10

11

12

13

14

15

16

17

18

19

20

21
22

23

24

25

26

27

28

29

30

31

32

33

Internet Engineering Task Force SIP WG
INTERNET-DRAFT Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler
draft-ietf-sip-rfc2543bis-05.ps Various places
October 26, 2001
Expires: April 2002

SIP: Session Initiation Protocol

Status of this Memo

This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its
working groups. Note that other groups may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced,
or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”
The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/lid-abstracts.txt
To view the list Internet-Draft Shadow Directories, $ggp://www.ietf.org/shadow.html.

Copyright Notice
Copyright (c) The Internet Society (2001). All Rights Reserved.

Abstract

The Session Initiation Protocol (SIP) is an application-layer control (signaling) protocol for creat-
ing, modifying and terminating sessions with one or more participants. These sessions include Internet
telephone calls, multimedia distribution and multimedia conferences.

SIP invitations used to create sessions carry session descriptions which allow participants to agree on
a set of compatible media types. SIP makes use of elements called proxy servers to help route requests
to the users current location, assist in firewall traversal, and provide features to users. SIP also provides a
registration function that allows them to upload their current location for use by proxy servers. SIP runs
ontop of several different transport protocols.

Contents

1 Introduction 7

2 Overview of SIP Functionality 7

3 Terminology 8

4 Overview of Operation 8

5 Structure of the Protocol 13

6 Definitions 15

7 SIP Messages 18
7.1 Requests e e e 18
7.2 RESPONSES o o i e 19

7.3 Header Fields e e e 20

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

34 7.3.1 HeaderFieldFormat 20
35 7.3.2 Header Field Classification 22

36 7.3.3 CompactForm e 22
37 7.4 BodieS e 22
38 7.4.1 Message Body Type 22

39 7.4.2 Message BodyLength 22

40 7.5 Framing SIPmessages e 23
a8 General User Agent Behavior 23

a2 8.1 UACBehavior. e 23
43 8.1.1 Generatingthe Request 23
a4 8.1.2 Sendingthe Request 26
45 8.1.3 Processing ResSpoONSesS. i e 26

46 8.2 UASBehavior e 27
a7 8.2.1 Authentication/Authorization 27
a8 8.2.2 Method Inspection 27
49 8.2.3 HeaderlInspection 28
50 8.24 Content Processing... v o v i i 29

51 8.2.5 Applying EXtensions e 29
52 8.2.6 Processingthe Request 29

53 8.2.7 Generatingthe Response i e 29

54 8.3 RedireCt Servers e e 30
s 9 Canceling a Request 31

56 9.1 ClientBehavior e 31
57 9.2 ServerBehavior e 32
ss 10 Registrations 32

59 10.1 Overviewof Usage o 32
60 10.2 Construction of the REGISTERrequest. 34

61 10.2.1 Adding Bindings WitlREGISTER 34

62 10.2.2 Removing Bindings WitREGISTER 35

63 10.2.3 Fetching Bindings WitREGISTER 36

64 10.2.4 Refreshing Registrations 36
65 10.2.5 Discoveringa Reqistrar e e 36
66 10.3 Processing of REGISTER atthe Registtar 36

ez 11 Querying for Capabilities 38

68 11.1 Construction of OPTIONS Request. i 38
69 11.2 Processing of OPTIONS Request it 39

70 12 Dialogs 40

7 12.1 CreationofaDialog. e 41
7 12.2 Requests withinaDialog e 42
73 12.2.1 UACBehavior e 42
74 12.2.2 UASbehavior e 44

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires April 2002 [Page 2]

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

100

101

102

103

104

105

106

107

108

109

110

111

112

113

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001
12.3 Terminationof aDialog e 44
13 Initiating a Session 44
13.1 OVEIVIEW o o e e e 44
13.2 Caller ProCcessing o v v v i e e e e e 45
13.2.1 Creatingthe InitidNVITE i 45
13.2.2 ProcessintNVITE RESPONSES o 0 i e e e e e 46
13.3 Callee Processing o i e e e e e e e 47
13.3.1 Processingofthe INVITE a7
14 Modifying an Existing Session 49
14.1 UAC Behavior e e e e e 50
14.2 UAS Behavior o o e e e e e 50
15 Terminating a Session 51
15.1 Terminating a Dialogwitha BYE 51
15.1.1 UACBehavior e 51
15.1.2 UASBehavior 52
16 Proxy Behavior 52
16.1 OVEIVIEW o o o e e e e e e 52
16.2 Stateful Proxy o e 53
16.3 Request Validation e 54
16.4 Making a Routing Decision e 55
16.5 Request Processing. o e 57
16.6 Response Processing. o o i i e e e e e e 60
16.7 Handling transport errors o i i e e 64
16.8 CANCEL Processing. 0 i i i e e e e e e 64
16.9 Stateless ProxXy o e 64
17 Transactions 65
17.1 Clienttransaction e e e 67
17.1.1 INVITE Client Transaction e e 67
17.1.2 nonNVITE Client Transaction 70
17.1.3 Matching Responses to Client Transactions 72
17.1.4 Handling Transport Errors o 72
17.2 Server Transaction 73
17.2.1 INVITE Server Transaction it et 73
17.2.2 nonNVITE Server Transaction 75
17.2.3 Matching Requests to Server Transactions 75
17.3 RTTEStimation e e e e e 76
18 Reliability of Provisional Responses 77
19 Transport 77
19.1 Clients e 77

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires April 2002 [Page 3]

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001
19.1.1 Sending Requests e e 77
19.1.2 Receiving RESPONSES. v i i e e e 78

19.2 SEIVEIS . . . o e e 79
19.2.1 Receiving Requests... e e e 79
19.2.2 Sending RESPONSES o i e 79

19.3 Framing e e e e e e 80

19.4 ErrorHandling e 80

20 Security Considerations 80

20.1 Transport and Network Layer Security. e 81

20.2 SIP Authentication e 82
20.2.1 Framework e 82
20.2.2 Userto User Authentication 83
20.2.3 Proxy to User Authentication. 83
20.2.4 Authentication Schemes 84

20.3 SIPENCryption 85

20.4 Denial of Service e e 86

21 Common Message Components 87

21.1 SIP Uniform Resource Locators 0 i i 87
21.1.1 SIPURLcoOmponents. e e e e e 87
21.1.2 Character escaping requirements.o e 89
21.1.3 Example SIPURLS e 90
21.1.4 SIPURLCoOmMparison it e e e e e e e e 90

