, a serverMUST support receiving a request for a new transaction on an
existing connection before the previous transaction on the same connection has completed.

If a server needs to return a response to a client and no longer has a connection open to that client, itMAY

open a connection to the address listed in theVia header. Thus, a proxy or user agentMUST be prepared to
receive both requests and responses on a “passive” connection.

14.3 Reliability for Requests Other ThanINVITE

14.3.1 Unreliable Transport Protocols

A SIP client using an unreliable transport protocol such as UDPSHOULD retransmit requests other than
INVITE or ACK with an exponential backoff, starting at aT1 second interval, doubling the interval for
each packet, and capping off at aT2 second interval. This means that after the first packet is sent, the
second is sentT1 seconds later, the next2 ∗ T1 seconds after that, the next4 ∗ T1 seconds after that, and
so on, until the interval reachesT2. Subsequent retransmissions are spaced byT2 seconds. If the client
receives a provisional response, it continues to retransmit the request, but with an interval ofT2 seconds.
Retransmissions cease when the client has sent a total of eleven packets, or receives a definitive response.
Default values forT1 andT2 are 500 ms and 4 s, respectively. ClientsMAY use larger values, butSHOULD

NOT use smaller ones. Servers retransmit the response upon receipt of a request retransmission. After the
server sends a final response, it cannot be sure the client has received the response, and thusSHOULD cache
the results for at least10 ∗ T2 seconds to avoid having to, for example, contact the user or location server
again upon receiving a request retransmission.

Use of the exponential backoff is for congestion control purposes. However, the back-off must cap off, since
request retransmissions are used to trigger response retransmissions at the server. Without a cap, the loss of a single

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 74]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

response could significantly increase transaction latencies.
The value of the initial retransmission timer is smaller than that that for TCP since it is expected that network

paths suitable for interactive communications have round-trip times smaller than 500 ms. For congestion control
purposes, the retransmission count has to be bounded. Given that most transactions are expected to consist of one
request and a few responses, round-trip time estimation is not likely to be very useful. If RTT estimation is desired
to more quickly discover a missing final response, each request retransmission needs to be labeled with its own
Timestamp (Section 10.42), returned in the response. The server caches the result until it can be sure that the client
will not retransmit the same request again.

Each server in a proxy chain generates its own final response to aCANCEL request. The server responds
immediately upon receipt of theCANCEL request rather than waiting until it has received final responses
from theCANCEL requests it generates.

BYE and OPTIONS final responses are generated by redirect and user agent servers;REGISTER
final responses are generated by registrars. Note that in contrast to the reliability mechanism described in
Section 14.4, responses to these requests arenot retransmitted periodically andnotacknowledged viaACK.

14.3.2 Reliable Transport Protocol

Clients using a reliable transport protocol such as TCP, SCTP or TLS donotneed to retransmit requests, but
MAY give up after receiving no response for an extended period of time.

14.4 Reliability for INVITE Requests

Special considerations apply for theINVITE method.

1. After receiving an invitation, considerable time can elapse before the server can determine the out-
come. For example, if the called party is “rung” or extensive searches are performed, delays between
the request and a definitive response can reach several tens of seconds. If either caller or callee are
automated servers not directly controlled by a human being, a call attempt could be unbounded in
time.

2. If a telephony user interface is modeled or if we need to interface to the PSTN, the caller’s user
interface will provide “ringback”, a signal that the callee is being alerted. (The status response 180
(Ringing)MAY be used to initiate ringback.) Once the callee picks up, the caller needs to know so that
it can enable the voice path and stop ringback. The callee’s response to the invitation could get lost.
Unless the response is transmitted reliably, the caller will continue to hear ringback while the callee
assumes that the call exists.

3. The client has to be able to terminate an on-going request, e.g., because it is no longer willing to wait
for the connection or search to succeed. The server will have to wait several retransmission intervals
to interpret the lack of request retransmissions as the end of a call. If the call succeeds shortly after
the caller has given up, the callee will “pick up the phone” and not be “connected”.

14.4.1 Unreliable Transport Protocols

A SIP client using an unreliable transport protocolSHOULD retransmit a SIPINVITE request with an interval
that starts atT1 seconds, and doubles after each packet transmission. The client ceases retransmissions if
it receives a provisional or definitive response, or once it has sent a total of seven request packets. If no
response (final or provisional) is received after sending seven request packets, processing continues as if a

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 75]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

481 response was received for that request (noACK is generated, however), and aCANCEL SHOULD NOT

be sent.
A server which transmits a provisional response should retransmit it upon reception of a duplicate re-

quest. A server which transmits a final response should retransmit it with an interval that starts atT1 seconds,
and doubles for each subsequent packet until it reachesT2 seconds. Response retransmissions cease when
an ACK request is received or the response has been transmitted seven times. The entity generating the
ACK (a UAC for 2xx responses, UAC or proxy for non-2xx) retransmits theACK on receipt of a response
retransmission. The value of a final response is not changed by the arrival of aBYE or CANCEL request.

ServersSHOULD only send a single 401 or 407 status response upon receiving a request that is not
authenticated at either the SIP, transport or network layer. (See Section 18.4)

Only the user agent client generates anACK for 2xx final responses, If the response contained aContact
header field, theACK MAY be sent to the address listed in thatContact header field. If the response did
not contain aContact header, the client uses the sameTo header field andRequest-URI as for theINVITE
request and sends theACK to the same destination as the originalINVITE request.ACKs for final responses
other than 2xx are sent to the same server that the original request was sent to, using the sameRequest-URI
as the original request. Note, however, that theTo header field in theACK is copied from the response being
acknowledged, not the request, and thusMAY additionally contain thetag parameter. Also note than unlike
2xx final responses, a proxy generates anACK for non-2xx final responses.

Fig. 10 and 11 show the client and server state diagram forINVITE transactions. The “terminated” event
occurs if the server receives either aCANCEL or BYE request. Note that the state diagram only shows the
behavior for theINVITE transaction; the responses forBYE andCANCEL are not shown and follow the
rules laid in Section 14.3.

The mechanism in Sec. 14.3 would not work well forINVITE because of the long delays betweenINVITE and
a final response. If the 200 response were to get lost, the callee would believe the call to exist, but the voice path
would be dead since the caller does not know that the callee has picked up. Thus, theINVITE retransmission interval
would have to be on the order of a second or two to limit the duration of this state confusion. Retransmitting the
response with an exponential back-off helps ensure that the response is received, without placing an undue burden
on the network.

14.4.2 Reliable Transport Protocol

A user agent using a reliable transport protocol such as TCP, SCTP or TLSMUST NOT retransmit requests,
but uses the same algorithm as for unreliable transport protocols (Section 14.4.1) to retransmit responses
until it receives anACK. A client MAY give up on the request if there is no response within a client-defined
timeout interval.

It is necessary to retransmit 2xx responses as their reliability is assured end-to-end only. If the chain of proxies
has an unreliable transport protocol link in the middle, it could lose the response, with no possibility of recovery.
For simplicity, we also retransmit non-2xx responses, although that is not strictly necessary.

14.5 ICMP Handling

Handling of ICMP messages in the case of unreliable transport protocol messages is straightforward. For
requests, a host, network, port, or protocol unreachable errorSHOULD be treated as if a 400-class response
was received. For responses, these errorsSHOULD cause the server to cease retransmitting the response.

Source quench ICMP messagesSHOULD be ignored. TTL exceeded errorsSHOULD be ignored. Param-
eter problem errorsSHOULD be treated as if a 400-class response was received.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 76]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

ACK
status

INVITE

−

ACK

ACK
status

status

request sent
event

Calling

Initial

1xx

1xx

Call proceeding

INVITE
T1*2

n

7 INVITE sent

Completed

Figure 10: State transition diagram of client forINVITE method

15 Behavior of SIP User Agents

This section describes the rules for user agent client and servers for generating and processing requests and
responses.

15.1 Caller Issues InitialINVITE Request

When a user agent client desires to initiate a call, it formulates anINVITE request. TheTo field in the request
contains the address of the callee, and remains unaltered as the request traverses proxies. TheRequest-URI
contains the same address, but may be rewritten by proxies. TheFrom field contains the address of the
caller. It MUST contain atag. A UAC MUST add aContact header containing an address where it would
like to be contacted for transactions from the callee back to the caller.

If the UAC desires to end the call before a response is received to theINVITE, it SHOULD send a
CANCEL. This CANCEL will normally result in a 487 response to be returned to theINVITE, indicating
successful cancellation. However, it is possible that theCANCEL and a 200 class response to theINVITE
“pass on the wire”. In this case, the UAC will receive a 2xx to theINVITE. It then terminates the call by
following the procedures described in Section 15.4.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 77]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

Completed

1xx

ACK
−

−

INVITE

failure

n
min(T1*2 , T2)

1xx

487

ACK

>= 300

INVITE
status

status change

status

2xx

−

32s

−

INVITE

terminated

event
message sent

1xx

32s

Initial

Proceeding

Confirmed

Failure Success
INVITE

callee picks up
2xx

Figure 11: State transition diagram of server forINVITE method

15.2 Callee Issues Response

When the initialINVITE request is received at the callee, the callee can accept, redirect, or reject the call.
In all of these cases, it formulates a response. The responseMUST copy theTo, From, Call-ID, CSeq and
Via fields from the request. Additionally, the responding UASMUST add thetag parameter to theTo field
in the response. Since a request from a UAC may fork and arrive at multiple hosts, thetag parameter serves
to distinguish, at the UAC, multiple responses from different UAS’s.

The UAS MUST add aContact header field in the response. It contains an address where the callee
would like to be contacted for subsequent transactions, including theACK for the currentINVITE. The UAS
stores the values of theTo andFrom field, including tags. These become the local and remote addresses of
the call leg, respectively.

15.3 Caller Receives Response to Initial Request

Multiple responses may arrive at the UAC for a singleINVITE request, due to a forking proxy. Each
response is distinguished by the “tag” parameter in theTo header field, and each represents a distinct call
leg, with a distinct call leg identifier. The call leg identifier is defined as the combination of the remote
address, local address, andCall-ID. The local address is the value of theFrom field, including thetag, in
the 2xx responses (they will all be the same). The remote address is the value of theTo field, including the
tag. Each 2xx response to theINVITE will differ in the value of the tag in theTo field.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 78]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

The UACMUST generate anACK request for each distinct call leg created by a 2xx. TheRequest-URI
andRoute headers for theACK are constructed as described in Section 16.4. TheTo field in theACK
MUST contain the remote address for the call leg (which includes the tag). TheFrom field in the ACK
MUST contain the local address for the call leg. TheCall-ID MUST contain theCall-ID for the call leg.
TheVia header in theACK MUST be indentical to the one in the request being acknowledged, including any
branch parameter. TheCSeq numberMUST be the same as theINVITE being acknowledged, but theCSeq
methodMUST beACK. TheACK might possibly require a session description in the body. See Section B
for guidelines.

After acknowledging, the callerMAY choose to terminate the call leg with a responding UAS by sending
aBYE request. Procedures for doing so are defined in Section 15.4.

15.4 Caller or Callee Generate Subsequent Requests

Once the call has been established, either the caller or calleeMAY generateINVITE or BYE requests to
change or terminate the call. ItMAY initiate other requests as needed. A UAMUST NOT initiate a new
INVITE transaction within a call leg while one is in progress. A UAMUST NOT initiate a new regular
transaction while a regular transaction is in progress. However, a UAMAY initiate a regular transaction
while anINVITE transaction on the same call leg is in progress.

Regardless of whether the caller or callee is generating the new request, the header fields in the request
are set as follows. For the desired call leg, theTo header field is set to the remote address, and theFrom
header field is set to the local address (both including tags). A UAC copies the tag from the final response
into theACK, but it MUST NOT copy the tag into any subsequent requests unless the response was a 200-
class response to anINVITE request. TheTo field of CANCEL requests always contain exactly the same
value as the request it is cancelling.

For an INVITE, the Contact header fieldMAY be different than theContact header field sent in a
previous response or request.

The callee’s requests use the caller’sTo header field value as theFrom header value and theFrom header
field value as theTo header field value.

The network destination andRequest-URI of requests is determined according to the following rules:

• If the response from the previous request contained aRecord-Route header field, the UAC sends
the request to the last entry in the list and removes that entry. As described in Section 10.34, the
Request-URI is set to that value.

• Otherwise, if the response for the previous request contained aContact header field, the request is
directed to the host and port identified there. TheRequest-URI is set to the value of theContact
header. The request does not contain aRoute header field in this case.

• Otherwise, theRequest-URI contains the same URL as theTo header.

If the UAC is configured with the address of an outbound proxy server, the UAC sends the request there,
independent of theRequest-URI. The outbound proxy isNOT named in theRequest-URI. If there is no
outbound proxy server, theRequest-URI determines the network destination.

If a UAC does not support DNS resolution or the fullRecord-Route/Route mechanism, itMAY send
all requests to a locally configured outbound proxy. In that case, that proxy behaves as described above. The
UAC MUST, however, perform the mapping ofRecord-Route to Route header fields andMUST includeall
Route header fields, i.e., the UAC does not remove the firstRoute header field.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 79]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

15.5 Receiving Subsequent Requests

When a request is received during a call, the following checks are made:

1. If theCall-ID is new, the request is for a new call, regardless of the values of theTo andFrom header
fields.

It is possible that theTo header in anINVITE request has a tag, but the UAS believes this to be a new
call. This will occur if the UAS crashed and rebooted in the middle of a call, and the UAC has sent
what it believes to be a re-INVITE. The UASMAY either accept or reject the request. Accepting the
request provides robustness, so that calls can persist even through crashes. UAs wishing to support
this capability must choose monotonically increasingCSeq numbers even across reboots. This is
because subsequent requests from the crashed-and-rebooted UA towards the other UA need to have a
CSeq number higher than previous requests in that direction.

Note also that the crashed-and-rebooted UA will have lost anyRoute headers which would need to
be inserted into a subsequent request. Therefore, it is possible that the requests may not be properly
forwarded by proxies.

RTP media agents allowing restarts need to be robust by accepting out-of-range timestamps and sequence
numbers.

If the UAS wishes to reject theINVITE, because it does not wish to recreate the call, itMUST respond
to the request with a 481 status code. A UAC receiving a 481 response for any mid-call request
(INVITE or otherwise)MUST consider that call terminated.

2. If the To, From, Call-ID, CSeq, Request-URI, and branch-ID in the topmostVia exactly match
(including tags) those of any requests received previously, the request is a retransmission.

3. If there was no match to the previous step, theTo andFrom fields are compared against existing call
leg local and remote addresses. If there is a match, and theCSeq in the request is higher than the last
CSeq received on that leg, the request is a new transaction for an existing call leg. It is possible for
theCSeq header to be higher than the previous by more than one. This is not an error condition, and
a UASSHOULD be prepared to receive and process requests withCSeq values more than one higher
than the previous received request. A request on an existing call leg with a lowerCSeq MUST be
rejected.

16 Routing of Requests

Record routing is the process whereby a proxy server can request to receive all messages between two UAs
for a particular call leg. The proxy accomplishes this by inserting a header, calledRecord-Route into the
initial request that begins the call leg. The user agents use these headers to construct a set ofRoute headers,
that gets inserted into subsequent requests in the call leg. TheRoute headers contain a set of proxies that
the request must visit on its way from one UA to another. Proxies use these to forward the requests, much
like strict IP source routing.

The process of record-routing works for any SIP request that initiates some kind of session. For this
specification, that includes onlyINVITE. ExtensionsMAY identify new requests as ones which initiate ses-
sions, in which case the procedures defined here apply to processing of those requests.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 80]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

All user agentsMUST support the processing rules below which apply to them. As such, theyMUST be
able to parse and process bothRecord-Route andRoute headers. ProxiesMAY support the record routing
procedures of Section 16.3, but theyMUSTsupport the route header procedures of Sectionsec:rr:proxy2.

This is a change from RFC2543, where all record-route and route processing was optional for user agents.

The syntax for theRoute header is described in Section 10.38. The syntax for theRecord-Route
header is described in Section 10.34.

16.1 UAC Processing for initial transaction

The UAC formulates itsinitial request for the session as defined in section 15.1. If the final response is a
200 class response, it may containRecord-Route headers, and may contain aContact header.

Contact was not mandatory in RFC2543. Thus, if the UAC is talking to an older UAS, the UAS might not insert
theContact header. Thus, this text says that theContact “may” be present in the response. Note also that this may
is lower case; it is NOT saying that a UAS compliant to this specification can optionally insert theContact header
into the 200-class response.

The UACMUST construct aroute set, defined as a list of URIs, in the following manner:

1. The list of URIs present in theRecord-Route headers in the 200 class response are taken, if present,
and their order is reversed.

2. The URI in theContact header from the 200 class response, if present, is taken, and appended to the
end of the list from the previous step.

3. The list of URIs resulting from the above two operations is referred to as theroute set.

The UACMUST store the route set for the duration of the call leg. NOTE that it is possible for the route
set to be empty. This will occur if neitherRecord-Route headers nor aContact header were present in the
200 class response. Since there may be multiple 200 OK responses to anINVITE request, each response
constitutes a separate call leg, and thus has a separate route set. The UACMUST also remember whether the
bottom-most entry in the route set was constructed from aContact header or not. This is a boolean value,
which we refer to as CONTACTSET.

An ACK request for the 200 class response to an initialINVITE transactionMUST be formulated ac-
cording to the rules of Section 15.3, as if it were a subsequent request within the call leg. That is, theACK
for a 200 class response containsRoute headers.

Record-Route headersMAY be present in a provisional response toINVITE. In this case, the UAC can
construct a route set for the call-leg associated with that provisional response, in the same way it would
construct a route set for a 200 class response. This route set will only be needed if the UAC sends a request
to the far end of the call leg before the initialINVITE transaction completes.

16.2 UAS Processing of initial transaction

When a UAS receives a request for a new call session, and it responds with a 200 class response, itMUST
copy the contents of theRecord-Route headers from the request to the response. This includes the URIs,
URI parameters, and anyRecord-Route header parameters, whether they are known or unknown to the
UAS.

Record-Route parameters are very useful for proxies. They allow the proxy to match the record-route entry in
the response with the one in the request.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 81]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

The order of theRecord-Route headersMUST be preserved in the response.
The UASMUST construct aroute setin the following manner:

1. The list of URIs in theRecord-Route headers in the initial request, if present, are taken, including
any URI parameters.

2. The URI in theContact header from the request, if present, is taken, including any URI parameters.
The URI is appended to the bottom of the list of URIs from the previous step.

3. The resulting list of URIs is called theroute set.

The UASMUST store the route set for the duration of the call leg. It is possible for the route set to be
empty. This will occur if neitherRecord-Route headers nor aContact header were present in the initial
request. The UASMUST also remember whether the bottom-most entry in the route set was constructed
from aContact header or not. This is effectively a boolean value, which we refer to as CONTACTSET.

If the UAS sends provisional responses before the session is accepted, itSHOULD copy theRecord-
Route headers from the request into the provisional responses in the same manner described above for the
200 class response.

16.3 Proxy procedures for record routing a transaction

Each proxyMAY independently decide to record-route a transaction that initiates a session. Amongst the
methods defined in this specification, that includes only theINVITE transaction. However, extensionsMAY

designate new methods as ones that initiate a session of some sort. In that case, the procedures described
here apply to those requests. Both the initial request that initiates the session, and any refreshes (such as a
re-INVITE) MUST be record-routed if the the initial request was record routed. This means a proxy will often
need to record-route requests that containRoute headers. Generally, the choice about whether to record-
route or not is a tradeoff of features vs. performance. Faster request processing and higher scalability is
achieved when proxies do not record route. However, provision of certain services may require a proxy to
observe all messages for a call leg. It isRECOMMENDED that proxies do not automatically record route.
They should do so only if specifically required.

To record-route, the proxy inserts aRecord-Route header into the request before proxying it onwards.
A forking proxy MAY insert a differentRecord-Route header into each forked request. TheRecord-Route
header that it insertsMUST be inserted as the firstRecord-Route header, appearing before any existing ones
in the request. The URL in the headerMUST be a SIP URL. . The URLMUST NOTcontain the transport
parameter. The URLMUST have the property that when the processing described in [35] is followed for that
URL, the result of the lookup is an address/port of the proxy server inserting theRecord-Route. The URL
and the proxy configurationSHOULD be such that if a request is received with this URL in theRequest-
URI, the proxy’s normal request processing will cause it to be forwarded to one of the previous-hop servers
that the request traversed, including the UAS.

These two properties are important. The first one guarantees that subsequent requests from the called party are
routed back to this actually proxy. The second property is there for robustness. It guarantees that the request URI
always contain meaningful information, even if there are noRoute headers that tell the proxy where to forward the
request to next.

The URL placed into theRecord-Route headerMUST be unique for each uniqueRequest-URI in the
request, but must not equal theRequest-URI of the request (they will not be equal if the proxy adds an
maddr parameter). The proxyMAY insertRecord-Route header parameters into the request. These will
be returned to the proxy in any 200 class response to theINVITE, and are useful for pushing state into the
message.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 82]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

If a 200 class response arrives for the proxied request, the response will contain the entire list ofRecord-
Route headers inserted by proxies along the request path. The proxyMAY modify theRecord-Route value
matching the one it inserted into the request. Like the URL in the request, itMUST be a SIP URL andMUST

NOTcontain a transport parameter. The URL in thisRecord-Route headerMUST have the property that
when the processing described in [35] is followed for that URL, the result of the lookup is an address/port
of the proxy server that inserted theRecord-Route. The URL in this header, and the proxy configuration
SHOULD be such that if a request is received with this URL in theRequest-URI, the proxy’s normal request
processing will cause it to be forwarded to the same next hop server that the original request was forwarded
to. The URL placed into theRecord-Route headerMUST be unique for each uniqueRequest-URI in the
request, but must not equal theRequest-URI of the request (they will not be equal if the proxy adds an
maddr parameter).

The four properties (two for the request, two for the response), can be satisfied in a number of ways. One
way is that the URL inserted into theRecord-Route in the request is nearly the same as theContact header
in the initial request (if present, else theFrom field), but with the maddr and port set to resolve to the proxy,
and with a transaction identifier added to the user part of the request-URI (in order to meet the requirement
that the URI in theRecord-Route be different for each distinctRequest-URI). Then, the proxy modifies
the URL in theRecord-Route header in the response, setting it to be the URL from theRequest-URI of
the initial request, but with the maddr and port set to resolve to the proxy.

As an example, consider a proxy at 10.0.1.1 listening on port 5061 which receives the following request
(many headers are omitted for brevity):

INVITE sip:user@example.com SIP/2.0
Via: SIP/2.0/UDP callerspc.univ.edu
Contact: sip:caller@callerspc.univ.edu

The proxy forwards this request tosip:j user@div11.example.com , and record-routes:

INVITE sip:j_user@div11.example.com SIP/2.0
Via: SIP/2.0/UDP 10.0.1.1:5061
Via: SIP/2.0/UDP callerspc.univ.edu
Record-Route: <sip:caller.8jjs0@callerspc.univ.edu:5061;maddr=10.0.1.1>
Contact: sip:caller@callerspc.univ.edu

The 200 response received by the proxy will look like, in part:

SIP/2.0 200 OK
Via: SIP/2.0/UDP 10.0.1.1:5061
Via: SIP/2.0/UDP callerspc.univ.edu
Record-Route: <sip:caller.8jjs@callerspc.univ.edu:5061;maddr=10.0.1.1>
Contact: sip:j_user@host32.div11.example.com

The proxy modifies itsRecord-Route header in the response, resulting in the new response forwarded
upstream:

SIP/2.0 200 OK

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 83]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

Via: SIP/2.0/UDP callerspc.univ.edu
Record-Route: <sip:j_user@example.com:5061;maddr=10.0.1.1>
Contact: sip:j_user@host32.div11.example.com

The route set computed by the UAS is:

sip:caller.8jjs@callerspc.univ.edu:5061;maddr=10.0.1.1
sip:caller@callerspc.univ.edu

and the route set computed by the UAC is:

sip:j_user@example.com:5061;maddr=10.0.1.1
sip:j_user@host32.div11.example.com

There are other ways to meet these requirements. The proxy could construct a URL for the request which
encodes all of the needed information, by placing it in the user portion, for example. A call stateful proxy
could insert a URL into the request with the form sip:proxy.example.com, and not modify it in the response.
This URL clearly satisfies the first required property (of getting routed back to the proxy that inserted it).
The second property can be maintained by being call stateful, and extracting the needed parameters from
local storage.

When a proxy does decide to modify theRecord-Route header in the response, one of the operations
it must perform is to locate theRecord-Route that it had inserted. If the request spiraled, and the proxy
inserted aRecord-Route in each iteration of the spiral, locating the correct header in the response (which
must be the proper iteration in the reverse direction) is tricky. Note that the rules above dictate that a proxy
insert a different URI into theRecord-Route for each distinctRequest-URI received. The two issues
can be solved jointly. ARECOMMENDED mechanism is for the proxy to append a piece of data to the user
portion of the URL. This piece of data is a hash of the transaction key for the incoming request, concatenated
with a unique identifier for the proxy instance. Since the transaction key includes theRequest-URI, this
key will be unique for each distinctRequest-URI. When the response arrives, the proxy modifies the first
Record-Route whose identifier matches the proxy instance. The modification results in a URI without this
piece of data appended to the user portion of the URI. Upon the next iteration, the same algorithm (find the
topmostRecord-Route header with the parameter) will correctly extract the nextRecord-Route header
inserted by that proxy.

16.4 UA Processing of Subsequent Requests in a Call Leg

When a UA wishes to send another request for the call-leg (such as aBYE or INVITE), it follows the
procedures defined in this subsection. The procedures hereMUST also be followed for anACKrequest
for a 200 response to the initialINVITE for a call leg. The procedures hereMUST NOTbe followed for a
CANCELrequest or anACKrequest for a non-200 class response. This implies thatCANCELfor an initial
INVITE never contains aRoute header, nor does anACKfor a non-200 response.

The request is constructed as specified in Section 15.4. The UA then takes the list of URI in the route set.
The top URI is inserted into the request URI of the request, including all parameters. Any URI parameters
not allowed in the request URIMUST then be stripped. Each of the remaining URIs (if any) from the route
set, including all URI parameters, are placed into aRoute header into the request, in order. The procedures

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 84]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

of [35] are then applied to the URI in the request URI, the the request is forwarded to the resulting server.
If a UAS has a route set for a call leg, and receives a refresh for that call leg containingRecord-Route

headers (the only refresh defined in this specification is a re-INVITE), it MUST copy those headers into any
200 class response to that request. If the boolean variable CONTACTSET is true, theContact header in
the request (if present) replaces the last entry in the route set. If the boolean variable CONTACTSET is
false, the UASMUST add the URL in theContact header in the re-INVITE to the bottom of the route set,
and then set CONTACTSET to true. If the request did not contain aContact header, the route-set at the
UAS remains unchanged.

Similarly, if a UAC has a route set for a call leg, and receives a 200 class response to a refresh it sent, the
Contact header is examined. If not present, the route set remains unchanged. If the response had aContact
header, and the boolean variable CONTACTSET is false, the URL in theContact header in the response
is added to the bottom of the route set, and CONTACTSET is set to true. If the re-INVITE response had
a Contact header, and CONTACTSET is true, the URL in theContact header of the re-INVITE response
replaces the bottom value in the route set.

The above two paragraphs allow a UA to update itsContact address mid-call, but proxies cannot update
their route address. Once on the route, a proxy remains on the route for the duration of the call leg.

Why the different treatment for Contact and Record-Route in a re-INVITE? It has to do with backwards com-
patibility. RFC2543 did not mandate that a proxy needs to refresh its record-route headers. As a result, the lack of a
record-route in a re-INVITE cannot be interpreted to mean that the proxy does not want to be included on the route
any longer. Updating of theContact header mid-call is useful for mobility applications, and is also useful for forms
of third party call control

.

16.4.1 Local outbound proxies

Special considerations exist for local outbound proxies.
A UA which uses a local outbound proxy will send all requests withoutRoute headers to that proxy.

Typically, this includes initialINVITE requests for a call.
If a local outbound proxy wishes to remain on the SIP messaging path for a call leg, itMUST record-route

using the procedures above. .
A UA which uses a local outbound proxy, and attempts to send a subequent request in a call leg with

a route set,SHOULD use the procedures in Section 16.4. However, in some instances, a UA may not be
capable of DNS, and therefore may not be able to follow those procedures. In this case, the UAMAY send
the request to its local outbound proxy. In this case, itMUST NOT remove the topRoute header. It sets the
Request-URI to the same value it used for the initial request, and sends it to its local outbound proxy.

16.5 Proxy routing procedures

The rules in this sectionMUST be followed by all proxies to determine the appropriate routing procedures to
apply to a request. ProxiesMAY respond to requests withRoute headers for any reason (in order to perform
proxy authorization, for example). But, if the request is to be proxied, the procedures hereMUST be used
to determine where the request is proxied to. The procedures in this section apply indepedent of the request
method. TheyMUST be followed even if the request method is unknown to the proxy. SinceCANCEL can
never containRoute, these procedures never apply toCANCEL. However, they do apply toACK requests
for a “200 OK” response, which do containRoute headers.

When a proxy receives a request, itMUST check for the existence of aRoute header. If one exists, it
MUST pop thatRoute header, and place it (including all URI parameters) into theRequest-URI. Any URL

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 85]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

parameters present in the topRoute header which are not allowed in the request URIMUST be removed
from theRequest-URI by the proxy.ItSHOULD be sent using the procedures of [35]. If noRoute header is
present, the proxy examines theRequest-URI. If it contains an maddr parameter, and the address in maddr
is not an interface that the proxy is listening on, the proxySHOULD forward the request using the procedures
of [35] on theRequest-URI. This will cause it to be forwarded to the address in the maddr. If the maddr
is present, but is an interface the proxy is listening on, the proxyMUST strip the maddr, and then continue
processing as if it were never there. If there was no maddr (or if it was stripped in the previous step), and
the domain of theRequest-URI is not a domain the proxy is managing, the procedures of [35]SHOULD be
used to forward the request to that URI. If the domain is one the proxy is managing, the request is processed
by whatever policies are desired by the administrator.

16.6 Pre-Loaded Route Headers

Normally, a UA constructs the Route headers in a request from the route set learned throughRecord-Route
headers. However, in some circumstances, it is useful for a UA to insertRoute headers into an initial
request. These headers may have been learnt by the UA through some out of bands means. When an
initial request (initial as far as the UAC and UAS are concerned) containsRoute headers, this is referred
to as a “pre-loaded Route”. It is equivalent to strict source routing in IP. Proxies will often not be able to
distinguish this case from the case described in Section 16.3, and will therefore properly use these route
headers to forward the request. If the proxies are interested in receiving subsequent messages for the call
leg, their insertion ofRecord-Route as mandated by Section 16.3 will establish a correct route set at both
UAC and UAS. This route set may end up being different from the pre-loaded Route used by the UAC. As
such, a UAC that inserts a pre-loaded route setMUST follow the procedures of Section 16.1 in processing
the response to this initialINVITE.

17 Behavior of SIP Proxy and Redirect Servers

This section describes behavior of SIP redirect and proxy servers in detail. Proxy servers can “fork” con-
nections, i.e., a single incoming request spawns several outgoing (client) requests.

17.1 Redirect Server

A redirect server does not issue any SIP requests of its own. After receiving a request other thanCANCEL,
the server gathers the list of alternative locations and returns a final response of class 3xx or it refuses the
request. For well-formedCANCEL requests, itSHOULD return a 2xx response. This response ends the SIP
transaction. The redirect server maintains transaction state for the whole SIP transaction. It is up to the
client to detect forwarding loops between redirect servers.

17.2 User Agent Server

User agent servers behave similarly to redirect servers, except that they also accept requests and can return
a response of class 2xx.

17.3 Proxy Server

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 86]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

This section outlines processing rules for proxy servers. A proxy server can either be stateful or stateless.
When stateful, a proxy remembers the incoming request which generated outgoing requests, and the out-
going requests. A stateless proxy forgets all information once an outgoing request is generated. A forking
proxy MUST be stateful. Proxies that accept TCP connectionsMUST be stateful when handling the TCP
connection. A proxy sending a request out to a multicast addressMUST be stateful.

Otherwise, if the proxy were to lose a request, the TCP client would never retransmit it.

A stateful proxySHOULD NOT become stateless until after it sends a definitive response upstream, and
at least 32 seconds after it received a definitive response.

A statefulproxy acts similar to a virtual UAS/UAC, but cannot be viewed as just a UAS and UAC glued
together at the back. (In particular, it does not originate requests exceptACK andCANCEL.) It implements
the server state machine when receiving requests, and the client state machine for generating outgoing
requests, with the exception of receiving a 2xx response to anINVITE. Instead of generating anACK, the
2xx response is always forwarded upstream towards the caller. Furthermore,ACK’s for 200 responses to
INVITE’s are always proxied downstream towards the UAS, as they would be for a stateless proxy.

A statelessproxy forwards every request it receives downstream, and every response it receives up-
stream.

17.3.1 Proxying Requests

A proxy serverMUST check for forwarding loops before proxying a request. A request has been looped if the
server finds its own address in theVia header fieldand the hash computation over the fields enumerated in
Section 10.46.6 yields the same value as the hash part of the “branch” parameter in theVia entry containing
the proxy server’s address.

A proxy serverMUST NOT forward a request to a multicast group which already appears in any of the
Via headers.

The proxy serverMUST copy all request header fields to the outgoing request. ItMAY add other header
fields.

A proxy server always inserts aVia header field containing its own address into those requests that are
caused by an incoming request. Each proxyMUST insert a “branch” parameter (Section 10.46).

Proxies other than outbound proxiesSHOULD change theRequest-URI to indicate the server where it
intends to send the request.

17.3.2 Proxying Responses

A proxy only processes a response if the topmostVia field matches one of its addresses (see Section 10.46).
A response with a non-matching topVia field MUST be dropped.

17.3.3 Stateless Proxy: Proxying Responses

A stateless proxyMUST follow the procedures in Section 10.46 in order to determine where to forward the
response to.

A stateless proxyMUST NOT generate its own provisional responses. ItMUST forward all provisional
responses, including 100, upstream.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 87]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

17.3.4 Stateful Proxy: Receiving Requests

When a stateful proxy receives a request, it checks theTo, From (including tags),Call-ID andCSeq against
existing request records. If the tuple exists, the request is a retransmission. The provisional or final response
sent previously is retransmitted, as per the server state machine. If the tuple does not exist, the request
corresponds to a new transaction, and the request should be proxied.

A stateful proxy serverMAY generate its own provisional (1xx) responses.

17.3.5 Stateful Proxy: ReceivingACKs

When anACK request is received, it is proxied unless the request’sTo (including the tag),From, CSeq
andCall-ID header fields match those of a (non-2xx) response sent by the proxy. In that case, the request is
processed locally and stops retransmissions of responses.

17.3.6 Stateful Proxy: Receiving Responses

When a proxy server receives a response that has passed theVia checks, the proxy server checks theTo
(without the tag),From (including the tag),Call-ID andCSeq against values seen in previous requests. If
there is no match, the response is forwarded upstream. If there is a match, the “branch” tag in theVia field
is examined. If it matches a known branch identifier, the response is for the given branch, and processed by
the virtual client for the given branch. Otherwise, the response is dropped.

A stateful proxy should obey the rules in Section 17.4 to determine if the response should be proxied
upstream. If it is to be proxied, the same rules for stateless proxies above are followed, with the following
addition for TCP. If a request was received via TCP (indicated by the protocol in the topVia header), the
proxy checks to see if it has a connection currently open to that address. If so, the response is sent on that
connection. Otherwise, a new TCP connection is opened to the address and port in theVia field, and the
response is sent there. Note that this implies that a UAC or proxyMUST be prepared to receive responses on
the incoming side of a TCP connection. Definitive non 200-class responsesMUST be retransmitted by the
proxy, even over a TCP connection.

17.3.7 Stateless, Non-Forking Proxy

Proxies in this category issue at most a single unicast request for each incoming SIP request, that is, they
do not “fork” requests. However, serversMAY choose to always operate in a mode that allows issuing of
several requests, as described in Section 17.4.

The server can forward the request and any responses. It does not have to maintain any state for the SIP
transaction. Reliability is assured by the next redirect or stateful proxy server in the server chain.

A proxy serverSHOULD cache the result of any address translations and the response to speed forward-
ing of retransmissions. After the cache entry has been expired, the server cannot tell whether an incoming
request is actually a retransmission of an older request. The server will treat it as a new request and com-
mence another search.