212 OptONTAGS .« « o o v e e e e e 92

21.3 TaQS . . o o e e e e e 92

22 Header Fields 92

22.1 ACCEPL . . o 95

22.2 Accept-Encoding e e e e 95

22.3 Accept-Language e 96

22.4 Alert-Info L e e 96

225 AlloW . . L e 96

22.6 Authentication-Info L 96

22.7 Authorization e 97

228 Call-ID e 97

229 Call-Info e 97

22.20C0NtACE 98

22.11Content-Disposition e e e 98

22.1Content-Encoding 98

22.13ontent-Language e e e e e e 99

22.14Content-Length L 99

22.15C0Ntent-TYPE e e e e e e e 99

22 1BCSEQ .« v v e e e 100

221TDAate e e 100

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires April 2002 [Page 4]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

156 22.18rror-Info . . L L L e 100
157 22.10FEXPITES . o v v e e e e e e e e 101
158 22.20FI0M . . o e e e e e 101
159 22.21N-Reply-TO o e e e e e 101
160 22.2Max-Forwards e e e 101
161 222MIME-Version e 102
162 22.220rganization 102
163 2225100ty . . . e e e e 102
164 22.26Proxy-Authenticate 102
165 22.27Proxy-Authorization L e 103
166 22.28Proxy-Require e 103
167 22.2Record-Route L 103
168 22.30REQUINE . . . o i e e e 103
169 22.31Retry-After 104
170 22.3R0ULE . . . e 104
171 22.330EIVEN . o e 104
172 22.34Subject e 104
173 22.355upported 105
174 22.36TIMestamp e e e e e e 105
175 22.37T0 . . o e 105
176 22.38Jnsupported L e e e e e e e 105
177 22.3ser-Agent e e 106
178 2240VIA e e 106
179 22.4TWaArning o e e e e e e e e e e e 106
180 22 A2VWW-Authenticate e e 107
181 23 Response Codes 108

182 23.1 Provisional IXX e 108
183 23.1.1 100 TrYiING . . v v o o e e 108
184 23.1.2 180RINGING e 108
185 23.1.3 181 CalllsBeing Forwarded 108
186 23.1.4 182 Queued e 108
187 23.1.5 183 SeSSiON Progress o 109
188 23.2 Successful 2xxX 109
189 23.2.1 200 0K e 109
190 23.3 Redirection 3XX e e e 109
191 23.3.1 300 Multiple Choices e 109
192 23.3.2 301 Moved Permanently 109
193 23.3.3 302 Moved Temporarily. e 109
194 23.3.4 305USEProXy o o i e 110
195 23.3.5 380 Alternative Service L 110
196 23.4 Request Failure 4xX o 110
197 23.4.1 400Bad Request e 110
198 23.4.2 401 Unauthorized e e 110
199 23.4.3 402 PaymentRequired 110

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires April 2002 [Page 5]

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

239

240

241

242

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001
23.4.4 403 Forbidden 110
23.45 404 NotFound 110
23.4.6 405 Method Not Allowed 111
23.4.7 406 Not Acceptable... e 111
23.4.8 407 Proxy Authentication Requiredo 111
23.4.9 408 Request Timeout i i e e 111
23.4.10410 GONE e e e e e 111
23.4.11413 Request Entity TooLarge. e 111
23.4.12414 Request-URITooLong 0 i it 111
23.4.13415 Unsupported Media Type. e 111
23.4.14420Bad Extension e 112
23.4.15421 Extension Required e e 112
23.4.16 480 Temporarily Unavailable 112
23.4.17 481 Call/Transaction Does NotExist. 112
23.4.18482 Loop Detected e 112
23.4.19483TooMany HOPS o 0 e 112
23.4.20484 Address Incomplete e 112
23.4.21485 Ambiguous L 113
23.4.22486 Busy Here e 113
23.4.23487 Request Terminated 113
23.4.24 488 Not Acceptable Here.o 113

23.5 Server Failure 5XX e e e e e 113
23.5.1 500 ServerInternal Error 113
23.5.2 501 NotImplemented 114
2353 502BadGateway 114
23.5.4 503 Service Unavailable oo 114
23.5.5 504 Server Time-out e e e 114
23.5.6 505 Version NotSupported e 114
23.5.7 513 Message TooLarge e 114

23.6 Global Failures 6XX e 114
23.6.1 600 Busy Everywhere 115
23.6.2 603 Decline 115
23.6.3 604 Does Not Exist Anywhere 115
23.6.4 606 Not Acceptable... e 115

24 Locating a SIP Server 115

24.1 Computingthe Listof NextHops 116
24.1.1 Numeric Destination Address 116
24.1.2 SRV Resolutionof HostName 116
24.1.3 Address Record Resolution of HostName 117

24.2 Contactingthe NextHOpSs e 117

25 Examples 118

25.1 Registration e 118

25.2 SesSion Setup e 119

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires April 2002 [Page 6]

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

270

271

272

273

274

275

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps

26 Augmented BNF for the SIP Protocol

26.1 BasicRuUleS

27 1ANA Considerations

27.1 OptioNTags . .« « .« v v
27.2 Warn-Codes
27.3 Header FieldNames
27.4 MethodandResponseCodes

28 Changes Made in Version 00
29 Changes Made in Version 01
30 Changes Made in Version 02
31 Changes Made in Version 03
32 Changes Made in Version 04
33 Changes Made in Version 05
34 Acknowledgments

35 Authors’ Addresses

1 Introduction

October 26, 2001

124

............. 125

145

146

148

150

153

153

There are many applications of the Internet that require the creation and management of a session, where
a session is considered an exchange of data between an association of participants. The implementation
of these services is complicated by the practices of participants; users may move between endpoints, they
may be addressable by multiple names, and they may communicate in several different media - sometimes
simultaneously. Numerous protocols have been authored that carry various forms of real-time multimedia

session data such as voice, video, or text messages. SIP works in concert with these protocols by enabling
Internet endpoints (called “user agents”) to discover one another and to agree on a characterization of a
session they would like to share. For locating prospective session participants, SIP relies on an infrastructure
of network hosts (called “proxy servers”) to which user agents can send registrations, invitations to sessions

and other requests. SIP is an agile, general-purpose tool for creating, modifying and terminating sessions
that works independently of underlying transport protocols and without dependency on the type of session

that is being established.