17.4 Forking Proxy

The server must respond to the request (other thanACK) immediately with a 100 (Trying) response if it
expects to take more than 200 ms to obtain a final response.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 88]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

Successful responses to anINVITE requestMAY contain aContact header field so that the following
ACK or BYE bypasses the proxy search mechanism. If the proxy requires future requests to be routed
through it, it adds aRecord-Route header to the request (Section 10.34).

The following C-code describes the behavior of a proxy server issuing several requests in response to
an incomingINVITE request with methodR which is to be proxied to a list ofN destination enumerated in
’address’, with an expiration time of ’expires’ seconds.

The function request(r, a, b) sends a SIP request of typer to addressa, with branch idb.
await response() waits until a response is received and returns the response.close(a) closes the
TCP connection to client with addressa. response(r) sends a response to the client.ismulticast()
returns 1 if the location is a multicast address and zero otherwise. The variabletimeleft indicates the
amount of time left until the maximum response time has expired. The variablerecurse indicates whether
the server will recursively try addresses returned through a 3xx response. A serverMAY decide to recur-
sively try only certain addresses, e.g., those which are within the same domain as the proxy server. Thus, an
initial multicast request can trigger additional unicast requests.

/* request type */
typedef enum {INVITE, ACK, BYE, OPTIONS, CANCEL, REGISTER} Method;

process_request(Method R, int N, address_t address[], int expires)
{

struct {
char *branch; /* branch token */
int branch_seq; /* branch sequence number part */
int done; /* has responded */

} outgoing[];
char *location[]; /* list of locations */
int heard = 0; /* number of sites heard from */
int class; /* class of status code */
int timeleft = expires; /* expiration value */
int loc = 0; /* number of locations */
struct { /* response */

int status; /* response: CANCEL=-1 */
int locations; /* number of redirect locations */
char *location[]; /* redirect locations */
address_t a; /* address of respondent */
char *branch; /* branch token */
int branch_seq; /* branch sequence number */

} r, best; /* response, best response */
int i;

best.status = 1000;
for (i = 0; i < N; i++) {

request(R, address[i], i);
outgoing[i].done = 0;
outgoing[i].branch = "";

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 89]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

outgoing[i].branch_seq = i;
}

while (timeleft > 0 && heard < N) {
r = await_response();
class = r.status / 100;

/* If final response, mark branch as done. */
if (class >= 2) {

heard++;
for (i = 0; i < N; i++) {

if (r.branch_seq == outgoing[i].branch_seq) {
outgoing[i].done = 1;
break;

}
}

}
/* CANCEL: respond, fork and wait for responses */
/* terminate INVITE with 40
else if (class < 0) {

best.status = 200;
response(best);
for (i = 0; i < N; i++) {

if (!outgoing[i].done)
request(CANCEL, address[i], outgoing[i].branch);

}
best.status = -1;

}

/* Send an ACK */
if (class != 2) {

if (R == INVITE) request(ACK, r.a, r.branch);
}

if (class == 2) {
if (r.status < best.status) best = r;
break;

}
else if (class == 3) {

/* A server MAY optionally recurse. The server MUST check
* whether it has tried this location before and whether the
* location is part of the Via path of the incoming request.
* This check is omitted here for brevity. Multicast locations
* MUST NOT be returned to the client if the server is not
* recursing.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 90]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

*/
if (recurse) {

multicast = 0;
N += r.locations;
for (i = 0; i < r.locations; i++) {

request(R, r.location[i]);
}

} else if (!ismulticast(r.location)) {
best = r;

}
}
else if (class == 4) {

if (best.status >= 400) best = r;
}
else if (class == 5) {

if (best.status >= 500) best = r;
}
else if (class == 6) {

best = r;
break;

}
}

/* We haven’t heard anything useful from anybody. */
if (best.status == 1000) {

best.status = 408; /* request expired */
}
if (best.status/100 != 3) loc = 0;
response(best);

}

Responses are processed as follows. The process completes (and state can be freed) when all requests
have been answered by final status responses (for unicast) or 60 seconds have elapsed (for multicast). A
proxy MAY send aCANCEL to all incomplete branches and return the best available final status to the client
if not all responses have been received after 60 seconds or the expiration period specified in theExpires
header field of the request. If no responses have been received, the proxy returns a 408 (Timeout) response
to the client.

When forwarding responses, a proxyMUST forward the whole response, includingall header fields of
the selected response as well as the body.

1xx: The proxy MUST forward provisional responses greater than 100 upstream towards the client and
SHOULD NOT forward 100 (Trying) responses.

2xx: If the request was anINVITE, the proxyMUST forward the response upstream towards the client, with-
out sending anACK downstream. For other requests, it should only forward the response upstream if
it has not forwarded any other responses upstream.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 91]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

After receiving a 2xx, the serverMAY terminate all other pending requests by sending aCANCEL
request. (Terminating pending requests is advisable as searches consume resources. Also,INVITE
requests could “ring” on a number of workstations if the callee is currently logged in more than once.)

If the request was not anINVITE, the proxySHOULD drop 2xx responses if it had already forwarded
a final response upstream.

3xx: For INVITE requests, the proxyMUST send anACK. It MAY recurse on the listedContact addresses.
Otherwise, the lowest-numbered response is returned if there were no 2xx or 6xx responses.

Location lists are not merged as that would prevent forwarding of authenticated responses. Also, responses
can have message bodies, so that merging is not feasible.

4xx, 5xx: For INVITE requests, the proxyMUST send anACK. It remembers the response if it has a lower
status code class than any previous 4xx and 5xx response. On completion, a response with the lowest
response class is returned if there were no 2xx, 3xx or 6xx responses. Within the set of responses
from the lowest-numbered class, the proxy server may choose any response.

The proxySHOULD collect allWWW-Authenticate andProxy-Authenticate headers from all 401
and 407 responses and return all of them in the response if either 401 or 407 is the lowest-numbered
response.

6xx: For INVITE requests, the proxy sends anACK. It forwards the 6xx response unless a 2xx response
has been received. Other pending requestsMAY be terminated withCANCEL as described for 2xx
responses. Unlike for 2xx responses, only one 6xx response is forwarded, sinceACKs are generated
locally.

A proxy server forwards any response forCall-IDs for which it does not have a pending transaction
according to the response’sVia header. User agent servers respond toBYE requests for unknown call legs
with status code 481 (Transaction Does Not Exist); they dropACK requests with unknown call legs silently.

Special considerations apply for choosing forwarding destinations forACK andBYE requests. In most
cases, these requests will bypass proxies and reach the desired party directly, keeping proxies from having
to make forwarding decisions.

A proxy MAY maintain call state for a period of its choosing. If a proxy still has list of destinations that
it forwarded the lastINVITE to, it SHOULD directACK requests only to those downstream servers.

18 Security Considerations

18.1 Confidentiality and Privacy: Encryption

18.1.1 End-to-End Encryption

SIP requests and responses can contain sensitive information about the communication patterns and com-
munication content of individuals. The SIP message bodyMAY also contain encryption keys for the session
itself. SIP supports three complementary forms of encryption to protect privacy:

• End-to-end encryption of the SIP message body and certain sensitive header fields;

• hop-by-hop encryption to prevent eavesdropping that tracks who is calling whom;

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 92]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

The SIP request or response cannot be encrypted end-to-end as a whole because header fields such asTo
andVia need to be visible to proxies so that the SIP request can be routed correctly. Hop-by-hop encryption
encrypts the entire SIP request or response on the wire so that packet sniffers or other eavesdroppers cannot
see who is calling whom. Hop-by-hop encryption can also encrypt requests and responses that have been
end-to-end encrypted. Note that proxies can still see who is calling whom, and this information is also
deducible by performing a network traffic analysis, so this provides a very limited but still worthwhile
degree of protection.

End-to-end encryption relies on keys shared by the two user agents involved in the request. Typically,
the message is sent encrypted with the public key of the recipient, so that only that recipient can read the
message.

A SIP request (or response) is end-to-end encrypted by splitting the message to be sent into a part to
be encrypted and a short header that will remain in the clear. Some parts of the SIP message, namely the
request line, the response line and certain header fields marked with “r” in the “proxy” column in Table 4
and 5 need to be read and returned by proxies and thusMUST NOT be encrypted end-to-end. Possibly
sensitive information that needs to be made available as plaintext include destination address (To) and the
forwarding path (Via) of the call. TheAuthorization header fieldMUST remain in the clear if it contains a
digital signature as the signature is generated after encryption, butMAY be encrypted if it contains “basic”
or “digest” authentication.

Other header fieldsMAY be encrypted orMAY travel in the clear as desired by the sender. TheSubject,
Allow andContent-Type header fields will typically be encrypted. TheAccept, Accept-Language, Date,
Expires, Priority, Require, Call-ID, Cseq, andTimestamp header fields will remain in the clear.

All fields that will remain in the clearMUST precede those that will be encrypted. The message is
encrypted starting with the first character of the first header field that will be encrypted and continuing
through to the end of the message body. If no header fields are to be encrypted, encrypting starts with the
second CRLF pair after the last header field, as shown below. Carriage return and line feed characters have
been made visible as “$”, and the encrypted part of the message is outlined.

INVITE sip:watson@boston.bell-telephone.com SIP/2.0$
Via: SIP/2.0/UDP 169.130.12.5$
To: T. A. Watson <sip:watson@bell-telephone.com>$
From: A. Bell <sip:a.g.bell@bell-telephone.com>;tag=7abm$
Encryption: PGP version=5.0$
Content-Length: 224$
Call-ID: 187602141351@worcester.bell-telephone.com$
Content-Type: message/sip
CSeq: 488$
$

* Subject: Mr. Watson, come here.$ *
* Content-Type: application/sdp$ *
* $ *
* v=0$ *
* o=bell 53655765 2353687637 IN IP4 128.3.4.5$ *
* s=Mr. Watson, come here.$ *
* t=0 0$ *

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 93]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

* c=IN IP4 135.180.144.94$ *
* m=audio 3456 RTP/AVP 0 3 4 5$ *

An Encryption header fieldMUST be added to indicate the encryption mechanism used. AContent-
Length field is added that indicates the length of the encrypted body. The encrypted body is preceded by a
blank line as a normal SIP message body would be.

Upon receipt by the called user agent possessing the correct decryption key, the message body as indi-
cated by theContent-Length field is decrypted, and the now-decrypted body is appended to the clear-text
header fields. There is no need for an additionalContent-Length header field within the encrypted body
because the length of the actual message body is unambiguous after decryption.

A Content-Type indication of “message/sip”MAY be added, but will be overridden after receipt.
Had no SIP header fields required encryption, the message would have been as below. Note that the

encrypted bodyMUST then include a blank line (start with CRLF) to disambiguate between any possible
SIP header fields that might have been present and the SIP message body.

INVITE sip:watson@boston.bell-telephone.com SIP/2.0$
Via: SIP/2.0/UDP 169.130.12.5$
To: T. A. Watson <sip:watson@bell-telephone.com>$
From: A. Bell <a.g.bell@bell-telephone.com>;tag=7abm$
Encryption: PGP version=5.0$
Content-Type: application/sdp$
Content-Length: 107$
Call-ID: 187602141351@worcester.bell-telephone.com$
CSeq: 488$
$

* $ *
* v=0$ *
* o=bell 53655765 2353687637 IN IP4 128.3.4.5$ *
* c=IN IP4 135.180.144.94$ *
* m=audio 3456 RTP/AVP 0 3 4 5$ *

18.1.2 Privacy of SIP Responses

SIP requests can be sent securely using end-to-end encryption and authentication to a called user agent that
sends an insecure response. This is allowed by the SIP security model, but is not a good idea. However,
unless the correct behavior is explicit, it would not always be possible for the called user agent to infer
what a reasonable behavior was. Thus, when end-to-end encryption is used by the request originator, the
encryption key to be used for the responseSHOULD be specified in the request (Section 10.36). If this were
not done, it might be possible for the called user agent to incorrectly infer an appropriate key to use in
the response. Thus, to prevent key-guessing becoming an acceptable strategy, we specify that a called user
agent receiving a request that does not specify a key to be used for the responseSHOULD send that response
unencrypted.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 94]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

Any SIP header fields that were encrypted in a requestSHOULD also be encrypted in an encrypted
response.Contact response fieldsMAY be encrypted if the information they contain is sensitive, orMAY be
left in the clear to permit proxies more scope for localized searches.

18.1.3 Encryption by Proxies

Normally, proxies are not allowed to alter end-to-end header fields and message bodies. ProxiesMAY ,
however, encrypt an unsigned request or response with the key of the call recipient.

Proxies need to encrypt a SIP request if the end system cannot perform encryption or to enforce organizational
security policies.

18.1.4 Hop-by-Hop Encryption

SIP requests and responsesMAY also be protected by security mechanisms at the transport or network
layer. No particular mechanism is defined or recommended here. Two possibilities are IPSEC [39] or TLS
[21]. The use of a particular mechanism will generally need to be specified out of band, through manual
configuration, for example.

18.2 Message Integrity and Access Control: Authentication

Protective measures need to be taken to prevent an active attacker from modifying and replaying SIP requests
and responses. The same cryptographic measures that are used to ensure the authenticity of the SIP message
also serve to authenticate the originator of the message. However, the “basic” and “digest” authentication
mechanism offer authentication only, without message integrity.

Transport-layer or network-layer authenticationMAY be used for hop-by-hop authentication. SIP also
extends the HTTPWWW-Authenticate (Section 10.48) andAuthorization (Section 10.11) header field
and theirProxy- counterparts to include cryptographically strong signatures. SIP also supports the HTTP
“basic” and “digest” schemes (see Section 19) and other HTTP authentication schemes to be defined that
offer a rudimentary mechanism of ascertaining the identity of the caller.

SIP requestsMAY be authenticated using theAuthorization header field to include a digital signature of
certain header fields, the request method and version number and the payload, none of which are modified
between client and called user agent. TheAuthorization header field is used in requests to authenticate
the request originator end-to-end to proxies and the called user agent, and in responses to authenticate the
called user agent or proxies returning their own failure codes. If required, hop-by-hop authentication can be
provided, for example, by the IPSEC Authentication Header.

Generally, SIP authentication is for a specific request URI and realm, a protection domain. Thus, for
basic and digest authentication, each such protection domain has its own set of user names and secrets. If a
user agent does not care about different request URIs, it makes sense to establish a “global” user name, secret
and realm that is the default challenge if a particular request URI does not have its own realm or set of user
names. Similarly, SIP entities representing many users, such as PSTN gateways,MAY try a pre-configured
global user name and secret when challenged, independent of the request URI.

SIP does not dictate which digital signature scheme is used for authentication. As indicated above, SIP
implementationsMAY also use “basic” and “digest” authentication and other authentication mechanisms
defined for HTTP [40]. Note that “basic” authentication has severe security limitations. The following does
not apply to these schemes.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 95]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

To cryptographically sign a SIP request, the order of the SIP header fields is important. When an
Authorization header field is present, it indicates that all header fields following theAuthorization header
field have been included in the signature. Therefore, hop-by-hop header fields whichMUST or SHOULD

be modified by proxiesMUST precede theAuthorization header field as they will generally be modified or
added-to by proxy servers. Hop-by-hop header fields whichMAY be modified by a proxyMAY appear before
or after theAuthorization header. When they appear before, theyMAY be modified by a proxy. When they
appear after, theyMUST NOT be modified by a proxy. To sign a request, a client constructs a message from
the request method (in upper case) followed, without LWS, by the SIP version number, followed, again
without LWS, by the request headers to be signed and the message body. The message thus constructed is
then signed.

For example, if the SIP request is to be:

INVITE sip:watson@boston.bell-telephone.com SIP/2.0
Via: SIP/2.0/UDP 169.130.12.5
Authorization: PGP version=5.0, signature=...
From: A. Bell <sip:a.g.bell@bell-telephone.com>;tag=7abm
To: T. A. Watson <sip:watson@bell-telephone.com>
Call-ID: 187602141351@worcester.bell-telephone.com
Subject: Mr. Watson, come here.
Content-Type: application/sdp
Content-Length: ...

v=0
o=bell 53655765 2353687637 IN IP4 128.3.4.5
s=Mr. Watson, come here.
t=0 0
c=IN IP4 135.180.144.94
m=audio 3456 RTP/AVP 0 3 4 5

Then the data block that is signed is:

INVITESIP/2.0From: A. Bell <sip:a.g.bell@bell-telephone.com>;tag=7abm
To: T. A. Watson <sip:watson@bell-telephone.com>
Call-ID: 187602141351@worcester.bell-telephone.com
Subject: Mr. Watson, come here.
Content-Type: application/sdp
Content-Length: ...

v=0
o=bell 53655765 2353687637 IN IP4 128.3.4.5
s=Mr. Watson, come here.
t=0 0
c=IN IP4 135.180.144.94
m=audio 3456 RTP/AVP 0 3 4 5

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 96]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

Clients wishing to authenticate requestsMUST construct the portion of the message below theAutho-
rization header using a canonical form. This allows a proxy to parse the message, take it apart, and recon-
struct it, without causing an authentication failure due to extra white space, for example. Canonical form
consists of the following rules:

• No short form header fields;

• Header field names are capitalized as shown in this document;

• No white space between the header name and the colon;

• A single space after the colon;

• Line termination with aCRLF;

• No line folding;

• No comma separated lists of header values; each must appear as a separate header;

• Only a singleSP between tokens, between tokens and quoted strings, and between quoted strings; no
SP after last token or quoted string;

• No LWS between tokens and separators, except as described above for after the colon in header fields;

• TheTo andFrom header fields always include the< and> delimiters even if thedisplay-name is
empty.

Note that if a message is encrypted and authenticated using a digital signature, when the message is
generated encryption is performed before the digital signature is generated. On receipt, the digital signature
is checked before decryption.

A client MAY require that a server sign its response by including aRequire: signed-response request
header field. The client indicates the desired authentication method via theWWW-Authenticate header.

The correct behavior in handling unauthenticated responses to a request that requires authenticated re-
sponses is described in section 18.2.1.

18.2.1 Trusting responses

There is the possibility that an eavesdropper listens to requests and then injects unauthenticated responses
that terminate, redirect or otherwise interfere with a call. (Even encrypted requests contain enough informa-
tion to fake a response.)

Clients need to be particularly careful with 3xx redirection responses. Thus a client receiving, for exam-
ple, a 301 (Moved Permanently) which was not authenticated when the public key of the called user agent
is known to the client, and authentication was requested in the requestSHOULD be treated as suspicious.
The correct behavior in such a case would be for the called-user to form a dated response containing the
Contact field to be used, to sign it, and give this signed stub response to the proxy that will provide the
redirection. Thus the response can be authenticated correctly. A clientSHOULD NOT automatically redirect
such a request to the new location without alerting the user to the authentication failure before doing so.

Another problem might be responses such as 6xx failure responses which would simply terminate a
search, or “4xx” and “5xx” response failures.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 97]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

If TCP is being used, a proxySHOULD treat 4xx and 5xx responses as valid, as they will not terminate
a search. However, fake 6xx responses from a rogue proxy terminate a search incorrectly. 6xx responses
SHOULD be authenticated if requested by the client, and failure to do soSHOULD cause such a client to
ignore the 6xx response and continue a search.

With UDP, the same problem with 6xx responses exists, but also an active eavesdropper can generate
4xx and 5xx responses that might cause a proxy or client to believe a failure occurred when in fact it did not.
Typically 4xx and 5xx responses will not be signed by the called user agent, and so there is no simple way
to detect these rogue responses. This problem is best prevented by using hop-by-hop encryption of the SIP
request, which removes any additional problems that UDP might have over TCP.

These attacks are prevented by having the client require response authentication and dropping unau-
thenticated responses. A server user agent that cannot perform response authentication responds using the
normalRequire response of 420 (Bad Extension).

18.3 Callee Privacy

User location and SIP-initiated calls can violate a callee’s privacy. An implementationSHOULD be able to
restrict, on a per-user basis, what kind of location and availability information is given out to certain classes
of callers.

18.4 Denial of Service

Attackers can spoof aVia header field to direct responses to a third party, using a SIP UAS or proxy to
generate traffic. This attack can be prevented by requiring an existing security association, such as TLS or
IPsec. This may be an appropriate solution, e.g., between proxy servers that exchange significant amounts
of signaling traffic or between a user agent and its outbound proxy.

If such a security association is not feasible, clients and proxiesSHOULD respond to unauthenticated
requests with only asingle401 (Unauthorized) or 407 (Proxy Authentication Required) instead of using
the normal response retransmission algorithm. Retransmitting the 401 or 407 status response amplifies the
problem of an attacker using a spoofedVia header address to to direct traffic to a third party.

18.5 Known Security Problems

With either TCP or UDP, a denial of service attack exists by a rogue proxy sending 6xx responses. Although
a client SHOULD choose to ignore such responses if it requested authentication, a proxy cannot do so. It
is obliged to forward the 6xx response back to the client. The client can then ignore the response, but if it
repeats the request it will probably reach the same rogue proxy again, and the process will repeat.

19 SIP Authentication using HTTP Basic and Digest Schemes

SIP implementationsMAY use HTTP’s basic and digest authentication mechanisms (RFC 2617 [40]) to
provide a rudimentary form of security. This section overviews usage of these mechanisms in SIP. The basic
operation is almost completely identical to that for HTTP [40]. This section outlines this operation, pointing
to RFC 2617 [40] for details, and noting the differences when used in SIP. Since RFC 2543 is based on
HTTP basic and digest as defined in RFC 2069 [41], SIP servers supporting RFC 2617MUST ensure they

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 98]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

are backwards compatible with RFC 2069. Procedures for this backwards compatibility are specified in
RFC 2617.

19.1 Framework

The framework for SIP authentication parallels that for HTTP (RFC 2617 [40]). In particular, the BNF
for auth-scheme, auth-param, challenge, realm, realm-value, andcredentials is identical. The 401
response is used by user agent servers in SIP to challenge the authorization of a user agent client. Addi-
tionally, registrars and redirect serversMAY make use of 401 responses for authorization, but proxiesMUST

NOT, and insteadMAY use the 407 response. The requirements for inclusion of theProxy-Authenticate,
Proxy-Authorization, WWW-Authenticate, andAuthorization in the various messages is identical to RFC
2617 [40].

Since SIP does not have the concept of a canonical root URL, the notion of protections spaces are
interpreted differently for SIP. The realm is a protection domain for all SIP URIs with the same value for the
userinfo, host andport part of the SIPRequest-URI. For example:

INVITE sip:alice.wonderland@example.com SIP/2.0
WWW-Authenticate: Basic realm="business"

and

INVITE sip:aw@example.com SIP/2.0
WWW-Authenticate: Basic realm="business"

define different protection realms according to this rule.
When a UAC resubmits a request with its credentials after receiving a 401 or 407 response, itMUST

increment theCSeq header field as it would normally do when sending an updated request.

19.2 Basic Authentication

The rules for basic authentication follow those defined in [40, Section 2] but with the words “origin server”
replaced with “user agent server, redirect server , or registrar”.

Since SIP URIs are not hierarchical, the paragraph in [40, Section 2] that states that “all paths at or
deeper than the depth of the last symbolic element in the path field of the Request-URI also are within the
protection space specified by the Basic realm value of the current challenge” does not apply for SIP. SIP
clientsMAY preemptively send the correspondingAuthorization header with requests for SIP URIs within
the same protection realm (as defined above) without receipt of another challenge from the server.

Due to its weak security, the usage of basic authentication isNOT RECOMMENDED. However, servers
SHOULD support it to handle older RFC 2543 clients that might still use it.

19.3 Digest Authentication

The rules for digest authentication follow those defined in [40, Section 3], with “HTTP 1.1” replaced by
“SIP/2.0” in addition to the following differences:

1. The URI included in the challenge has the following BNF:

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 99]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

URI = SIP-URL

2. The BNF in RFC 2617 has an error in that the URI is not enclosed in quotation marks. (The example
in Section 3.5 is correct.) For SIP, the URIMUST be enclosed in quotation marks.

3. The BNF fordigest-uri-value is:

digest-uri-value = Request-URI ; as defined in Section 4.3

4. The example procedure for choosing a nonce based onEtag does not work for SIP.

5. TheAuthentication-Info andProxy-Authentication-Info fields are not used in SIP.

6. The text in RFC 2617 [40] regarding cache operation does not apply to SIP.

7. RFC 2617 [40] requires that a server check that the URI in the request line, and the URI included in
theAuthorization header, point to the same resource. In a SIP context, these two URI’s may actually
refer to different users, due to forwarding at some proxy. Therefore, in SIP, a serverMAY check that
the request-uri in theAuthorization header corresponds to a user that the server is willing to accept
forwarded or direct calls for.

19.4 Proxy-Authentication

The use of theProxy-Authentication and Proxy-Authorization parallel that as described in [40, Sec-
tion 3.6], with one difference. ProxiesMUST NOT add theProxy-Authorization header. 407 (Proxy Au-
thentication Required) responsesMUST be forwarded upstream towards the client following the procedures
for any other response. It is the client’s responsibility to add theProxy-Authorization header containing
credentials for the proxy which has asked for authentication.

If a proxy were to resubmit a request with aProxy-Authorization header field, it would need to increment the
CSeq in the new request. However, this would mean that the UAC which submitted the original request would
discard a response from the UAS, as theCSeq value would be different.

See sections 10.31 and 10.32 for additional information on usage of these fields as they apply to SIP.
It is also possible that a 401 (Unauthorized) response contains several challenges, from a mixture of

proxies and user agent servers, if the request was forked.

20 Examples

In the following examples, we often omit the message body and the correspondingContent-Length and
Content-Type headers for brevity.

20.1 Registration

A user at hostsaturn.bell-tel.com registers on start-up, via multicast, with the local SIP server
namedbell-tel.com . In the example, the user agent onsaturn expects to receive SIP requests on
UDP port 3890.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 100]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

C->S: REGISTER sip:bell-tel.com SIP/2.0
Via: SIP/2.0/UDP saturn.bell-tel.com
From: <sip:watson@bell-tel.com>;tag=19al
To: sip:watson@bell-tel.com
Call-ID: 70710@saturn.bell-tel.com
CSeq: 1 REGISTER
Contact: <sip:watson@saturn.bell-tel.com:3890;transport=udp>
Expires: 7200

The registration expires after two hours. Any future invitations forwatson@bell-tel.com arriv-
ing atsip.bell-tel.com will now be redirected towatson@saturn.bell-tel.com , UDP port
3890.

If Watson wants to be reached elsewhere, say, an on-line service he uses while traveling, he updates his
reservation after first cancelling any existing locations:

C->S: REGISTER sip:bell-tel.com SIP/2.0
Via: SIP/2.0/UDP saturn.bell-tel.com
From: <sip:watson@bell-tel.com>;tag=19al
To: sip:watson@bell-tel.com
Call-ID: 70710@saturn.bell-tel.com
CSeq: 2 REGISTER
Contact: *
Expires: 0

C->S: REGISTER sip:bell-tel.com SIP/2.0
Via: SIP/2.0/UDP saturn.bell-tel.com
From: <sip:watson@bell-tel.com>;tag=19al
To: sip:watson@bell-tel.com
Call-ID: 70710@saturn.bell-tel.com
CSeq: 3 REGISTER
Contact: sip:tawatson@example.com

Now, the server will forward any request for Watson to the server atexample.com , using theRequest-
URI tawatson@example.com . For the server atexample.com to reach Watson, he will need to send
aREGISTER there, or inform the server of his current location through some other means.

It is possible to use third-party registration. Here, the secretaryjon.diligent registers his boss, T.
Watson:

C->S: REGISTER sip:bell-tel.com SIP/2.0
Via: SIP/2.0/UDP pluto.bell-tel.com
From: <sip:jon.diligent@bell-tel.com>;tag=7eff
To: sip:watson@bell-tel.com
Call-ID: 17320@pluto.bell-tel.com
CSeq: 1 REGISTER
Contact: sip:tawatson@example.com

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 101]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

The request could be sent to either the registrar atbell-tel.com or the server atexample.com .
In the latter case, the server atexample.com would proxy the request to the address indicated in the
Request-URI. Then,Max-Forwards header could be used to restrict the registration to that server.

20.2 Invitation to a Multicast Conference

The first example invitesbob@example.com to a multicast session. All examples use the Session De-
scription Protocol (SDP) (RFC 2327 [6]) as the session description format.

20.2.1 Request

C->S: INVITE sip:bob@one.example.com SIP/2.0
Via: SIP/2.0/UDP sip.example.com;branch=7c337f30d7ce.1

;maddr=239.128.16.254;ttl=16
Via: SIP/2.0/UDP mouse.wonderland.com
From: Alice <sip:alice@wonderland.com>;tag=1ija
To: Bob <sip:bob@example.com>
Call-ID: 602214199@mouse.wonderland.com
CSeq: 1 INVITE
Contact: Alice <sip:alice@mouse.wonderland.com>
Subject: SIP will be discussed, too
Content-Type: application/sdp
Content-Length: 187

v=0
o=user1 53655765 2353687637 IN IP4 128.3.4.5
s=Mbone Audio
t=3149328700 0
i=Discussion of Mbone Engineering Issues
e=mbone@somewhere.com
c=IN IP4 224.2.0.1/127
t=0 0
m=audio 3456 RTP/AVP 0
a=rtpmap:0 PCMU/8000

The From request header above states that the request was initiated byalice@wonderland.com
and addressed tobob@example.com (To header fields). TheVia fields list the hosts along the path
from invitation initiator (the last element of the list) towards the callee. In the example above, the message
was last multicast to the administratively scoped group239.128.16.254 with a ttl of 16 from the host
sip.example.com . The secondVia header field indicates that it was originally sent from the outbound
proxy mouse.wonderland.com . TheRequest-URI indicates that the request is currently being being
addressed tobob@one.example.com , the local address that the SIP server for theexample.com
domain looked up for the callee.

In this case, the session description is using the Session Description Protocol (SDP), as stated in the
Content-Type header.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 102]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

The header is terminated by an empty line and is followed by a message body containing the session
description.

20.2.2 Response

The called user agent, directly or indirectly through proxy servers, indicates that it is alerting (“ringing”) the
called party:

S->C: SIP/2.0 180 Ringing
Via: SIP/2.0/UDP sip.example.com;branch=7c337f30d7ce.1

;maddr=239.128.16.254;ttl=16
Via: SIP/2.0/UDP mouse.wonderland.com
From: Alice <sip:alice@wonderland.com>;tag=1ija
To: Bob <sip:bob@example.com> ;tag=3141593
Call-ID: 602214199@mouse.wonderland.com
CSeq: 1 INVITE

A sample response to the invitation is given below. The first line of the response states the SIP version
number, that it is a 200 (OK) response, which means the request was successful. TheVia headers are taken
from the request, and entries are removed hop by hop as the response retraces the path of the request. A new
authentication fieldMAY be added by the invited user’s agent if required. TheCall-ID is taken directly from
the original request, along with the remaining fields of the request message. The original sense ofFrom
field is preserved (i.e., it is the session initiator).

In addition, theContact header gives details of the host where the user was located, or alternatively the
relevant proxy contact point which should be reachable from the caller’s host.

S->C: SIP/2.0 200 OK
Via: SIP/2.0/UDP sip.example.com;branch=7c337f30d7ce.1

;maddr=239.128.16.254;ttl=16
Via: SIP/2.0/UDP mouse.wonderland.com
From: Alice <sip:alice@wonderland.com>;tag=1ija
To: Bob <sip:bob@example.com> ;tag=3141593
Call-ID: 602214199@mouse.wonderland.com
CSeq: 1 INVITE
Contact: <sip:bob@one.example.com>

The caller confirms the invitation by sending anACK request to the location named in theContact
header:

C->S: ACK sip:bob@one.example.com SIP/2.0
Via: SIP/2.0/UDP mouse.wonderland.com
From: Alice <sip:alice@wonderland.com>;tag=1ija
To: Bob <sip:bob@example.com> ;tag=3141593
Call-ID: 602214199@mouse.wonderland.com
CSeq: 1 ACK

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 103]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

20.3 Two-party Call

For two-party Internet phone calls, the response must contain a description of where to send the data. In
the example below, Bell calls Watson. Bell indicates that he can receive RTP audio codings 0 (PCMU), 3
(GSM), 4 (G.723) and 5 (DVI4).

C->S: INVITE sip:watson@boston.bell-tel.com SIP/2.0
Via: SIP/2.0/UDP kton.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>;tag=3pcc
To: T. Watson <sip:watson@bell-tel.com>
Call-ID: 662606876@kton.bell-tel.com
CSeq: 1 INVITE
Contact: <sip:a.g.bell@kton.bell-tel.com>
Subject: Mr. Watson, come here.
Content-Type: application/sdp
Content-Length: ...

v=0
o=bell 53655765 2353687637 IN IP4 128.3.4.5
s=Mr. Watson, come here.
t=3149328600 0
c=IN IP4 kton.bell-tel.com
m=audio 3456 RTP/AVP 0 3 4 5
a=rtpmap:0 PCMU/8000
a=rtpmap:3 GSM/8000
a=rtpmap:4 G723/8000
a=rtpmap:5 DVI4/8000

S->C: SIP/2.0 100 Trying
Via: SIP/2.0/UDP kton.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>;tag=3pcc
To: T. Watson <sip:watson@bell-tel.com> ;tag=37462311
Call-ID: 662606876@kton.bell-tel.com
CSeq: 1 INVITE
Content-Length: 0

S->C: SIP/2.0 180 Ringing
Via: SIP/2.0/UDP kton.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>;tag=3pcc
To: T. Watson <sip:watson@bell-tel.com> ;tag=37462311
Call-ID: 662606876@kton.bell-tel.com
CSeq: 1 INVITE
Content-Length: 0

S->C: SIP/2.0 182 Queued, 2 callers ahead

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 104]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

Via: SIP/2.0/UDP kton.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>;tag=3pcc
To: T. Watson <sip:watson@bell-tel.com> ;tag=37462311
Call-ID: 662606876@kton.bell-tel.com
CSeq: 1 INVITE
Content-Length: 0

S->C: SIP/2.0 182 Queued, 1 caller ahead
Via: SIP/2.0/UDP kton.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>;tag=3pcc
To: T. Watson <sip:watson@bell-tel.com> ;tag=37462311
Call-ID: 662606876@kton.bell-tel.com
CSeq: 1 INVITE
Content-Length: 0

S->C: SIP/2.0 200 OK
Via: SIP/2.0/UDP kton.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>;tag=3pcc
To: <sip:watson@bell-tel.com> ;tag=37462311
Call-ID: 662606876@kton.bell-tel.com
CSeq: 1 INVITE
Contact: sip:watson@boston.bell-tel.com
Content-Type: application/sdp
Content-Length: ...

v=0
o=watson 4858949 4858949 IN IP4 192.1.2.3
s=I’m on my way
t=3149329600 0
c=IN IP4 boston.bell-tel.com
m=audio 5004 RTP/AVP 0 3
a=rtpmap:0 PCMU/8000
a=rtpmap:3 GSM/8000

The example illustrates the use of informational status responses. Here, the reception of the call is
confirmed immediately (100), then, possibly after some database mapping delay, the call rings (180) and is
then queued, with periodic status updates.

Watson can only use PCMU and GSM. Watson will send audio data to port 3456 at c.bell-tel.com, Bell
will send to port 5004 at boston.bell-tel.com.

By default, the media session is one RTP session. Watson will receive RTCP packets on port 5005, while
Bell will receive them on port 3457.

Since the two sides have agreed on the set of media, Bell confirms the call without enclosing another
session description:

C->S: ACK sip:watson@boston.bell-tel.com SIP/2.0

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 105]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

Via: SIP/2.0/UDP kton.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>;tag=3pcc
To: T. Watson <sip:watson@bell-tel.com> ;tag=37462311
Call-ID: 662606876@kton.bell-tel.com
CSeq: 1 ACK

20.4 Terminating a Call

To terminate a call, the caller can send aBYE request formatted as follows:

C->S: BYE sip:watson@boston.bell-tel.com SIP/2.0
Via: SIP/2.0/UDP kton.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>;tag=3pcc
To: T. A. Watson <sip:watson@bell-tel.com> ;tag=37462311
Call-ID: 3298420296@kton.bell-tel.com
CSeq: 2 BYE

If the callee wishes to terminate the call, it sends aBYE request as well. However, thisBYE request has
the contents of theTo field from the above message in theFrom field, and the contents of theFrom field in
the above message in theTo field.