2 Overview of SIP Functionality

The Session Initiation Protocol (SIP) is an application-layer control protocol that can establish, modify and
terminate multimedia sessions (conferences) such as Internet telephony calls. SIP can also invite participants
to already existing sessions. A SIP entity issuing an invitation for an already existing session does not
necessarily have to be a member of the session to which it is inviting. Media can be added to (and removed

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires April 2002 [Page 7]

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

from) an existing session. SIP transparently supports name mapping and redirection services, which supports
personal mobility1, p. 44] - users can maintain a single externally visible identifier (SIP URI) regardless
of their network location.

SIP supports five facets of establishing and terminating multimedia communications:

User location: determination of the end system to be used for communication;

User availability: determination of the willingness of the called party to engage in communications;
User capabilities: determination of the media and media parameters to be used,;

Session setup:‘ringing”, establishment of session parameters at both called and calling party;

Session handling:including transfer and termination of sessions, modifying session parameters, and in-
voking services.

SIP is not a vertically integrated communications system. SIP is rather a component of the overall IETF
multimedia data and control architecture which incorporates protocols such as RSVP (RFC 2205 [2]) for re-
serving network resources, the real-time transport protocol (RTP) (RFC 1889 [3]) for transporting real-time
data and providing QOS feedback, the real-time streaming protocol (RTSP) (RFC 2326 [4]) for controlling
delivery of streaming media, the session announcement protocol (SAP) [5] for advertising multimedia ses-
sions via multicast and the session description protocol (SDP) (RFC 2327 [6]) for describing multimedia
sessions. Therefore, SIP should be used in conjunction with other protocols in order to provide complete
services to the users. However, the basic functionality and operation of SIP does not depend on any of these
protocols.

SIP does not provide services. SIP rather provides primitives that can be used to implement different
services. For example, SIP can locate a user and deliver an opaque object to his current location. If this
primitive is used to deliver a session description written in SDP, for instance, the parameters of a session
can be agreed between endpoints. If the same primitive is used to deliver a photo of the caller as well as
the session description, a "caller ID” service can be easily implemented. As this example shows, a single
primitive is typically used to provide several different services. Consequently, generality is more important
than efficiency when designing SIP primitives.

SIP does not offer conference control services such as floor control or voting and does not prescribe how
a conference is to be managed, but SIP can be used to initiate a session that uses some other conference
control protocol. SIP does not allocate multicast addresses and does not reserve network resources.

3 Terminology

In this document, the key words1UST”, “ MUST NOT”, “ REQUIRED', “ SHALL", “ SHALL NOT”, “ SHOULD",
“SHOULD NOT’, “RECOMMENDED’, “MAY”, and “OPTIONAL” are to be interpreted as described in RFC
2119 [7] and indicate requirement levels for compliant SIP implementations.

4 Overview of Operation

This section will introduce the basic operations of the SIP protocol using simple examples. Note that this
section is tutorial in nature and does not contain any normative statements.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires April 2002 [Page 8]

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

The first example will show the basic functions of SIP: location of an end point, signaling a desire to
communicate, negotiation of session parameters to establish the session, and teardown of the session once
established.

Figure 1 shows a typical example of a SIP message exchange between two users, Alice and Bob. (Each
message is labeled with the letter “F” and a number for reference by the text.) In this example, Alice uses a
SIP application on her PC (referred to as a softphone) to call Bob on his SIP phone over the Internet. Also
shown are two SIP proxy servers which act on behalf of Alice and Bob to facilitate the session establishment.
This typical arrangement is often referred to as the “SIP trapezoid” as shown by the geometric shape of the
dashed lines in Figure 1.

.-~"" atlanta.com biloxi.com “>~.
el Proxy Server Proxy Server INGY
Alice’s PC Bob’s SIP
INITE 1y, Phone

INVITE £3 'Y
< 100 Trying F4
< 180 Ringing £/ <

INVITE F5
180 Ringing F6

4 100 Trying F2

180 Ringing F8

<
€200 0K F10 20005
< 200 OK F11
ACK F12
4 RTP Media Session :
< BYE F13

200 OK F14
>

Figure 1: SIP session setup example with SIP trapezoid

Alice “calls” Bob using his SIP identity, a type of Uniform Resource Identifier (URI) called a SIP URI
and defined in Section 21.1. It has a similar form to an email address, typically containing a username and
a host name. In this case it is sip:bob@biloxi.com, where biloxi.com is the domain of Bob’s SIP service
provider (which can be an enterprise, retail provider, etc). Alice also has a SIP URI of sip:alice@atlanta.com.
Alice might have typed in Bob's URI or perhaps clicked on a hyperlink or an entry in an address book.

SIP is based on an HTTP-like request/response transacton model. Each transaction consists of a request
that invokes a particular “Method”, or function, on the server, and at least one response. In this example, the
transaction begins with Alice’s softphone sendindd¥ITE request addressed to Bob’s SIP URIVITE
is an example of a SIP method which specifies the action that the requestor (Alice) wants the server (Bob) to

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires April 2002 [Page 9]

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

take. ThelNVITE request contains a number of header fields. Header fields are additional named attributes
which provide additional information about a message. The ones preseniNV&FE include a unique
identifier for the call, the destination address, Alice’s address, and information about the type of session that
Alice wishes to establish with Bob. THRVITE (message F1 in Figure 1) might look like this:

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP 10.1.3.3:5060

To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710@10.1.3.3

CSeq: 314159 INVITE

Contact: <sip:alice@10.1.3.3>

Content-Type: application/sdp

Contact-Length: 142

(Alice’s SDP not shown)

The first line of the text-encoded message contains the method HdWIEE). The lines which follow
are a list of header fields. This example contains a minimum required set. The headers are briefly described
below:

Via contains the IP address (10.1.3.3), port number (5060), and transport protocol (UDP) on which Alice
is expecting to receive responses to this request.

To contains a display nhame (Bob) and a SIP URI (sip:bob@biloxi.com) that the request was originally
directed towards.

From also contains a display name (Alice) and a SIP URI (sip:alice@atlanta.com) that indicate the
originator of the request. This header field also h&sggparameter which contains a pseudorandom string
(1928301774) which was added to the URI by the softphone. It is used for identification purposes.

Call-ID contains a globally unique identifier for this call, generated by the combination of a pseudoran-
dom string and the softphone’s IP address. The combination dbtierom, andCall-ID completely define
a peer-to-peer SIP relationship betwee Alice and Bob, and is referred to as a “dialog”.

CSeq or Command Sequence contains an integer and a method nameéSéhgenumber is incremented
for each new request, and is a traditional sequence number.

Contact contains a SIP URI which represents a direct route to reach or contact Alice, usually composed
of a username at an IP address. While i@ header field is used to tell other elements where to send the
response, th€ontact header field tells other elements where to send future requests for this dialog.

Content-Type contains a description of the message body (not shown).

Content-Length contains an octet (byte) count of the message body.

The complete set of SIP header fields is defined in Section 22.

The details of the session, type of media, codec, sampling rate, etc. are not described using SIP. Rather,
the body of a SIP message contains a description of the session, encoded in some other protocol format. One
such format is Session Description Protocol (SDP) [6]. This SDP message (not shown in the example) is
carried by the SIP message in an analogous way that a document attachment is carried by an email message,
or a web page is carried in an HTTP message.

Since the softphone has no knowledge of Bob’s exact location, or how to locate the SIP server in
the biloxi.com domain, the softphone sends N¥ITE to the SIP server that serves Alice’s domain, at-

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 10]

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

lanta.com. The IP address of the atlanta.com SIP server could have been configured in Alice’s softphone, or
it could have been discovered by DHCP, for example.

The atlanta.com SIP server is a type of SIP server known as a proxy server. A proxy server receives
SIP requests and forwards them on behalf of the requestor. In this example, the proxy server receives the
INVITE request and generates a 100 Trying response which is sent back to Alice’s softphone. The 100
Trying response indicates that tidVITE has been received and that the proxy is working on her behalf to
try to route thelNVITE to the destination. Responses in SIP use a numerical three digit code followed by
a descriptive phrase. This response contains the Jafieom, Call-ID, andCSeq as thelNVITE, which
allows Alice’s softphone to correlate this response to the IMMIETE. The atlanta.com proxy server locates
the proxy server at biloxi.com, possibly by performing a DNS (Domain Name Service) lookup to find the
SIP server which serves the biloxi.com domain. This is described in Section 24. As a result, it obtains
the IP address of the biloxi.com proxy server and forwards, or proxieSNWME E request there. Before
forwarding the request, the atlanta.com proxy server adds an addiWamdieader field which contains
its own IP address (theNVITE already contains Alice’s IP address in the fivsa). The biloxi.com proxy
server receives tH&lVITE and responds with a 100 Trying response back to the Atlanta.com proxy server to
indicate that it has received thVITE and is processing the request. The proxy server consults a database,
generically called a location service, which contains the current IP address of Bob. (We shall see in the next
section how this database can be populated.) The biloxi.com proxy server adds afiethesder with its
own IP address to thiNVITE and proxies it to Bob’s SIP phone.

Bob’s SIP phone receives thRVITE and begins to alert Bob to the incoming call from Alice so that
Bob can decide whether or not to answer the call - i.e. Bob’s phone rings. Bob’s SIP phone sends an
indication of this in a 180 Ringing response. This response is routed back thorough the two proxies in the
reverse direction. Each proxy uses Wia header to figure out where to send the response, and removes its
own address from the top. As a result, although DNS and location service lookups were required to route
the initial INVITE, the 180 Ringing response can be returned to the caller without lookups, or without state
being maintained in the proxies. This also has the desirable property that each proxy that Hé¥$TiRe
will also see all responses to theVITE.

When Alice’s softphone receives the 180 Ringing response, it passes this information to Alice, perhaps
using an audio ringback tone, or just by displaying or flashing a message on Alice’s screen.

In this example, Bob decides to answer the call. When he picks up the handset his SIP phone sends a 200
OK response to indicate that the call has been answered. The 200 OK contains a message body containing
the SDP media description of the type of session that Bob is willing to establish with Alice. As a result, there
is a two-phase exchange of SDP messages; Alice sent one to Bob, and Bob sent one back to Alice. This
two-phase exchange provides basic hegotiation capabilities, and is based on a simple offer/answer model, If
Bob did not wish to answer the call, or was busy on another call, an error response would have been sent
instead of the 200 OK, which would have resulted in no media session being established. The complete list
of SIP response codes is in Section 23. The 200 OK (message F9 in Figure 1) might look like this:

SIP/2.0 200 OK

Via: SIP/2.0/UDP 10.2.1.1:5060;branch=4b43c2ff8.1

Via: SIP/2.0/UDP 10.1.1.1:5060;branch=77ef4¢c2312983.1
Via: SIP/2.0/UDP 10.1.3.3:5060

To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710@10.1.3.3

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 11]

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

454

455

456

457

459

460

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

CSeq: 314159 INVITE
Contact: <sip:bob@10.4.1.4>
Content-Type: application/sdp
Contact-Length: 131

(Bob’s SDP not shown)

The first line of the response contains the response code (200) and the reason phrase (OK). The remain-
ing lines contain header fields. Th&a header fieldsJo, From, Call- ID, andCSeq are all copied from
the INVITE request. (Note that there are thidia headers - one added by Alice’s SIP phone, one added by
the atlanta.com proxy, and one added by the biloxi.com proxy.) Also note that Bob’s SIP phone has added a
tag parameter to th@o header field. This tag will be incorporated by both User Agents into the dialog and
will be included in all future requests and responses in this call.Odmact header field contains a URI at
which Bob can be directly reached at his SIP phone. CTbetent-Type andContent-Length refer to the
not shown message body which contains Bob’s SDP media information.

In additon to DNS and location service lookups shown in this example, proxy servers can make arbi-
trarily complex “routing decisions” in order to decide where to send a request. For example, if Bob’s SIP
phone returned a 486 Busy Here response, the biloxi.com proxy server could prdiMifi€& to Bob'’s
voicemail server. A proxy server can also sendMYITE to a number of locations at the same time. This
type of parallel search is known as “forking”.