20.5 Forking Proxy

In this example, Bell (a.g.bell@bell-tel.com) (C), currently seated at hostc.bell-tel.com
wants to call Watson (t.watson@ieee.org). At the time of the call, Watson is logged in at two work-
stations,t.watson@x.bell-tel.com (X) andwatson@y.bell-tel.com (Y), and has registered
with the IEEE proxy server (P) calledsip.ieee.org . The IEEE server also has a registration for the
home machine of Watson, atwatson@h.bell-tel.com (H), as well as a permanent registration at
watson@acm.org (A). For brevity, the examples omit the message bodies containing the session descrip-
tions.

Bell’s user agent sends the invitation to the SIP server for theieee.org domain:

C->P: INVITE sip:t.watson@ieee.org SIP/2.0
Via: SIP/2.0/UDP c.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>;tag=3pcc
To: T. Watson <sip:t.watson@ieee.org>
Call-ID: 31415@c.bell-tel.com
CSeq: 1 INVITE
Contact: a.g.bell@c.bell-tel.com

The SIP server atieee.org tries the four addresses in parallel. It sends the following message to the
home machine:

P->H: INVITE sip:watson@h.bell-tel.com SIP/2.0
Via: SIP/2.0/UDP sip.ieee.org ;branch=3d8a50dbf5a28d.1

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 106]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

Via: SIP/2.0/UDP c.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>;tag=3pcc
To: T. Watson <sip:t.watson@ieee.org>
Call-ID: 31415@c.bell-tel.com
CSeq: 1 INVITE
Contact: a.g.bell@c.bell-tel.com

This request immediately yields a 404 (Not Found) response, since Watson is not currently logged in at
home:

H->P: SIP/2.0 404 Not Found
Via: SIP/2.0/UDP sip.ieee.org ;branch=3d8a50dbf5a28d.1
Via: SIP/2.0/UDP c.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>;tag=3pcc
To: T. Watson <sip:t.watson@ieee.org>;tag=87454273
Call-ID: 31415@c.bell-tel.com
CSeq: 1 INVITE

The proxyACKs the response so that host H can stop retransmitting it:

P->H: ACK sip:watson@h.bell-tel.com SIP/2.0
Via: SIP/2.0/UDP sip.ieee.org ;branch=3d8a50dbf5a28d.1
From: A. Bell <sip:a.g.bell@bell-tel.com>;tag=3pcc
To: T. Watson <sip:t.watson@ieee.org>;tag=87454273
Call-ID: 31415@c.bell-tel.com
CSeq: 1 ACK

Also, P attempts to reach Watson through the ACM server:

P->A: INVITE sip:watson@acm.org SIP/2.0
Via: SIP/2.0/UDP sip.ieee.org ;branch=3d8a50dbf5a28d.2
Via: SIP/2.0/UDP c.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>;tag=3pcc
To: T. Watson <sip:t.watson@ieee.org>
Call-ID: 31415@c.bell-tel.com
CSeq: 1 INVITE
Contact: a.g.bell@c.bell-tel.com

In parallel, the next attempt proceeds, with anINVITE to X and Y:

P->X: INVITE sip:t.watson@x.bell-tel.com SIP/2.0
Via: SIP/2.0/UDP sip.ieee.org ;branch=3d8a50dbf5a28d.3
Via: SIP/2.0/UDP c.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>;tag=3pcc
To: T. Watson <sip:t.watson@ieee.org>

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 107]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

Call-ID: 31415@c.bell-tel.com
CSeq: 1 INVITE
Contact: a.g.bell@c.bell-tel.com

P->Y: INVITE sip:watson@y.bell-tel.com SIP/2.0
Via: SIP/2.0/UDP sip.ieee.org ;branch=3d8a50dbf5a28d.4
Via: SIP/2.0/UDP c.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>;tag=3pcc
To: T. Watson <sip:t.watson@ieee.org>
Call-ID: 31415@c.bell-tel.com
CSeq: 1 INVITE
Contact: a.g.bell@c.bell-tel.com

As it happens, both Watson at X and a colleague in the other lab at host Y hear the phones ringing and
pick up. Both X and Y return 200s via the proxy to Bell.

X->P: SIP/2.0 200 OK
Via: SIP/2.0/UDP sip.ieee.org ;branch=3d8a50dbf5a28d.3
Via: SIP/2.0/UDP c.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>;tag=3pcc
To: T. Watson <sip:t.watson@ieee.org> ;tag=192137601
Call-ID: 31415@c.bell-tel.com
CSeq: 1 INVITE
Contact: sip:t.watson@x.bell-tel.com

Y->P: SIP/2.0 200 OK
Via: SIP/2.0/UDP sip.ieee.org ;branch=3d8a50dbf5a28d.4
Via: SIP/2.0/UDP c.bell-tel.com
Contact: sip:t.watson@y.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>;tag=3pcc
To: T. Watson <sip:t.watson@ieee.org> ;tag=35253448
Call-ID: 31415@c.bell-tel.com
CSeq: 1 INVITE

Both responses are forwarded to Bell, using theVia information. At this point, the ACM server is still
searching its database. P can now cancel this attempt:

P->A: CANCEL sip:watson@acm.org SIP/2.0
Via: SIP/2.0/UDP sip.ieee.org ;branch=3d8a50dbf5a28d.2
From: A. Bell <sip:a.g.bell@bell-tel.com>;tag=3pcc
To: T. Watson <sip:t.watson@ieee.org>
Call-ID: 31415@c.bell-tel.com
CSeq: 1 CANCEL

The ACM server gladly stops its neural-network database search and responds with a 200. The 200 will

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 108]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

not travel any further, since P is the lastVia stop.

A->P: SIP/2.0 200 OK
Via: SIP/2.0/UDP sip.ieee.org ;branch=3d8a50dbf5a28d.2
From: A. Bell <sip:a.g.bell@bell-tel.com>;tag=3pcc
To: T. Watson <sip:t.watson@ieee.org>
Call-ID: 31415@c.bell-tel.com
CSeq: 1 CANCEL

In addition, A responds to the originalINVITE request with a 487 (Request Terminated):

A->P: SIP/2.0 487 Request Terminated
Via: SIP/2.0/UDP sip.ieee.org ;branch=3d8a50dbf5a28d.2
Via: SIP/2.0/UDP c.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>;tag=3pcc
To: T. Watson <sip:t.watson@ieee.org>
Call-ID: 31415@c.bell-tel.com
CSeq: 1 INVITE

This response terminates at P.
Bell gets the two 200 responses from X and Y in short order and sends andACK to both directly. Bell

can now keep both call legs or terminate one with aBYE request. Here, he temporarily keeps both to
determine where the real Watson is located.

C->X: ACK sip:t.watson@x.bell-tel.com SIP/2.0
Via: SIP/2.0/UDP c.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>;tag=3pcc
To: T. Watson <sip:t.watson@ieee.org>;tag=192137601
Call-ID: 31415@c.bell-tel.com
CSeq: 1 ACK

C->Y: ACK sip:watson@y.bell-tel.com SIP/2.0
Via: SIP/2.0/UDP c.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>;tag=3pcc
To: T. Watson <sip:t.watson@ieee.org>;tag=35253448
Call-ID: 31415@c.bell-tel.com
CSeq: 1 ACK

After a brief discussion between Bell with X and Y, it becomes clear that Watson is at X. (Note that this
is not a three-way call; only Bell can talk to X and Y, but X and Y cannot talk to each other.) Thus, Bell
sends aBYE to Y, which is replied to:

C->Y: BYE sip:watson@y.bell-tel.com SIP/2.0
Via: SIP/2.0/UDP c.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>;tag=3pcc

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 109]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

To: T. Watson <sip:t.watson@ieee.org>;tag=35253448
Call-ID: 31415@c.bell-tel.com
CSeq: 2 BYE

Y->C: SIP/2.0 200 OK
Via: SIP/2.0/UDP c.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>;tag=3pcc
To: T. Watson <sip:t.watson@ieee.org>;tag=35253448
Call-ID: 31415@c.bell-tel.com
CSeq: 2 BYE

20.6 Redirects

Replies with status codes 301 (Moved Permanently) or 302 (Moved Temporarily) specify another location
using theContact field. Continuing our earlier example, the server P atieee.org decides to redirect
rather than proxy the request:

P->C: SIP/2.0 302 Moved temporarily
Via: SIP/2.0/UDP c.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>;tag=3pcc
To: T. Watson <sip:t.watson@ieee.org>;tag=72538263
Call-ID: 31415@c.bell-tel.com
CSeq: 1 INVITE
Contact: sip:watson@h.bell-tel.com,

sip:watson@acm.org, sip:t.watson@x.bell-tel.com,
sip:watson@y.bell-tel.com

As another example, assume Alice (A) wants to delegate her calls to Bob (B) while she is on vacation
until July 29th, 1998. Any calls meant for her will reach Bob with Alice’sTo field, indicating to him what
role he is to play. Charlie (C) calls Alice (A), whose server returns:

A->C: SIP/2.0 302 Moved temporarily
From: Charlie <sip:charlie@caller.com>;tag=5h7j
To: Alice <sip:alice@wonderland.com> ;tag=2332462
Call-ID: 27182@caller.com
Contact: sip:bob@example.com
Expires: Wed, 29 Jul 1998 9:00:00 GMT
CSeq: 1 INVITE

Charlie then sends the following request to the SIP server of theexample.com domain. Note that the
server atexample.com forwards the request to Bob based on theRequest-URI.

C->B: INVITE sip:bob@example.com SIP/2.0
Via: SIP/2.0/UDP h.caller.com
From: <sip:charlie@caller.com>;tag=5h7j

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 110]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

To: sip:alice@wonderland.com
Call-ID: 27182@caller.com
CSeq: 2 INVITE
Contact: sip:charlie@h.caller.com

In the third redirection example, we assume that all outgoing requests are directed through a local fire-
wall F (“outbound proxy”) atcaller.com , with Charlie again inviting Alice:

C->F: INVITE sip:alice@wonderland.com SIP/2.0
Via: SIP/2.0/UDP h.caller.com
From: <sip:charlie@caller.com>;tag=5h7j
To: Alice <sip:alice@wonderland.com>
Call-ID: 27182@caller.com
CSeq: 1 INVITE
Contact: sip:charlie@h.caller.com

The local firewall atcaller.com happens to be overloaded and thus redirects the call from Charlie to
a secondary server S:

F->C: SIP/2.0 302 Moved temporarily
Via: SIP/2.0/UDP h.caller.com
From: <sip:charlie@caller.com>;tag=5h7j
To: Alice <sip:alice@wonderland.com>
Call-ID: 27182@caller.com
CSeq: 1 INVITE
Contact: <sip:alice@wonderland.com:5080;maddr=spare.caller.com>

Based on this response, Charlie directs the same invitation to the secondary serverspare.caller.com
at port 5080, but maintains the sameRequest-URI as before:

C->S: INVITE sip:alice@wonderland.com SIP/2.0
Via: SIP/2.0/UDP h.caller.com
From: <sip:charlie@caller.com>;tag=5h7j
To: Alice <sip:alice@wonderland.com>
Call-ID: 27182@caller.com
CSeq: 2 INVITE
Contact: sip:charlie@h.caller.com

20.7 Negotiation

An example of a 606 (Not Acceptable) response is:

S->C: SIP/2.0 606 Not Acceptable
Via: SIP/2.0/UDP c.bell-tel.com
From: A. Bell <sip:a.g.bell@bell-tel.com>;tag=3ab6

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 111]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

To: T. Watson <sip:t.watson@ieee.org> ;tag=7434264
Call-ID: 14142@c.bell-tel.com
CSeq: 1 INVITE
Warning: 370 "Insufficient bandwidth (only have ISDN)",

305 "Incompatible media format",
330 "Multicast not available"

Content-Type: application/sdp
Content-Length: ...

v=0
o=c 3149329138 3149329165 IN IP4 38.245.76.2
s=Let’s talk
t=3149328630 0
b=CT:128
c=IN IP4 x.bell-tel.com
m=audio 3456 RTP/AVP 5 0 7
a=rtpmap:5 DVI4/8000
a=rtpmap:0 PCMU/8000
a=rtpmap:7 LPC/8000
m=video 2232 RTP/AVP 31
a=rtpmap:31 H261/90000

In this example, the original request specified a bandwidth that was higher than the access link could
support, requested multicast, and requested a set of media encodings. The response states that only 128 kb/s
is available and that (only) DVI, PCM or LPC audio could be supported in order of preference.

The response also states that multicast is not available. In such a case, it might be appropriate to set up
a transcoding gateway and re-invite the user.

20.8 OPTIONS Request

A caller Alice can use anOPTIONS request to find out the capabilities of a potential callee Bob, with-
out “ringing” the designated address. Bob returns a description indicating that he is capable of receiving
audio encodings PCM mu-law (RTP payload type 0), 1016 (payload type 1), GSM (payload type 3), and
SX7300/8000 (dynamic payload type 99), and video encodings H.261 (payload type 31) and H.263 (payload
type 34).

C->S: OPTIONS sip:bob@example.com SIP/2.0
Via: SIP/2.0/UDP cat.wonderland.com
From: Alice <sip:alice@wonderland.com>;tag=1gloo
To: Bob <sip:bob@example.com>
Call-ID: 6378@cat.wonderland.com
CSeq: 1 OPTIONS
Accept: application/sdp

S->C: SIP/2.0 200 OK

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 112]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

From: Alice <sip:alice@wonderland.com>;tag=1gloo
To: Bob <sip:bob@example.com> ;tag=376364382
Call-ID: 6378@cat.wonderland.com
Content-Length: 81
Content-Type: application/sdp

v=0
o=alice 3149329138 3149329165 IN IP4 24.124.37.3
s=Security problems
t=3149328650 0
c=IN IP4 24.124.37.3
m=audio 0 RTP/AVP 0 1 3 99
a=rtpmap:0 PCMU/8000
a=rtpmap:1 1016/8000
a=rtpmap:3 GSM/8000
a=rtpmap:99 SX7300/8000
m=video 0 RTP/AVP 31 34
a=rtpmap:31 H261/90000
a=rtpmap:34 H263/90000

A Minimal Implementation

A.1 Transport Protocol Support

User agents and stateless proxiesMUST support UDP andMAY support TCP or other transport protocols,
stateful proxiesMUST support both UDP and TCP.

A.2 Client

All clients MUST be able to generate theINVITE andACK requests. ClientsMUST generate and parse the
Call-ID, Content-Length, Content-Type, CSeq, From, Record-Route, Route andTo headers. Clients
MUST also parse theRequire header. A minimal implementationMUST understand SDP (RFC 2327, [6]).
It MUST be able to recognize the status code classes 1 through 6 and act accordingly. UAsMUST be able to
use outbound proxies.

The following capability sets build on top of the minimal implementation described in the previous
paragraph. In general, each capability listed below builds on the ones above it:

Basic: A basic implementation adds support for theBYE method to allow the interruption of a pending call
attempt. It includes aUser-Agent header in its requests and indicates its preferred language in the
Accept-Language header.

Redirection: To support call forwarding, a client needs to be able to understand theContact header, but
only theSIP-URL part, not the parameters.

Negotiation: A client MUST be able to request theOPTIONS method and understand the 380 (Alterna-
tive Service) status and theContact parameters to participate in terminal and media negotiation. It

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 113]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

SHOULD be able to parse theWarning response header to provide useful feedback to the caller.

Authentication: If a client wishes to invite callees that require caller authentication, itMUST be able to
recognize the 401 (Unauthorized) status code,MUST be able to generate theAuthorization request
header andMUST understand theWWW-Authenticate response header.

If a client wishes to use proxies that require caller authentication, itMUST be able to recognize the
407 (Proxy Authentication Required) status code,MUST be able to generate theProxy-Authorization
request header and understand theProxy-Authenticate response header.

A.3 Server

A minimally compliant server implementationMUST understand theINVITE, ACK, OPTIONS andBYE
requests. A proxy serverMUST also understandCANCEL. It MUST parse and generate, as appropriate, the
Call-ID, Content-Length, Content-Type, CSeq, Expires, From, Max-Forwards, Require, To andVia
headers. ItMUST echo theCSeq andTimestamp headers in the response. ItSHOULD include theServer
header in its responses.

A.4 Header Processing

ImplementationsSHOULD NOT have built-in limits for the number of header instances and header field
lengths, beyond imposing an overall message length. Header fields that identify the transactionSHOULD

appear first in the message so that implementations that cannot handle the full message can at least return a
status response, e.g., 513 (Message Too Large).

Table 6 lists the headers that different implementations support. UAC refers to a user-agent client (calling
user agent), UAS to a user-agent server (called user-agent).

The fields in the table have the following meaning. Type is as in Table 4 and 5. “-” indicates the field
is not meaningful to this system (although it might be generated by it). “m” indicates the fieldMUST be
understood. “b” indicates the fieldSHOULD be understood by a basic implementation. “r” indicates the field
SHOULD be understood if the system claims to understand redirection. “a” indicates the fieldSHOULD be
understood if the system claims to support authentication. “e” indicates the fieldSHOULD be understood if
the system claims to support encryption. “o” indicates support of the field is purely optional. Headers whose
support is optional for all implementations are not shown.

B Usage of the Session Description Protocol (SDP)

This section describes the use of the Session Description Protocol (SDP) (RFC 2327 [6]). SDP is identified
asContent-Type “application/sdp”. Each SIP messageMUST contain zero or one SDP messages. Although
the SDP specification allows for multiple session descriptions to be concatenated together into a large SDP
message, an SDP message used with SIPMUST contain only a single session description.

Proxies generally do not modify the session description, butMAY do so if necessary, e.g., for network
address translators, and if the session description is not protected by a cryptographic integrity mechanism.

B.1 General Methodology

The usage of SDP within SIP follows an “offer-answer” model. One side offers an SDP that provides their
view of the session, and the other side answers the SDP with a matching one. The offer-answer modelMAY

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 114]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

type UAC proxy UAS registrar
Accept R - o m m
Accept-Encoding R - - m m
Accept-Language R - b b b
Allow 405 o - - -
Authorization R a o a a
Call-ID g m m m m
Contact R - - m m
Contact r m r - -
Content-Encoding g m - m m
Content-Length g m m m m
Content-Type g m - m m
CSeq g m m m m
Encryption g e - e e
Expires g - o o m
From g m o m m
Max-Forwards R - b - -
Proxy-Authenticate 407 a - - -
Proxy-Authorization R - a - -
Proxy-Require R - m - -
Record-Route R m - m m
Require R m - m m
Response-Key R - - e e
Route R m m m -
Timestamp g o o m m
To g m m m m
Unsupported r b b - -
User-Agent g b - b -
Via g m m m m
WWW-Authenticate 401 a - - -

Table 6: Header Field Processing Requirements

occur in two ways. The offerMAY be placed in anINVITE, in which case the the answerMUST be in a 200
class response, and theACK MUST NOT contain SDP. Or, theINVITE MAY contain no SDP, in which case
the offerMUST be in the 200 class response, and theACK MUST contain the answer.