In this case, the 200 OK is routed back through the two proxies and is received by Alice’s softphone
which then stops the ringback tone and indicates that the call has been answered. Finally, an acknowledge-
ment messagACK, is sent by Alice to Bob to confirm the reception of the final response (200 OK). Note
that in this example, thACK is sent directly from Alice to Bob, bypassing the two proxies. This is due to
the fact that through thENVITE/200 OK exchange, the two SIP user agents have learned each other’s IP
address through th€ontact header fields, something which was not known when the inN;ITE was
sent. The lookups performed by the two proxies are no longer needed, so they drop put of the call flow. This
completes théNVITE/200/ACK three way handshake used to establish SIP sessions, and is the end of the
transaction. Full details on session setup is in Section 13.

Alice and Bob’s media session has now begun, and they begin sending media packets using the format
agreed to in the exchange of SDP. In general, the end-to-end media packets will take a different path from
the SIP signaling messages.

During the session, either Alice or Bob may decide to change the characteristics of the media session.
This is accomplished by sending alidVITE containing a new media description. If the change is accept-
able to the other party, a 200 OK is sent which is itself responded to withGia This reiNVITE will
reference the existing dialog so the other party knows that it is to modify an existing session instead of
establishing a new session. If the change is not acceptable, an error response, such as a 406 Not Acceptable
response is sent, which also receivesA@K. However, the failure of the reNVITE does not cause the
existing call to fail - the session continues using the previously negotiated characteristics. Full details on
session modification is in Section 14.

At the end of the call, Bob disconnects (hangs up) first, and gener&3&&€anessage. ThiBYE is
routed directly to Alice’s softphone, again bypassing the proxies. Alice confirms receipt BiytGeavith
a 200 OK response, which terminates the session anBYtetransaction. Note that nACK is sent - an
ACK is only sent in response to a response toNMITE request. The reasons for this special handling for
INVITE will be discussed later, but relate to the reliability mechanisms in SIP, the length of time it can take

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 12]

461

462

463

464

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

494

495

496

497

498

499

500

501

502

503

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

for a ringing phone to be answered, and forking. For this reason, request handling in SIP is often classified
as eitherdNVITE or non-INVITE, referring to all other methods besidd¢VITE. Full details on session
termination is in Section 15.

Full details of all the messages shown in the example of Figure 1 are shown in Section 25.2.

In some cases, it may be useful for proxies in the SIP signaling path see all the messaging between
the two endpoints for the duration of the session. For example, if the biloxi.com proxy server wished to
remain in the SIP messaging path beyond the iniNMITE, it would add to thdNVITE a required routing
header field known aRecord-Route containing a URI which resolves to the proxy. This information
would be received by both Bob’s SIP phone and (due tdRbeord-Route header field being passed back
in the 200 OK) Alice’s softphone and stored for the duration of the dialog. This would then result in the
ACK, BYE, and 200 OK to theBYE being received and proxied by the biloxi.com proxy server. Each
proxy can independently decide to receive subsequent messaging, and that messaging will go through all
proxies that elected to receive it. A common use of this capability is in firewall traversal or mid-call feature
implementation.

Registration is another common operation in SIP. Registration is one way in which the biloxi.com server
can learn the current location of Bob. Upon initialization, and at periodic intervals, Bob’s SIP phone sends
REGISTER messages a server in the biloxi.com domain known as a SIP registraRHGESTER mes-
sages associate Bob’s SIP URL (sip:bob@biloxi.com) with the machine he is currently logged in at (con-
veyed as a SIP URL in th€ontact header). The registrar writes this association, also called a binding, to
a database, called thecation servicewhere it can be used by the proxy in the biloxi.com domain. Often,

a registrar server for a domain is co-located with the proxy for that domain. It is an important concept that
the distinction between types of SIP servers are logical, not physical.

Bob is not limited to registering from a single device. For example, both his SIP phone at home and
the one in the office could send in registrations. This information is stored together in the location service,
and allows a proxy to perform various types of searches to locate Bob. Similarly, more than one user can be
registered on a single device at the same time.

The location service is just an abstract concept. It generally contains information that allows a proxy
to input a URI and get back a translated URI that tells the proxy where to send the request. Registrations
are one way to create this information, but not the only way. Arbitrarily complex mapping functions can be
programmed, at the discretion of the administrator.

Finally, it is important to note that in SIP, registration is used for routing incoming SIP requests and has
no role in authorizing outgoing requests. Authorization and authentication are handled in SIP either on a
request by request, challenge/response mechanism, or using a lower layer scheme as discussed in Section 20.

The complete set of SIP message details for this registration example is in Section 25.2.

Additional operations in SIP include querying for the capabilities of a SIP server or client @sthg
TIONS, and canceling a pending request usE®NCEL will be introduced in later sections.

5 Structure of the Protocol

The SIP protocol is structured as a layered protocol, which means that its behavior is described in terms of a
set of fairly independent processing stages, with only a loose coupling between each stage. The structuring
of the protocols into layers is for the purpose of presentation and conciseness; it allows the grouping of

functions common across elements into a single place. It does not dictate an implementation in any way.

When we say that an element “contains” a layer, that means it is compliant to the set of rules defined by that
layer.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 13]

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

Not every element specified by the protocol contains every layer. Furthermore, the elements specified
by SIP are logical elements, not physical ones. A physical realization can choose to act as different logical
elements, perhaps even on a transaction by transaction basis.

The lowest layer of the SIP protocol is its syntax and encoding. Its encoding is specified using a BNF.
The complete BNF is specified in Section 26. However, a basic overview of the structure of a SIP message
can be found in Section 7. This section introduces enough of an understanding of the format of a SIP
message to facilitate understanding the remainder of the protocol.

The next higher layer is the transport layer. This layer defines how a client takes a request, and physically
sends it over the network, and how a response is sent by a server, and then received by a client. All SIP
elements contain a transport layer. The transport layer is described in Section 19.

The next higher layer is the transaction layer. Transactions are a fundamental component of SIP. A
transaction is a request, sent by a client transaction (using the transport layer), to a server transaction, along
with all responses to that request sent from the server transaction back to the client. The transaction layer
handles retransmissions, matching of responses to requests, and timeouts. Any task that a UAC wishes to
accomplish takes place using a series of transactions. Discussion of transactions can be found in Section 17.
User agents contain a transaction layer, as do stateful proxies. Stateless proxies do not contain a transaction
layer.

The transaction layer has a client component (referred to as a client transaction), and a server component
(referred to as a server transaction), each of which are represented by an FSM that is constructed to process
a particular request. The layer on top of the transaction layer is called the transaction user (TU), of which
there are several types. When a TU wishes to send a request, it creates a client transaction instance and
passes it the request, along with the destination IP address, port, and transport to send the request to.

SIP provides the ability for a transaction to be canceled by the client which initiated it. When a client
cancels a transaction, it requests that the server give up on further processing, revert to the state that ex-
isted before the transaction was initiated, and generate a specific error response to that transaction. This is
done with aCANCEL request, which constitutes its own transaction, but references the transaction to be
cancelled. Cancellation is described in Section 9.

There are several different types of transaction users. A UAC contains a UAC core, a UAS contains a
UAS core, and a proxy contains a proxy core. The behavior of the UAC and UAS cores depend largely on
the method. However, there are some common rules for all methods. These rules are captured in Section 8.
The primarily deal with construction of a request, in the case of a UAC, and processing of that request, and
generation of a response, in the case of a UAS.

UAC and UAS core behavior for tiREGISTER method is described in Section 10. Registrations play
an important role in SIP. In fact, a UAS that handleREBGISTER is given a special name - a registrar -
and it is described in that section.

UAC and UAS core behavior for tt@PTIONS method, used for determining the capabilities of a UAC,
are described in Section 11.

Certain other requests are sent withidialog. A dialog is a peer-to-peer SIP relationship between a
two user agents that persists for some time. The dialog facilitates sequencing of messages between the user
agents, and proper routing of requests between both them. One way to setup a dialog is INWITiEe
method. When a UAC sends a request that is within the context of a dialog, it follows the common UAC
rules as discussed in Section 8, but also the rules for mid-dialog requests. Section 12 discusses dialogs,
and presents the procedures for their construction, and maintenance, in addition to construction of requests
within a dialog.

The most important method in SIP is the¢VITE method, which is used to establish a session between

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 14]

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

participants. A session is a collection of participants, and streams of media between them, for the purposes
of communication. Section 13 discusses how sessions are initiated, resulting in one or more SIP dialogs.
Section 14 discusses how characteristics of that session are modified, through the up&/oT Brequest
within a dialog. Finally, section 15 discusses how a session is terminated.

The procedures of Sections 8, 10, 11, 12, 13, 14, and 15 deal entirely with the UA core. Section 16
discusses the proxy element, which facilitates routing of messages between user agents.

6 Definitions

This specification uses a number of terms to refer to the roles played by participants in SIP communications.
The definitions of client, server and proxy are similar to those used by the Hypertext Transport Protocol
(HTTP) (RFC 2616 [8]). The terms and generic syntax of URI and URL are defined in RFC 2396 [9]. The
following terms have special significance for SIP.

Back-to-Back user agent: A back-to-back user agent (B2BUA) is a logical entity that receives a request,
and processes it as a UAS. In order to determine how the request should be answered, it acts as a
UAC and generates requests. Unlike a proxy server, it maintains dialog state, and must participate in
all requests sent on the dialogs it has established. Since it is a concatenation of a UAC and UAS, no
explicit definitions are needed for its behavior.

Call: A callis an informal term that refers to a dialog between peers, generally set up for the purposes of a
multimedia conversation.

Call leg: Another name for a dialog.

Call stateful: A proxy is call stateful if it retains state for a dialog from the initiatidVITE to the termi-
natingBYE request. A call stateful proxy is always stateful, but the converse is not true.

Client: A client is any network element that sends SIP requests, and receives SIP responses. Clients may
or may not interact directly with a human usEiser agent clientandproxiesare clients.

Conference: A multimedia session (see below) that contains multiple participants.

Dialog: A dialog is a peer-to-peer SIP relationship between a UAC and UAS that persists for some time.
A dialog is established by SIP messages, such as a 2xx responsé\IaE request. A dialog is
identified by a call identifier, local address, and remote address. A dialog was formerly known as a
call leg in RFC 2543.

Downstream: A direction of message forwarding within a transaction which refers to the direction that
requests flow from the user agent client to user agent server.

Final response: A response that terminates a SIP transaction, as opposeg@rtwiaional responsé¢hat
does not. All 2xx, 3xx, 4xx, 5xx and 6xx responses are final.

Informational Response: Same as a provisional response.

Initiator, calling party, caller. The party initiating a session with dANVITE request. A caller retains this
role from the time it sends tH&IVITE until the termination of any dialogs established by HR¥/ITE.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 15]

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

Invitation: An INVITE request.

Invitee, invited user, called party, callee: The party that receives dNVITE request for the purposes of
establishing a new session. A callee retains this role from the time it receivéd\hHEE until the
termination of the dialog established by thsi/ITE.

Isomorphic request or response: Two requests are defined to lsemorphicfor the purposes of this docu-
ment if they have the same values for tBell-ID, To, From, CSeq, Request-URI and the top-most
Via header. Two responses are isomorphic if they have the same values @alth®, To, From,
CSeq and topVia header. A message which is isomorphic to another is also known as a retransmis-
sion.

Location server: Seelocation service.

Location service: A location service is used by a SIP redirect or proxy server to obtain information about
a callee’s possible location(s). It is an abstract database, sometimes referred to as a location server.
The contents of the database can be populated in many ways, including being written by registrars.

Loop: A request that arrives at a proxy, is forwarded, and later arrives back at the same proxy. When it
arrives the second time, iRequest-URI is identical to the first time, and other headers that affect
proxy operation are unchanged, so that the proxy would make the same processing decision on the
request it made the first time around. Looped requests are errors, and the procedures for detecting
them and handling them are described by the protocol.

Method: The method is the primary function that a request is meant to invoke on a server. The method is
carried in the request message itself. Example method®&tid E andBYE.

Outbound proxy: A proxythat receives all requests from a client, even though it is not the server resolved
by the Request-URI. The outbound proxy sends these requests, after any local processing, to the
address indicated in tiRequest-URI, or to another outbound proxy.

Parallel search: In a parallel search, a proxy issues several requests to possible user locations upon receiv-
ing an incoming request. Rather than issuing one request and then waiting for the final response before
issuing the next request as isagquential searcha parallel search issues requests without waiting for
the result of previous requests.