If the offered session is not acceptable, it is rejected. If the offer is in theINVITE, rejection occurs by
responding with a 488 or 606 response. If the offer occurs in the 200 class response, the UACMUST send
anACK request, with a valid answer. ItMAY send aBYE request to terminate the call, orMAY generate a
re-INVITE, with the offer in theINVITE, to change the session parameters back to an acceptable form.

SDP processing does not depend on whether the offer comes in theINVITE or 200 class response.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 115]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

B.2 Generating the initial offer

The offer (and answer)MUST be a valid SDP, as defined by RFC 2327 [6]. This means itMUST contain a v
line, o line, s line and t line. Either an e line or p lineMUST be present. However, it isRECOMMENDED that
all implementations accept SDP without e, p, or s lines. The numeric value of the session id and version in
the o lineMUST be representable with a 64 bit signed integer.

The SDP “s=” line and the SIPSubject header field have different meanings when inviting to a multicast
session. The session description line describes the subject of the multicast session, while the SIPSubject
header field describes the reason for the invitation. The example in Section 20.2 illustrates this point. For
invitations to two-party sessions, the SDP “s=” lineMAY consist of a single space character (0x20).

Unfortunately, SDP does not allow to leave the “s=” line empty.

B.2.1 Unicast

The offerMUST contain zero or more media sections. Zero media sessions implies that the offerer wishes to
communicate, but that the streams for the session will be added at a later time through re-INVITEs.

If a session description from an offerer contains a media stream which is listed as send (receive) only,
it means that the offerer is only willing to send (receive) this stream, not receive (send). Media streams
are marked as send-only or receive-only media streams using the SDP “a=sendonly” and “a=recvonly”
attributes, respectively. If neither attribute is present, the default is both send and receive (whichMAY be
explicitly indicated with the “a=sendrecv” attribute).

For recvonly and sendrecv streams, the port number and address in the session description indicate
where the media stream should be sent to. For send-only RTP streams, the address and port number indicate
where RTCP reports are to be sent to. Specifically, RTCP reports are sent to the port number one higher
than the number indicated. The IP address and port present in the offer indicate nothing about the source IP
address and source port of RTP and RTCP packets that will be sent by the offerer. A port number of zero
in the offer indicates that the stream is offered but should never be used. This has no useful semantics in
an initial INVITE, but is allowed for reasons of completeness, since the response can contain a zero port
indicating a rejected stream (Section B.3. Furthermore, existing streams can be terminated by setting the
port to zero (Section B.4. In general, a port number of zero indicates that the media stream is not wanted.

The list of payload types for each media stream conveys two pieces of information, namely the set of
codecs that the offerer is capable of sending and/or receiving (depending on the direction attributes), and
the RTP payload type numbers used to identify those codecs. If multiple codecs are listed, it means that the
offerer is capable of making use of any of those codecs during the call. In other words, the answererMAY

change codecs in the middle of the call, without sending a SIP message, to make use of any of those listed.
For a send-only stream, the offerSHOULD indicate those codecs the offerer is willing to send for this stream.
For a receive-only stream, the offerSHOULD indicate those codecs the offerer is willing to receive for this
stream. For a send and receive stream, the offerSHOULD indicate those codecs that the offerer is willing to
send and receive with.

For receive-only streams, the payload type numbers indicate the value of the payload type field in RTP
packets the offerer is expecting to receive for that codec. For send-only streams, the payload type numbers
indicate the value of the payload type field in RTP packets the offerer is planning to send for that codec
type. For send-and-receive streams, the payload type numbers indicate the value of the payload type field
the offerer expects to both send and receive. This means that the payload type for a codec is the same in
both directions.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 116]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

All media descriptionsSHOULD contain “a=rtpmap” mappings from RTP payload types to encodings.
If there is no “a=rtpmap”, the static payload type table from RFC 1890 [26] is to be used.

This allows easier migration away from static payload types.

In all cases, the codecs in the m line are listed in order of preference, with the first codec listed being
preferred. In this case, preferred means that the recipient of the offerSHOULD use the codec with the highest
preference that is acceptable to it.

If multiple media streams of different types are present, it means that the offerer wishes to use those
streams at the same time. A typical case is an audio and video stream as part of a videoconference.

If multiple media streams of the same type are present, it means that the offerer wishes to send (and/or
receive), multiple streams at the same time. When sending multiple streams of the same type, the source
of the stream (such as the microphone or circuit on a gateway) is sent multiple times, once for each stream.
Each streamMAY use different encodings. When receiving multiple streams of the same type, the streams
MUST be mixed before playing them out. A typical usage example is a pre-paid calling card application,
where the user can enter in a “long pound” at any time during a call to hangup and make a new call on the
same card. This requires media from the user to the remote gateway, and to a system that looks for the long
pound.

There are some codecs, such as the RTP payload format for DTMF tones and digits [42] and comfort
noise codecs, which can only encode specific types of media content. When one of these codecs is present
in an offered stream that is send-only or send-and-receive, it means that the offerer will send using that
codec only when the content of the media stream is of a type that can be encoded with that codec. When the
content of the media stream cannot be encoded with that codec, another codec indicated in the m line can be
used. If there are no other codecs in the m line, nothing is sent. This is useful for handling the case where
a UA would like to send DTMF only, using RFC 2833, to a remote server. This is indicated with a single
media line containing only the DTMF codec.

B.2.2 Multicast

Construction of a session description for a multicast offer follows the procedures above, with a few excep-
tions.

The address listed in the c lineMUST be a multicast address. It indicates the address that the offerer
wishes to receive packets on.

The interpretation of send-only and receive-only for multicast media sessions differs from that for uni-
cast sessions. For multicast, send-only means that therecipientof the session description (caller or callee)
SHOULD only send media streams to the address and port indicated. Receive-only means that the recipient
of the session descriptionSHOULD only receive media on the address and port indicated.

B.3 Generating the answer

The answer to an offered SDP is based on the offered SDP. If the answer is different in any way (different
IP addresses, ports, etc.), the origin lineMUST be different in the answer, since the answer is generated by
a different entity. In that case, the version number in the o line of the answer is unrelated to the version
number in the o line of the offer.

For each m line in the offer, thereMUST be a corresponding m line in the answer. The answerMUST

contain exactly the same number of m lines as the offer. This allows for streams to be matched up based on
their order. This implies that if the offer contained zero m lines, the answerMUST contain zero m lines.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 117]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

An offered streamMAY be rejected in the answer, for any reason. The definition of rejected is both
neither offerer and answererMUST NOT generate media (or RTCP packets) for that stream. To reject an
offered stream, the port number in the corresponding stream in the answer is set to zero. Any media formats
listed are ignored. At least oneMUST be present, as specified by SDP.

B.3.1 Unicast

If a stream is offered as sendonly, the corresponding streamMUST be marked as recvonly in the answer.
Furthermore, the corresponding stream in the answerMUST contain at least one codec the answerer is willing
to receive with from amongst those listed in the offer. The streamMAY indicate additional codecs, not listed
in the corresponding stream in the offer, that the answerer is willing to receive with. The connection address
and port indicate the address where the answerer wishes to receive RTP (RTCP will be received on the port
which is one higher).

If a media stream is listed as recvonly in the offer, the answerMUST be marked as sendonly. Furthermore,
the corresponding stream in the answerMUST contain at least one codec the answerer is willing to send with
from amongst those listed in the offer. The IP address and port indicate the address where the answerer
wishes to receive RTCP (RTCP will be received on the port number one higher than the one listed in the
SDP).

If an offered media stream is listed as sendrecv (or contains no direction attribute, in which case it is
sendrecv by default), the corresponding stream in the answerMAY be marked as sendonly, recvonly, or
sendrecv. The default is sendrecv. If the stream in the answer is marked as sendonly, itMUST contain at
least one codec the answerer is willing to send with from amongst those listed in the offer. The IP address
and port indicate the address where the answerer wishes to receive RTCP. If the stream in the answer is
marked as recvonly, itMUST contain at least one codec the answerer is willing to receive with from amongst
those listed in the offer. The streamMAY indicate additional codecs, not listed in the corresponding stream
in the offer, that the answerer is willing to receive with. The connection address and port in the answer
indicate the address where the answerer wishes to receive RTP and RTCP (RTCP will be received on the
port number one higher than the one listed in the SDP). If the stream in the answer is marked as sendrecv, it
MUST contain at least one codec the answerer is willing to both send and receive with, from amongst those
listed in the offer. The streamMAY indicate additional codecs, not listed in the corresponding stream in
the offer, that the answerer is willing to receive with. The connection address and port indicate the address
where the answerer wishes to receive RTP (RTCP will be received on the port which is one higher).

The payload type numbers for a particular codec within a streamMUST be the same in offer and answer.
In other words, a different dynamic payload type number for the same codec cannot be used in each direction.

In all cases, the codecs in the m line are listed in order of preference, with the first codec listed being
preferred. In this case, preferred means that the recipient of the answerSHOULD use the codec with the
highest preference that is acceptable to it.

If the answerer has no media formats in common for a particular offered stream, the answererMUST

reject that media stream.
If there are no media formats in common for all streams, the entire offered session is rejected.

B.3.2 Multicast

For multicast, receive and send multicast addresses are the same and all parties use the same port numbers
to receive media data. If the session description provided by the offerer is acceptable to the answerer, the
answerer can choose not to include a session description orMAY echo the description in the response.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 118]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

An answererMAY return a session description with some of the payload types removed, or port numbers
set to zero (but no other value). This indicates to the offerer that the answerer does not support the given
stream or media types which were removed. An answererMUST NOT change whether a given stream is
send-only, receive-only, or send-and-receive.

If an answerer does not support multicast at all, itSHOULD reject the session description.

B.4 Modifying the session

At any point during the call, either participantMAY issue a re-INVITE to modify characteristics of the
session. It is fundamental to the operation of SIP that the exact same offer-answer procedure defined above
is used for re-INVITE. This means that a re-INVITE MAY contain no SDP, so that the 200 OK to the re-
INVITE contains the offer. In this case, the offererSHOULD offer the same SDP it provided previously if it
has no reason to change anything.

The offer in a re-INVITE MAY be identical to the last SDP provided to the other party (which may
have been provided in an offer or an answer), or itMAY be different. We refer to the last SDP provided as
the “previous SDP”. If the offer is the same, the answerMAY be the same as the previous SDP from the
answerer, or itMAY be different. If the offered SDP is different from the previous SDP, some constraints are
placed on its construction, discussed below.

Nearly all aspects of the session can be modified. New streams can be added, existing streams can be
deleted, and parameters of existing streams can change. When issuing an offer that modifies the session, the
o line of the new SDPMUST be identical to that in the previous SDP, except that the version in the origin
field MUST increment from the previous SDP. If the version in the origin line does not increment, the SDP
MUST be identical to the SDP with that version number. The answererMUST be prepared to receive an offer
that contains SDP with a version that has not changed; this is effectively a no-op. However, the answerer
MUST generate a valid answer (whichMAY be the same as the previous SDP from the answerer, orMAY be
different), according to the procedures defined in Section B.3.

If an SDP is offered which is different from the previous SDP, the new SDPMUST have a matching media
section for each media section in the previous SDP. In other words, if the previous SDP hadN media lines,
the new SDPMUST have at leastN media lines. Theith media stream in the previous SDP, counting from
the top, matches theith media stream in the new SDP, counting from the top. This matching is necessary in
order for the answerer to determine which stream in the new SDP corresponds to a stream in the previous
SDP. Because of these requirements, the number of m lines in a stream never decreases, but only increases.
Deleted media streams from a previous SDPMUST NOT be removed from a new SDP.

B.4.1 Adding a media stream

New media streams are created by adding additional media descriptions below the existing ones. New media
sectionsMUST appear below any existing media sections. The rules for formatting this media section are
identical to those described in Section B.2.

When the answerer receives an SDP with more media descriptions than the previous SDP from the
offerer, the answerer knows that new media streams are being added. These can be rejected or accepted
by placing a matching media description in the answer. The procedures for constructing the new media
description in the answer are described in Section B.3.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 119]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

B.4.2 Removing a media stream

Existing media streams are removed by creating a new SDP with the port number for that stream set to
zero. Otherwise, the media descriptionSHOULD be formatted identically to the corresponding stream in the
previous SDP.

A stream that is offered with a port of zeroMUST be marked with port zero in the answer. Otherwise,
the media description for the removed streamSHOULD be formatted identically to the corresponding stream
in the previous SDP.

B.4.3 Modifying a media stream

Nearly all characteristics of a media stream can be modified.
The port number for a streamMAY be changed. To do this, the offerer creates a new media description,

with the port number in the m line different from the corresponding stream in the previous SDP. If only the
port number is to be changed, the rest of the media stream descriptionSHOULD remain unchanged.

The corresponding media stream in the answerMAY be the same as the stream in the previous SDP from
the answerer, orMAY be different. If the updated stream is accepted by the answerer, the answererSHOULD

begin sending traffic for that stream to the new port immediately. This implies that the offererMUST be
prepared to receive media on the new port the instant it makes the offer.

To change the IP address where media is sent to, the same procedure is followed for changing the port
number. The only difference is that the connection line is updated, not the port number.

The list of codecs used in the sessionMAY be changed. To do this, the offerer creates a new media
description, with the list of media formats in the m line different from the corresponding stream in the
previous SDP. This listMAY include new codecs, andMAY remove codecs present from the previous SDP.
When a new codec is used with a dynamic payload type number, itMUST NOT reuse a dynamic payload
type number used previously in the session.

The corresponding media stream in the answer is formulated as described in Section B.3. If the new
list of codecs for a stream changes the choice of which codec is used, the new codecSHOULD be used
immediately. That means the offererMUST be prepared to receive media with a new codec as soon as it
sends the offer, and the answererMUST be prepared to receive media with a new codec as soon as it sends
the answer.

The media type (audio, video, etc.) for a streamMAY be changed. This is particularly useful for changing
between voice and fax in a single stream, which are both separate media types. To do this, the offerer creates
a new media description, with a new media type, in place of the description in the previous SDP which is to
be changed. The IP address and port for the streamMAY change, orMAY remain the same. However, the
list of payload type numbers for the new codecsMUST be different than any used previously for this stream.

The corresponding media stream in the answer is formulated as described in Section B.3. Assuming the
stream is acceptable, the answererSHOULD begin sending with the new media type and codecs as soon as it
receives the offer.

The transport for a streamMAY be changed. The process for doing this is identical to changing the port,
excepting the transport is updated, not the port.

Any other attributes in a media descriptionMAY be updated in an offer.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 120]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

B.4.4 Putting a media stream on hold

If a party in a call wants to put the other party “on hold”, i.e., request that it temporarily stops sending one
or more media streams, a party offers the other an updated SDP. This SDP has the connection address set to
zero (0.0.0.0) for those streams that are to be put on hold. The treament of this is no different than for any
other change in address, with the exception that the 0.0.0.0 address is effectively interpreted as “dev/null”,
and no media is sent. Specifically, this means that a stream is placed “on hold” separately in each direction.
Each stream is placed “on hold” independently. The recipient of an offer for a stream on-holdSHOULD NOT

automatically return an answer with the corresponding stream on hold. An SDP with all streams “on hold”
is referred to asheld SDP.

Certain third party call control scenarios do not work when a UA responds to held SDP with held SDP.

Typically, when a user “presses” hold, the UA will generate a re-INVITE with all streams in the SDP
indicating an address of 0.0.0.0, and it will also locally mute, so that no media is sent to the far end.

B.5 Example

For example, assume that the caller Alice has included the following description in herINVITE request. It
includes a bidirectional audio stream and two bidirectional video streams, using H.261 (payload type 31)
and MPEG (payload type 32). The offered SDP is:

v=0
o=alice 2890844526 2890844526 IN IP4 host.anywhere.com
s=New board design
t=0 0
c=IN IP4 host.anywhere.com
m=audio 49170 RTP/AVP 0
a=rtpmap:0 PCMU/8000
m=video 51372 RTP/AVP 31
a=rtpmap:31 H261/90000
m=video 53000 RTP/AVP 32
a=rtpmap:32 MPV/90000

The callee, Bob, does not want to receive or send the first video stream, so it returns the media description
below as the answer:

v=0
o=bob 2890844730 2890844730 IN IP4 host.example.com
s=New board design
t=0 0
c=IN IP4 host.example.com
m=audio 47920 RTP/AVP 0 1
a=rtpmap:0 PCMU/8000
m=video 0 RTP/AVP 31
m=video 53000 RTP/AVP 32
a=rtpmap:32 MPV/90000

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 121]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

At some point later, Bob decides to change the port where he will receive the audio stream (from 47920
to 6400), and at the same time, add an additional audio stream as receive only, using the RTP payload format
for events. Bob offers the following SDP in theINVITE:

v=0
o=bob 2890844730 2890844731 IN IP4 host.example.com
s=New board design
t=0 0
c=IN IP4 host.example.com
m=audio 8864 RTP/AVP 110
a=rtpmap:110 telephone-events
a=recvonly
m=audio 6400 RTP/AVP 0 1
a=rtpmap:0 PCMU/8000
m=video 0 RTP/AVP 31
m=video 53000 RTP/AVP 32
a=rtpmap:32 MPV/90000

Alice accepts the additional media stream, and so generates the following answer:

v=0
o=alice 2890844526 2890844527 IN IP4 host.anywhere.com
s=New board design
t=0 0
c=IN IP4 host.anywhere.com
m=audio 4520 RTP/AVP 110
a=rtpmap:110 telephone-events
a=sendonly
m=audio 49170 RTP/AVP 0
a=rtpmap:0 PCMU/8000
m=video 51372 RTP/AVP 31
a=rtpmap:31 H261/90000
m=video 53000 RTP/AVP 32
a=rtpmap:32 MPV/90000

C Summary of Augmented BNF

All of the mechanisms specified in this document are described in both prose and an augmented Backus-
Naur Form (BNF) similar to that used by RFC 822 [25] and RFC 2234 [43]. Implementors will need to
be familiar with the notation in order to understand this specification. The augmented BNF includes the
following constructs:

name = definition

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 122]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

The name of a rule is simply the name itself (without any enclosing “<” and “>”) and is separated from
its definition by the equal “=” character. White space is only significant in that indentation of continuation
lines is used to indicate a rule definition that spans more than one line. Certain basic rules are in uppercase,
such as SP, LWS, HT, CRLF, DIGIT, ALPHA, etc. Angle brackets are used within definitions whenever
their presence will facilitate discerning the use of rule names.