Provisional response: A response used by the server to indicate progress, but that does not terminate a SIP
transaction. 1xx responses are provisional, other responses are confiidgred

Proxy, proxy server: Anintermediary entity that acts as both a server and a client for the purpose of making
requests on behalf of other clients. A proxy server primarily plays to role of routing, which means
its job is to ensure that a request is passed on to another entity that can further process the request.
Proxies are also useful for enforcing policy and for firewall traversal. A proxy interprets, and, if
necessary, rewrites parts of a request message before forwarding it.

Registrar: A registrar is a server that accefREGISTER requests, and places the information it receives
in those requests into the location service for the domain it handles.

Regular Transaction: A regular transaction is any transaction with a method other tR&HMTE, ACK, or
CANCEL.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 16]

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

Ringback: Ringback is the signaling tone produced by the calling party’s application indicating that a
called party is being alerted (ringing).

Server: A server is a network element that receives requests in order to service them, and sends back
responses to those requests. Examples of servers are proxies, user agent servers, redirect servers, and
registrars.

Sequential search:In a sequential search, a proxy server attempts each contact address in sequence, pro-
ceeding to the next one only after the previous has generated a non-2xx final response.

Session: From the SDP specification: “A multimedia session is a set of multimedia senders and receivers
and the data streams flowing from senders to receivers. A multimedia conference is an example of a
multimedia session.” (RFC 2327 [6]) (A session as defined for SDP can comprise one or more RTP
sessions.) As defined, a callee can be invited several times, by different calls, to the same session.
If SDP is used, a session is defined by the concatenation afsdrenamesession igdnetwork type
address typ@ndaddresslements in the origin field.

(SIP) transaction: A SIP transaction occurs between a client and a server and comprises all messages from
the first request sent from the client to the server up to a final (non-1xx) response sent from the server
to the client, and th&CK for the response in the case the response was a 2xxATHefor a 2xx
response is a separate transaction.

Spiral: A spiral is a SIP request which is routed to a proxy, forwarded onwards, and arrives once again
at that proxy, but this time, differs in a way which will result in a different processing decision than
the original request. Typically, this means that it ha@exjuest-URI that differs from the previous
arrival. A spiral is not an error condition, unlike a loop.

Stateless proxy: A logical entity that does not maintain the client or server transaction state machines
defined in this specification when it processes requests. A stateless proxy forwards every request it
receives downstream and every response it receives upstream.

Stateful proxy: A logical entity that maintains the client and server transaction state machines defined by
this specification during the processing of a request. Also known as a transaction stateful proxy. The
behavior of a stateful proxy is further defined in Section 16. A stateful proxy is not the same as a call
stateful proxy.

Transaction User (TU): The layer of protocol processing that resides above the transaction layer. Trans-
action users include the UAC core, UAS core, and proxy core.

Upstream: A direction of message forwarding within a transaction which refers to the direction that re-
sponses flow from the user agent server to user agent client.

URL-encoded: A character string encoded according to RFC 1738, Section 2.2 [10].

User agent client (UAC): A user agent client is a logical entity that creates a new request, and then uses
the client transaction state machinery to send it. The role of UAC lasts only for the duration of that
transaction. In other words, if a piece of software initiates a request, it acts as a UAC for the duration
of that transaction. If it receives a request later on, it takes on the role of a User Agent Server for the
processing of that transaction.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 17]

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

UAC Core: The set of processing functions required of a UAC that reside above the transaction and trans-
port layers.

User agent server (UAS): A user agent server is a logical entity that generates a response to a SIP request.
The response accepts, rejects or redirects the request. This role lasts only for the duration of that
transaction. In other words, if a piece of software responds to a request, it acts as a UAS for the
duration of that transaction. If it generates a request later on, it takes on the role of a User agent client
for the processing of that transaction.

UAS Core: The set of processing functions required at a UAS that reside above the transaction and transport
layers.

User agent (UA): A logical entity which can act as both a user agent client and user agent server for the
duration of a dialog.

The role of UAC and UAS as well as proxy and redirect servers are defined on a transaction-by-
transaction basis. For example, the user agent initiating a call acts as a UAC when sending the initial
INVITE request and as a UAS when receivinB¥4E request from the callee. Similarly, the same software
can act as a proxy server for one request and as a redirect server for the next request.

Proxy, location and registrar servers defined abovdaogieal entities; implementationsiAy combine
them into a single application program.

7 SIP Messages

SIP is a text-based protocol and uses the ISO 10646 character set in UTF-8 encoding (RFC 2279 [11]).
A SIP message is either a request from a client to a server, or a response from a server to a client.
Both Request (section 7.1) andResponse (section 7.2) messages use teneric-message format

of RFC 822 [12]. Both types of messages consist sfaat-line, one or more header fields (also known as

“headers”), an empty line indicating the end of the header fields, and an opti@sabge-body.

generic-message = start-line
*message-header
CRLF
[message-body |

The start-line, each message-header line, and the emptwyilise be terminated by a carriage-return
line-feed sequenceCRLF). Note that the empty lineusT be present even if the message-body is not.

Except for the above difference in character sets, much of SIP’s message and header field syntax is
identical to HTTP/1.1. Rather than repeating the syntax and semantics here we use [HX.Y] to refer to
Section X.Y of the current HTTP/1.1 specification (RFC 2616 [8]).

Note, however, that SIP is not an extension of HTTP.

7.1 Requests

SIP Requests are distinguished by havingesjuest-Line for a start-line. A Request-Line begins with
a method token, followed by thHeequest-URI and the protocol version, and ending WERLF. The ele-
ments are separated B characters. N&€R or LF are allowed except in the end-of-lil@&RLF sequence.
No LWS is allowed in any of the elements.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 18]

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713
714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

Method Request-URI SIP-Version

e Method

This specification defines six method®REGISTER for registering contact informatiodNVITE,
ACK andCANCEL for setting up sessionBYE for terminating sessions at@PTIONS for querying
servers about their capabilities. SIP extensions may define additional methods.

¢ Request-URI

The Request-URI is a SIP URL as described in Section 21.1 or a general URI (RFC 2396 [9]). It
indicates the user or service to which this request is being addresse®Refbest-URI MUST NOT
contain unescaped spaces or control charactersasd NOT be enclosed in&>".