"literal"

Quotation marks surround literal text. Unless stated otherwise, the text is case-insensitive.

rule1 | rule2

Elements separated by a bar (”|”) are alternatives, e.g., “yes| no” will accept yes or no.

(rule1 rule2)

Elements enclosed in parentheses are treated as a single element. Thus, “(elem (foo| bar) elem)” allows the
token sequences “elem foo elem” and “elem bar elem”.

*rule

The character ”*” preceding an element indicates repetition. The full form is ”< n >*< m >element”
indicating at least< n > and at most< m > occurrences of element. Default values are 0 and infinity so
that ”*(element)” allows any number, including zero; ”1*element” requires at least one; and ”1*2element”
allows one or two.

[rule]

Square brackets enclose optional elements; ”[foo bar]” is equivalent to ”*1(foo bar)”.

N rule

Specific repetition: “<n>(element)” is equivalent to “<n>*<n>(element)”; that is, exactly<n> occur-
rences of (element). Thus 2DIGIT is a 2-digit number, and 3ALPHA is a string of three alphabetic charac-
ters.

#rule

A construct “#” is defined, similar to “*”, for defining lists of elements. The full form is “< n >#< m >
element” indicating at least< n > and at most< m > elements, each separated by one or more commas
(“ ,”) and OPTIONAL linear white space (LWS). This makes the usual form of lists very easy; a rule such as

(*LWS element *(*LWS ”,” *LWS element))

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 123]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

can be shown as1# element. Wherever this construct is used, null elements are allowed, but do not
contribute to the count of elements present. That is, “(element), , (element)” is permitted, but counts
as only two elements. Therefore, where at least one element is required, at least one non-null element
MUST be present. Default values are 0 and infinity so that “#element” allows any number, including zero;
“1#element” requires at least one; and “1#2element” allows one or two.

; comment

A semi-colon, set off some distance to the right of rule text, starts a comment that continues to the end of
line. This is a simple way of including useful notes in parallel with the specifications.

implied *LWS

The grammar described by this specification is word-based. Except where noted otherwise, linear white
space (LWS) can be included between any two adjacent words (token or quoted-string), and between
adjacent tokens and separators, without changing the interpretation of a field. At least one delimiter (LWS
and/or separators)MUST exist between any two tokens (for the definition of “token” below), since they
would otherwise be interpreted as a single token. Note that URLs doNOT contain LWS.

C.1 Basic Rules

The following rules are used throughout this specification to describe basic parsing constructs. The US-
ASCII coded character set is defined by ANSI X3.4-1986.

OCTET = %x00-ff ; any 8-bit sequence of data
CHAR = %x00-7f ; any US-ASCII character (octets 0 - 127)
upalpha = ”A” | ”B” | ”C” | ”D” | ”E” | ”F” | ”G” | ”H” | ”I” |

”J” | ”K” | ”L” | ”M” | ”N” | ”O” | ”P” | ”Q” | ”R” |
”S” | ”T” | ”U” | ”V” | ”W” | ”X” | ”Y” | ”Z”

lowalpha = ”a” | ”b” | ”c” | ”d” | ”e” | ”f” | ”g” | ”h” | ”i” |
”j” | ”k” | ”l” | ”m” | ”n” | ”o” | ”p” | ”q” | ”r” |
”s” | ”t” | ”u” | ”v” | ”w” | ”x” | ”y” | ”z”

alpha = lowalpha | upalpha
DIGIT = ”0” | ”1” | ”2” | ”3” | ”4” | ”5” | ”6” | ”7” |

”8” | ”9”
alphanum = alpha | DIGIT
CTL = %x00-1f | %x7f ; (octets 0 – 31) andDEL (127)
CR = %d13 ; US-ASCII CR, carriage return character
LF = %d10 ; US-ASCII LF, line feed character
SP = %d32 ; US-ASCII SP, space character
HT = %d09 ; US-ASCII HT, horizontal tab character
CRLF = CR LF ; typically the end of a line

The following are defined in RFC 2396 [9] for the SIP URI:

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 124]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

unreserved = alphanum | mark
mark = ”-” | ” ” | ”.” | ”!” | ”˜” | ”*” | ”’”

| ”(” | ”)”
escaped = ”%” hex hex

SIP header field values can be folded onto multiple lines if the continuation line begins with a space or
horizontal tab. All linear white space, including folding, has the same semantics as SP. A recipientMAY

replace any linear white space with a single SP before interpreting the field value or forwarding the message
downstream.

LWS = *(SP | HT) [CRLF] 1*(SP | HT) ; linear whitespace

TheTEXT-UTF8 rule is only used for descriptive field contents and values that are not intended to be
interpreted by the message parser. Words of*TEXT-UTF8 contain characters from the UTF-8 character
set (RFC 2279 [22]). TheTEXT-UTF8-TRIM rule is used for descriptive field contents that arenot quoted
strings, where leading and trailing LWS is not meaningful. In this regard, SIP differs from HTTP, which
uses the ISO 8859-1 character set.

TEXT-UTF8 = *(TEXT-UTF8char | LWS)
TEXT-UTF8-TRIM = *TEXT-UTF8char *(*LWS TEXT-UTF8char)
TEXT-UTF8char = %x21-7e

| UTF8-NONASCII
UTF8-NONASCII = %xc0-df 1UTF8-CONT

| %xe0-ef 2UTF8-CONT
| %xf0-f7 3UTF8-CONT
| %xf8-fb 4UTF8-CONT
| %xfc-fd 5UTF8-CONT

UTF8-CONT = %x80-bf

A CRLF is allowed in the definition ofTEXT-UTF8 only as part of a header field continuation. It is
expected that the foldingLWS will be replaced with a singleSP before interpretation of theTEXT-UTF8
value.

Hexadecimal numeric characters are used in several protocol elements.

HEX = ”A” | ”B” | ”C” | ”D” | ”E” | ”F”
| ”a” | ”b” | ”c” | ”d” | ”e” | ”f” | DIGIT

Many SIP header field values consist of words separated by LWS or special characters. Unless otherwise
stated, tokens are case-insensitive. These special charactersMUST be in a quoted string to be used within a
parameter value.

token = 1*(alphanum | ”-” | ”.” | ”!” | ”%” | ”*” | ” ” | ”+” | ”‘” | ”’” | ”˜”)
separators = ”(” | ”)” | ”<” | ”>” | ”@” |

”,” | ”;” | ”:” | ”\” | <”> |
”/” | ”[” | ”]” | ”?” | ”=” |
”{” | ”}” | SP | HT

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 125]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

Comments can be included in some SIP header fields by surrounding the comment text with parentheses.
Comments are only allowed in fields containing “comment” as part of their field value definition. In all other
fields, parentheses are considered part of the field value.

comment = “(“ *(ctext | quoted-pair | comment) “)”
ctext = <anyTEXT-UTF8 excluding“(“ and“)”>

A string of text is parsed as a single word if it is quoted using double-quote marks. In quoted strings,
quotation marks (”) and backslashes (\) need to be escaped.

quoted-string = (<”> *(qdtext | quoted-pair) <”>)
qdtext = LWS | %x21 | %x23-5b | %x5d-7e

| UTF8-NONASCII

The backslash character (”\”) MAY be used as a single-character quoting mechanism only within quoted-
string and comment constructs. Unlike HTTP/1.1, the characters CR and LF cannot be escaped by this
mechanism to avoid conflict with line folding and header separation.

quoted-pair = ”\” (%x00 - %x09 | %x0b | %x0c | %x0e - %x7f)

D IANA Considerations

Section 4.4 describes a name space and mechanism for registering SIP options. Section 10.47 describes the
name space for registering SIPwarn-codes.

SIP Header field names are registered with IANA. They do not require working group or working group
chair review, butSHOULD be documented in an RFC or Internet draft. For Internet drafts, IANA is requested
to make the draft available as part of the registration database.

By the time an RFC is published, colliding names may have already been implemented.

HeadersSHOULD NOT use theX- prefix notation andMUST NOT duplicate the names of headers used
by SMTP or HTTP unless the syntax is a compatible superset and the semantics are similar. Some common
and widely used header fieldsMAY be assigned one-letter compact forms (Section 13). Compact forms can
only be assigned after SIP working group review. In the absence of this working group, a designated expert
reviews the request.

E Changes from RFC 2543

In addition to editorial clarifications, this document changes or adds the following features to SIP as specified
in RFC 2543:

• Extensions developed by the IETF no longer use theorg.ietf prefix.

• Tag syntax was generalized.

• Via header branch parameters were extended to allow “spirals”, where two requests that differ only in
the request URI are not treated as copies.

• New optional header fields,Alert-Info, Call-Info, In-Reply-To.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 126]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

F Changes Made in Version 00

• In Sec. 14.4.1, indicated that UAC should send bothCANCEL andBYE after a retransmission fails.

• Added semicolon and question mark to the list of unreserved characters for theuser part of SIP URLs
to handletel: URLs properly.

• Uniform handling of if hop countMax-Forwards: return 483. Note that this differs from HTTP/1.1
behavior, where only OPTIONS and TRACE allow this header, but respond as the final recipient when
the value reaches zero.

• Clarified that a forking proxy sendsACKs only for INVITE requests.

• Clarified wording of DNS caching. Added paragraph on “negative caching”, i.e., what to do if one
of the hosts failed. It is probably not a good idea to simply drop this host from the list if the DNS ttl
value is more than a few minutes, since that would mean that load balancing may not work for quite a
while after a server is brought back on line. This will be true in particular if a server group receives a
large number of requests from a small number of upstream servers, as is likely to be the case for calls
between major consumer ISPs. However, without getting into arbitrary and complicated retry rules, it
seems hard to specify any general algorithm. Might it be worthwhile to simply limit the “black list”
interval to a few minutes?

• Added optionalCall-Info andAlert-Info header fields that describe the caller and information to be
used in alerting. (Currently, avoided use of “purpose” qualification since it is not yet clear whether
rendering content without understanding its meaning is always appropriate. For example, if a UAS
does not understand that this header is to replace ringing, it would mix both local ring tone and the
indicated sound URL.) TBD!

• SDP “s=” lines can’t be empty, unfortunately.

• Noted thatmaddr could also contain a unicast address, butSHOULD contain the multicast address if
the request is sent via multicast (Section 10.46, 14.1).

• Clarified that responses are sent to port inVia sent-by value.

• Added “other-*” to theuser URL parameter and theHide andContent-Disposition headers.

• Clarified generation of timeout (408) responses in forking proxies and mention theExpires header.
(Section 17.4)

• Clarified thatCANCEL and INVITE are separate transactions (Fig. 11). Thus, theINVITE request
generates a 487 (Request Terminated) if aCANCEL or BYE arrives.

• Clarified thatRecord-Route SHOULD be inserted in every request, but that the route, once estab-
lished, persists. This provides robustness if the called UAS crashes.

• Emphasized that proxy, redirect, registrar and location servers are logical, not physical entities and
that UAC and UAS roles are defined on a request-by-request basis. (Section 1.4)

• In Section 10.46, noted that themaddr and received parameters also need to be encrypted when
doingVia hiding.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 127]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

• Simplified Fig. 11 to only showINVITE transaction.

• Added definition of the use ofContact (Section 10.14) forOPTIONS.

• Added HTTP/RFC822 headersContent-Language andMIME-Version.

• Added note in Section A indicating that UAs need to support UDP.

• Added explanation in Section 15.5 explaining what a UA should do when receiving an initialINVITE
with a tag.

• Clarified UA and proxy behavior for 302 responses (Section 11.3.3).

• Added details on what a UAS should do when receiving a taggedINVITE request for an unknown call
leg. This could occur if the UAS had crashed and the UAC sends a re-INVITE or if the BYE got lost
and the UAC still believes to be in the call.

• Added definition ofContact in 4xx, 5xx and 6xx to “redirect” to more error details.

• Added note to forking proxy description in Section 17.4 to gather*-Authenticate from responses.
This allows several branches to be authenticated simultaneously.

• Changed URI syntax to use URL escaping instead of quotation marks.

• Changed SIP URL definition to reference RFC 2806 fortelephone-subscriber part.

• Clarified that theTo URI should basically be ignored by the receiving UAS except for matching
requests to call legs. In particular,To headers with a scheme or name unknown to the callee should
be accepted.

• Clarified in Section 10.46.1 thatmaddr is to be added by any client, either proxy or UAC.

• Added response code 488 to indicate that there was no common media at the particular destination.
(606 indicates such failure globally.)

• In Section 10.24, noted that registration updates can shorten the validity period.

• Added note to Section 19.3 to enclose the URI in quotation marks. The BNF in RFC 2617 is in error.

• Clarified that registrars useAuthorization andWWW-Authenticate, not proxy authentication.

• Added note in Section 10.14 that “headers” are copied fromContact into the new request.

• Changed URL syntax so that port specifications have to have at least one digit, in line with other URL
formats such as “http”. Previously, an empty port number was permissible.

• In Section B, added a section on how to add and delete streams in re-INVITEs.

• IETF-blessed extensions now have short names, withoutorg.ietf. prefix.

• Cseq is unique within a call leg, not just within a call (Section 10.20).

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 128]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

• Added IPv6 literal addresses to the SIP URL definition in Section 2, according to RFC 2732 [44].
Modified the IPv4 address to limit segments to at most three digits.

• In Section 7, modify registration procedure so that it explicitly references the URL comparison. Up-
dates with shorter expiration time are now allowed.

• For send-only media, SDP still must indicate the address and port, since these are needed as destina-
tions for RTCP messages. (Section B)

• Changed references regarding DNS SRV records from RFC 2052 to RFC 2782, which is now a Pro-
posed Standard. Integrated SRV into the search procedure in Section 1 and removed the SRV ap-
pendix. The only visible change is that protocol and service names are now prefixed by an underscore.
Added wording that incorporates the precedence ofmaddr.

• Allow parameters inRecord-Route andRoute headers.

• In Table 2, listudp as the default value for the transport parameter in SIP URI.

• Removed sentence thatFrom can be encrypted. It cannot, since the header is needed for call-leg
identification.

• Added note that a UAC only copies aTo tag into subsequent transactions if it arrives in a 200 OK to
an INVITE in Section 15. This avoids the problem that occurs when requests get resubmitted after
receiving, say, a 407 (or possibly 500, 503, 504, 305, 400, 411, 413, maybe even 408). Under the old
rules, these requests would have a tag, which would force the called UAS to reject the request, since
it doesn’t have an entry for this tag.

• Loop detection has been modified to take therequest-URI into account (Section 17.3 and 10.46.6).
This allows the same request to visit the server twice, but with different request URIs (“spiral”).

• Elaborated on URL comparison and comparison ofFrom/To fields.

• Addednp-queried user parameter.

• Changedtag syntax from UUID to token, since there’s no reason to restrict it to hex.

• Added Content-Disposition header based on earlier discussions about labeling what to do with a
message body (part).

• Clarification: proxies must insertTo tags for locally generated responses.

• Clarification: multicast may be used for subsequent registrations.

• Feature: AddedSupported header. Needed if client wants to indicate things the server can usefully
return in the response.

• Bug: TheFrom, To, and Via headers were missing extension parameters. TheEncryption and
Response-Key header fields now “officially” allow parameters consisting only of a token, rather
than just “token = value”.

• Bug: Allow was listed as optional in 405 responses in Table 4. It is mandatory.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 129]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

• Added in Section 6: “ABYE request from either called or calling party terminates any pending
INVITE, but theINVITE request transactionMUST be completed with a final response.”

• Clarified in Section 5.1: “If anINVITE request for an existing session fails, the session description
agreed upon in the last successfulINVITE transaction remains in force.”

• Clarified in Section 5.1 what happens if twoINVITE requests meet each other on the wire, either
traveling the same or in opposite directions:

A UAC MUST NOT issue anotherINVITE request for the same call leg before the pre-
vious transaction has completed. A UAS that receives anINVITE before it sent the final
response to anINVITE with a lower CSeq numberMUST return a 400 (Bad Request)
response andMUST include aRetry-After header field with a randomly chosen value of
between 0 and 10 seconds. A UA that receives anINVITE while it has anINVITE transac-
tion pending, returns a 500 (Internal Server Error) and also includes aRetry-After header
field.

• Expires header clarified: limits only duration ofINVITE transaction, not the actual session. SDP
does the latter.

• TheIn-Reply-To header was added (Section 10.26).

• There were two incompatible BNFs forWWW-Authenticate. One defined for PGP, and the other
borrowed from HTTP. For basic or digest:

WWW-Authenticate: basic realm="Wallyworld"

and for pgp:

WWW-Authenticate: pgp; realm="Wallyworld"

The latter is incorrect and the semicolon has been removed.

• Added rules forRoute construction from called to calling UA.

• We now allowAccept andAccept-Encoding in BYE andCANCEL requests. There is no particular
reason not to allow them, as both requests could theoretically return responses, particularly when
interworking with other signaling systems.

• PGP “pgp-pubalgorithm” allows server to request the desired public-key algorithm.

• ABNF rules now describe tokens explicitly rather than by subtraction; explicit character enumeration
for CTL, etc.

• Registrars should be careful to check theDate header as the expiration time may well be in the past,
as seen by the client.

• Content-Length is mandatory; Table 4 erroneously marked it as optional.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 130]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

• User-Agent was classified in a syntax definition as a request header rather than a general header.

• Clarified ordering of items to be signed and include realm in list.

• Allow Record-Route in 401 and 484 responses.

• Hop-by-hop headers need to precede end-to-end headers only if authentication is used (Section 10).

• 1xx message bodiesMAY now contain session descriptions.

• Changed references to HTTP/1.1 and authentication to point to the latest RFCs.

• Added 487 (Request terminated) status response. It is issued if the original request was terminated
via CANCEL or BYE.

• The spec was not clear on the identification of a call leg. Section 1.3 says it’s the combination ofTo,
From, andCall-ID. However, requests from the callee to the caller have theTo andFrom reversed, so
this definition is not quite accurate. Additionally, the “tag” field should be included in the definition
of call leg. The spec now says that a call leg is defined as the combination of local-address, remote-
address, and call-id, where these addresses include tags.

Text was added to Section 6.21 to emphasize that theFrom andTo headers designate the originator
of the request, not that of the call leg.

• All URI parameters, exceptmethod, are allowed in aRequest-URI. Consequently, also updated the
description of which parameters are copied from 3xx responses in Sec. 10.14.

• The use of CRLF, CR,or LF to terminate lines was confusing. Basically, each header line can be
terminated by a CR, LF, or CRLF. Furthermore, the end of the headers is signified by a “double
return”. Simplified in Section 3 to require sending of CRLF, but require senders to receive CR and LF
as well and only allow CR CR, LF LF in addition to double CRLF as a header-body separator.

• Round brackets inContact header were part of the HTTP legacy, and very hard to implement. They
are also not that useful and were removed.

• The spec said that a proxy is a back-to-back UAS/UAC. This is almost, but not quite, true. For
example, a UAS should insert a tag into a provisional response, but a proxy should not. This was
clarified.

• Section 6.13 in the RFC begins mid-paragraph after the BNF. The following text was misplaced in the
conversion to ASCII:

Even if the “display-name” is empty, the “name-addr” form MUST be used if the “addr-
spec” contains a comma, semicolon or question mark.

G Changes Made in Version 01

• Uniform syntax specification for semicolon parameters:

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 131]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

Foo = ”Foo” ”:” something *(”;” foo-param)
foo-param = ”bar” ”=” token

| generic-param

• Removednp-queried user parameter since this is now part of a tel URL extension parameter.

• In Section B, noted that if the capabilities intersection is empty, a dummy format list still has to be
returned due to SDP syntax constraints. Previously, the text had required that no formats be listed.
(Brian Rosen)

• Reorganized tables 4 and 5 to show proxy interaction with headers rather than “end-to-end” or “hop-
by-hop”.

H Changes Made in Version 02

• Added “or UAS” in description ofreceived headers in Section 10.46.1. This makes the response
algorithm work even if the last IP address in theVia is incorrect.

• Tentatively removed restriction thatCANCEL requests cannot haveRoute headers. (Billy Biggs)

• Tentatively addedAlso header forBYE requests, as it is widely implemented and a simple means to
implement unsupervised call transfer. Subject to removal if there is protest. (Billy Biggs)

• If a proxy sends a request by UDP (TCP), the spec did not disallow placing TCP (UDP) in the transport
parameter of theVia field, which it should. Added a note that the transport protocol actually used is
included.

• No default value for theq parameter in Contact is defined. This is not strictly needed, but is useful for
consistent behaviors at recursive proxies and at UAC’s. Now 0.5.

• Clarified thatTo andFrom tag values should be different to simplify request matching when calling
oneself.

• Removed ability to carry multiple requests in a single UDP packet (Section 10.18).

• Added note thatAllow MAY be included in requests, to indicate requestor capabilities for the same
call ID.

• Added note to Section 10.21 indicating that registrarsMUST include theDate header to accomodate
UAs that do not have a notion of absolute time.

• Added note to Section 7 emphasizing that non-SIP URIs are permissible.

• Rewrote the server lookup section to be more precise and more like pseudo-code, with nesting instead
of “gotos”.

• Removed note

Note that the two URLs example.com and example.com:5060, while considered equal,
may not lead to the same server, as the former causes a DNS SRV lookup, while the latter
only uses the A record.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 132]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

since that is no longer the case.

• Emphasized that proxies have to forward requests with unknown methods.

• Aligned definition of call leg with URI comparison rules.

• Required that second branch parameter be globally unique, so that a proxy can distinguish different
branches in spiral scenarios similar to the following, with record-routing in place:

B ---> P1 -------> P2 ------------> P1 ----------------> A
BYE B B/1 P1/2,B/1 P2/3,P1/2,B/1 P1/4,P2/3,P1/2,B/1

Here, A/1 denotes theVia entry with host A and branch parameter 1. Also, this requires updating the
definition of isomorphic requests, since theRequest-URI is the same for allBYE that are record-
routed.

• RemovedVia hiding from spec, for the following reasons:

– complexity, particularly hidden “gotchas” that surface at various points (as in this instance);

– interference with loop detection and debugging;

– Unlike HTTP, where via-hiding makes sense since all data is contained in the request or re-
sponse,Via-hiding in SIP by itself does nothing to hide the caller or callee, as address informa-
tion is revealed in a number of places:

∗ Contact;
∗ Route/Record-Route;

∗ SDP, including the o= and c= lines;

∗ possibly accidental leakage inUser-Agent header andCall-ID headers.

– Unless this is implemented everywhere, the feature is not likely to be very useful, without the
sender having any recourse such as “don’t route this request unless you can hide”. It appears
that almost all existing proxies simply ignore the Hide header.

• AddedError-Info header field.

I Changes Made in Version 03

• Description ofRoute andRecord-Route moved to separate section, Section 16, which is new. All
UAs must now support this mechanism (Section A).

• Removed status code 411, since it cannot occur (Jonathan Rosenberg, James Jack).

• RewroteRecord-Route section to reflect new mechanism. In particular, requests from callee to caller
now use the same path as in the opposite direction, without substituting theFrom header field values.
Themaddr parameter is now optional.

• Disallowed SIP URLs that only have a password, without a user name. The prototype from RFC 1738
also doesn’t allow this.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 133]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

• Allow registrar to set the expiration time.

• CSeq (Section 10.20) is counted within a call leg, not a call.

• Removed wording that connection closing is equivalent toCANCEL or 500. This does not work for
connections that are used for multiple transactions and has other problems.

• Cleaned up CSeq section. Removed text about insertingCSeq method when it is absent. Clarified
that CSeq increments for all requests, not just invite. Clarified that all out of order requests, not
just out of order INVITE, are rejected with a 400 class response. Clarified the meaning of “initial”
sequence number. Clarified that after a request forks, each 200 OK is a separate call leg, and thus,
separate CSeq space. Clarified that CSeq numbers are independent for each direction of a call leg.

• Massive reorganization and cleanup of the SDP section. Introduced the concept of the offer-answer
model. Clarified that set of codecs in m line are usable all at the same time. Inserted size restriction
on representation of values in o line. Explicitly describe forked media. New media lines for adding
streams appear at the bottom of the SDP (used to say append).

• Removed Also.

• Added text to Require and Proxy-Require sections, making it a SHOULD to retry the request without
the unsupported extension.

• Added text to section on 415, saying that UAC SHOULD retry the request without the unsupported
body.

• Added text to section on CANCEL and ACK, clarifying much of the behavior.

• Modified Content-Type to indicate that it can be present even if the body is empty.

• From tags mandatory

• Old text said that if you hang up before sending anACK, you need not send theACK. That is wrong.
Text fixed so that anACK is always sent.

• Old text said that if you never got a response to anINVITE, the UAC should send both anINVITE and
CANCEL. This doesn’t make sense. Rahter, it should do nothing and consider the call terminated.

• Added text that says pending requests are responded to with a 487 if aBYE is received.

• Updated section 2.2, so that its clear thatContact is not used withBYE.

• Clarified Via processing rules. Added text on handling loops when proxies route on headers besides
the request URI. Added text on handling case when sent-by contains a domain name. Added text to
6.47 on opening TCP connections to send responses upstream.

• Clarified that a 1xx with an unknown xx is not the same as the 100 response.

• Removed usage ofRetry-After in REGISTER.

• Clarified usage of persistent connections.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 134]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

• Clarified that servers supporting HTTP basic or digest in rfc2617MUST be backwards compatible
with RFC 2069.

• Clarified thatACK contains the same branch ID as the request its acknowledging.

• Added definitions for spiral, B2BUA.

• Rephrased definitions for UAC, UAS, Call, call-leg, caller, callee, making them more concrete.

• URL comparison ignores parameters not present in both URLs only for unknown parameters.

• Clarified that * inContact is used only inREGISTER with Expires header zero. Mentioned * case
in section onContact syntax.

• Removed text that says a UA can insert aContact in 2xx that indicates the address of a proxy. Not
likely to work in general.

• Removed SDP text about aligning media streams within a media type to handle certain crash and
restart cases.

• Receiving a 481 to a mid-call request terminates that call leg. Agreed upon at IETF 49.

• Introduced definitin of regular transaction - non-INVITE exceptingACK andCANCEL.

• Clarified rules for overlapping transactions.

• Forking proxiesMUST be stateful (used to saySHOULD). Proxies that send requests on multicast
MUST be stateful (used to say nothing)

• Text added recommending that registrars authorize that entity inFrom field can register address-of-
record in theTo field.

• Forwarding of non-100 provisionals upstream in a proxy changed fromSHOULD to MUST.

• Removed PGP.

J Acknowledgments

We wish to thank the members of the IETF MMUSIC and SIP WGs for their comments and suggestions.
Detailed comments were provided by Brian Bidulock, Jim Buller, Neil Deason, Dave Devanathan, Cdric
Fluckiger, Yaron Goland, Bernie Hneisen, Phil Hoffer, Christian Huitema, Jean Jervis, Gadi Karmi, Peter
Kjellerstedt, Anders Kristensen, Jonathan Lennox, Gethin Liddell, Keith Moore, Vern Paxson, Moshe J.
Sambol, Chip Sharp, Igor Slepchin, Robert Sparks, Eric Tremblay., and Rick Workman.

This work is based, inter alia, on [45, 46].

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 135]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

K Authors’ Addresses

Mark Handley
ACIRI
electronic mail:mjh@aciri.org

Henning Schulzrinne
Dept. of Computer Science
Columbia University
1214 Amsterdam Avenue
New York, NY 10027
USA
electronic mail:schulzrinne@cs.columbia.edu

Eve Schooler
Computer Science Department 256-80
California Institute of Technology
Pasadena, CA 91125
USA
electronic mail:schooler@cs.caltech.edu

Jonathan Rosenberg
dynamicsoft
72 Eagle Rock Ave
East Hanover, NJ 07936
USA
electronic mail:jdrosen@dynamicsoft.com

References

[1] R. Pandya, “Emerging mobile and personal communication systems,”IEEE Communications Maga-
zine, Vol. 33, pp. 44–52, June 1995.

[2] R. Braden, Ed., L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource ReSerVation protocol
(RSVP) – version 1 functional specification,” Request for Comments 2205, Internet Engineering Task
Force, Sept. 1997.

[3] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: a transport protocol for real-time
applications,” Request for Comments 1889, Internet Engineering Task Force, Jan. 1996.

[4] H. Schulzrinne, A. Rao, and R. Lanphier, “Real time streaming protocol (RTSP),” Request for Com-
ments 2326, Internet Engineering Task Force, Apr. 1998.

[5] M. Handley, C. Perkins, and E. Whelan, “Session announcement protocol,” Request for Comments
2974, Internet Engineering Task Force, Oct. 2000.

[6] M. Handley and V. Jacobson, “SDP: session description protocol,” Request for Comments 2327, Inter-
net Engineering Task Force, Apr. 1998.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 136]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

[7] S. Bradner, “Key words for use in RFCs to indicate requirement levels,” Request for Comments 2119,
Internet Engineering Task Force, Mar. 1997.

[8] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee, “Hypertext
transfer protocol – HTTP/1.1,” Request for Comments 2616, Internet Engineering Task Force, June
1999.

[9] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform resource identifiers (URI): generic syntax,”
Request for Comments 2396, Internet Engineering Task Force, Aug. 1998.

[10] T. Berners-Lee, L. Masinter, and M. McCahill, “Uniform resource locators (URL),” Request for Com-
ments 1738, Internet Engineering Task Force, Dec. 1994.

[11] G. Nair and H. Schulzrinne, “DHCP option for SIP servers,” Internet Draft, Internet Engineering Task
Force, Mar. 2001. Work in progress.

[12] A. Gulbrandsen, P. Vixie, and L. Esibov, “A DNS RR for specifying the location of services (DNS
SRV),” Request for Comments 2782, Internet Engineering Task Force, Feb. 2000.

[13] P. V. Mockapetris, “Domain names - implementation and specification,” Request for Comments 1035,
Internet Engineering Task Force, Nov. 1987.

[14] D. Zimmerman, “The finger user information protocol,” Request for Comments 1288, Internet Engi-
neering Task Force, Dec. 1991.

[15] S. Williamson, M. Kosters, D. Blacka, J. Singh, and K. Zeilstra, “Referral whois (rwhois) protocol
V1.5,” Request for Comments 2167, Internet Engineering Task Force, June 1997.

[16] W. Yeong, T. Howes, and S. Kille, “Lightweight directory access protocol,” Request for Comments
1777, Internet Engineering Task Force, Mar. 1995.

[17] E. M. Schooler, “A multicast user directory service for synchronous rendezvous,” Master’s Thesis CS-
TR-96-18, Department of Computer Science, California Institute of Technology, Pasadena, California,
Aug. 1996.

[18] A. Vaha-Sipila, “URLs for telephone calls,” Request for Comments 2806, Internet Engineering Task
Force, Apr. 2000.

[19] J. Postel, “User datagram protocol,” Request for Comments 768, Internet Engineering Task Force,
Aug. 1980.

[20] J. Postel, “DoD standard transmission control protocol,” Request for Comments 761, Internet Engi-
neering Task Force, Jan. 1980.

[21] T. Dierks and C. Allen, “The TLS protocol version 1.0,” Request for Comments 2246, Internet Engi-
neering Task Force, Jan. 1999.

[22] F. Yergeau, “UTF-8, a transformation format of ISO 10646,” Request for Comments 2279, Internet
Engineering Task Force, Jan. 1998.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 137]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

[23] W. R. Stevens,TCP/IP illustrated: the protocols, Vol. 1. Reading, Massachusetts: Addison-Wesley,
1994.

[24] J. C. Mogul and S. E. Deering, “Path MTU discovery,” Request for Comments 1191, Internet Engi-
neering Task Force, Nov. 1990.

[25] D. Crocker, “Standard for the format of ARPA internet text messages,” Request for Comments 822,
Internet Engineering Task Force, Aug. 1982.

[26] H. Schulzrinne, “RTP profile for audio and video conferences with minimal control,” Request for
Comments 1890, Internet Engineering Task Force, Jan. 1996.

[27] D. Meyer, “Administratively scoped IP multicast,” Request for Comments 2365, Internet Engineering
Task Force, July 1998.

[28] D. Eastlake, S. Crocker, and J. Schiller, “Randomness recommendations for security,” Request for
Comments 1750, Internet Engineering Task Force, Dec. 1994.

[29] F. Dawson and T. Howes, “vcard MIME directory profile,” Request for Comments 2426, Internet
Engineering Task Force, Sept. 1998.

[30] G. Good, “The LDAP data interchange format (LDIF) - technical specification,” Request for Com-
ments 2849, Internet Engineering Task Force, June 2000.

[31] P. Hoffman, L. Masinter, and J. Zawinski, “The mailto URL scheme,” Request for Comments 2368,
Internet Engineering Task Force, July 1998.

[32] R. Troost and S. Dorner, “Communicating presentation information in internet messages: The content-
disposition header,” Request for Comments 1806, Internet Engineering Task Force, June 1995.

[33] R. Braden and Ed, “Requirements for internet hosts - application and support,” Request for Comments
1123, Internet Engineering Task Force, Oct. 1989.

[34] J. Palme, “Common internet message headers,” Request for Comments 2076, Internet Engineering
Task Force, Feb. 1997.

[35] H. Schulzrinne and J. Rosenberg, “SIP: Session initiation protocol – locating SIP servers,” Internet
Draft, Internet Engineering Task Force, Mar. 2001. Work in progress.

[36] R. Rivest, “The MD5 message-digest algorithm,” Request for Comments 1321, Internet Engineering
Task Force, Apr. 1992.

[37] H. Alvestrand, “IETF policy on character sets and languages,” Request for Comments 2277, Internet
Engineering Task Force, Jan. 1998.

[38] N. Freed and N. Borenstein, “Multipurpose internet mail extensions (MIME) part two: Media types,”
Request for Comments 2046, Internet Engineering Task Force, Nov. 1996.

[39] R. Atkinson, “Security architecture for the internet protocol,” Request for Comments 1825, Internet
Engineering Task Force, Aug. 1995.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 138]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-03.ps May 29, 2001

[40] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and L. Stewart, “HTTP
authentication: Basic and digest access authentication,” Request for Comments 2617, Internet Engi-
neering Task Force, June 1999.

[41] J. Franks, P. Hallam-Baker, J. Hostetler, P. Leach, A. Luotonen, E. Sink, and L. Stewart, “An exten-
sion to HTTP : Digest access authentication,” Request for Comments 2069, Internet Engineering Task
Force, Jan. 1997.

[42] H. Schulzrinne and S. Petrack, “RTP payload for DTMF digits, telephony tones and telephony signals,”
Request for Comments 2833, Internet Engineering Task Force, May 2000.

[43] D. Crocker, Ed., and P. Overell, “Augmented BNF for syntax specifications: ABNF,” Request for
Comments 2234, Internet Engineering Task Force, Nov. 1997.

[44] R. Hinden, B. Carpenter, and L. Masinter, “Format for literal IPv6 addresses in URL’s,” Request for
Comments 2732, Internet Engineering Task Force, Dec. 1999.

[45] E. M. Schooler, “Case study: multimedia conference control in a packet-switched teleconferencing
system,”Journal of Internetworking: Research and Experience, Vol. 4, pp. 99–120, June 1993. ISI
reprint series ISI/RS-93-359.

[46] H. Schulzrinne, “Personal mobility for multimedia services in the Internet,” inEuropean Workshop on
Interactive Distributed Multimedia Systems and Services (IDMS), (Berlin, Germany), Mar. 1996.

Full Copyright Statement

Copyright (c) The Internet Society (2001). All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that

comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and
this paragraph are included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to the Internet Society or
other Internet organizations, except as needed for the purpose of developing Internet standards in which case
the procedures for copyrights defined in the Internet Standards process must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or
its successors or assigns.

This document and the information contained herein is provided on an ”AS IS” basis and THE IN-
TERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WAR-
RANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Handley/Schulzrinne/Schooler/Rosenberg Expires November 2001 [Page 139]