SIP serversuAy supportRequest-URIs with schemes other than “sip”, for example the “tel” URI
scheme of RFC 2806 [13]. WAy translate non-SIP URIs using any mechanism at its disposal,
resulting in either a SIP URI or some other scheme.

e SIP Version

Both request and response messages include the version of SIP in use, and follow [H3.1] (with HTTP
replaced by SIP, and HTTP/1.1 replaced by SIP/2.0) regarding version ordering, compliance require-
ments, and upgrading of version numbers. To be compliant with this specification, applications send-
ing SIP messagemusT include aSIP- Version of “SIP/2.0”. The string is case-insensitive, but
implementations1usT send upper-case.

Unlike HTTP/1.1, SIP treats the version number as a literal string. In practice, this should make no
difference.

7.2 Responses

SIP Responses are distinguished by havirgjaus-Line for a start-line. A Status-Line, consists of the
protocol version followed by a numerfstatus-Code and its associated textual phrase, with each element
separated by SP characters. or LF is allowed except in the fin&l RLF sequence.

SIP-version Status-Code Reason-Phrase

The Status-Code is a 3-digit integer result code that indicates the outcome of an attempt to understand
and satisfy a request. ThHeeason-Phrase is intended to give a short textual description of Status-
Code. TheStatus-Code is intended for use by automata, whereasRleason-Phrase is intended for the
human user. A client is not required to examine or displayRbason-Phrase.

The first digit of theStatus-Code defines the class of response. The last two digits do not have any
categorization role. For this reason, any response with a status code between 100 and 199 is referred to as
a “1xx response”, any response with a status code between 200 and 299 as a “2xx response”, and so on.
SIP/2.0 allows 6 values for the first digit:

1xx: Informational — request received, continuing to process the request;
2xx: Success — the action was successfully received, understood, and accepted;

3xx: Redirection — further action needs to be taken in order to complete the request;

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 19]

731

732

733

734

735

736

737

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

756

757

758

759

760

761

762

763

764

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

4xx: Client Error — the request contains bad syntax or cannot be fulfilled at this server;
5xx: Server Error — the server failed to fulfill an apparently valid request;

6xx: Global Failure — the request cannot be fulfilled at any server.

Full definitions of these classes and each registered code appear in Section 23.

7.3 Header Fields

SIP header fields are similar to HTTP header fields in both syntax and semantics. In particular, SIP header
fields follow the [H4.2] definitions of syntax for message-header, the rules for extending header fields over
multiple lines, the use of multiple message-header fields with the same field-name, and the rules regarding
ordering of header fields.

7.3.1 Header Field Format

Header fields follow the same generic header format as that given in Section 3.1 of RFC 822 [12]. Each
header field consists of a field name followed by a colon (") and the field value.

field-name: field-value

Note that the formal grammar fomaessage-header specified in Section 26 allow for an arbitrary amount
of whitespace on either side of the colon. No space before the colon and a single space (SP) between the
colon and the field-value is preferred. That is,

Subject: lunch
Subject : lunch
Subject :lunch

Subject: lunch

are all valid, and equivalent, but the last is the preferred form.

Header fields can be extended over multiple lines by preceding each extra line with at leS§t one
horizontal tab (HT). The line break and the whitespace at the beginning of the next line are treated as a
single SP character. Thus the following are equivalent:

Subject: | know you're there, pick up the phone and talkk to me!
Subject: | know you're there,

pick up the phone

and talk to me!

The relative order of header fields with different field names is not significant. The relative order of those
with the same field name is important. Multiple header fields with the same field-name may be present in a
message if and only if the entire field-value for that header field is defined as a comma-separated list (i.e.,
#(values)). It MUST be possible to combine the multiple header fields into one “field-name: field-value”
pair, without changing the semantics of the message, by appending each subBelgizesliue to the first,
each separated by a comma.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 20]

765

766

767

768

769

770

771

772

773

774

775

776

77

778

779

780

781

782

783

784

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

ImplementationsiusT be able to process multiple header fields with the same nhame in any combination
of the single-value-per-line or comma-separated value forms.
The following blocks of headers are valid and equivalent:

Route: sip:alice@atlanta.com
Subject: Lunch

Route: sip:bob@biloxi.com
Route: sip:carol@chicago.com

Route: sip:alice@atlanta.com, sip:bob@biloxi.com
Route: sip:carol@chicago.com
Subject: Lunch

Subject: Lunch
Route: sip:alice@atlanta.com, sip:bob@biloxi.com, sip:carol@chicago.com

Each of the following blocks is valid but not equivalent to the others:

Route: sip:alice@atlanta.com
Route: sip:bob@biloxi.com
Route: sip:carol@chicago.com

Route: sip:bob@biloxi.com
Route: sip:alice@atlanta.com
Route: sip:carol@chicago.com

Route: sip:alice@atlanta.com,sip:carol@chicago.com,sip:bob@biloxi.com

The format of a header field-value is defined per header-name. It will always be either an opaque
sequence of TEXT-UTF8 octets, or a combination of whitespace, tokens, separators, and quoted strings.
Many of them will adhere to the general form of a value followed by a semi-colon separated sequence of
parameter-name, parameter-value pairs:

field-name: field-value *(;parameter-name=parameter-value)

When comparing headers, field names are always case-insensitive. Unless otherwise stated in the def-
inition of a particular header field, field values, parameter names, and parameter values (tokens in general)
are case-insensitive. Unless specified otherwise, values expressed as quoted strings are case-sensitive.

The following are equivalent:

Contact: <sip:alice@atlanta.com>;expires=3600
CONTACT: <sip:alice@atlanta.com>;ExPiReS=3600

Contact-Disposition: session;handling=optional
contact-disposition: Session;HANDLING=OPTIONAL

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 21]

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

The following are not equivalent;

Warning: 370 devnull "Choose a bigger pipe"
Warning: 370 devnull "CHOOSE A BIGGER PIPE"

7.3.2 Header Field Classification

Some header fields only make sense in requests or responses. These are called Request Header Fields and
Response Header fields respectively. Those header fields that can appear in either a request or response are
called General Header Fields. If a header appears in a message not matching its category (such as a request
header in a response) MUST be ignored. Section 22 defines the classification of each header.

7.3.3 Compact Form

SIP provides a mechanism to represent common header fields in an abbreviated form. This may be useful
when messages would otherwise become to large to be carried on the transport available to it (exceeding
the MTU when using UDP for example). These compact forms are defined in Section 22. A compact form
MAY be substituted for the longer form of a header name at any time without changing the semantics of a
the message. Multiple header fields in a message with the same headewmarappear with an arbitrary

mix of its long and short field name form. ImplementatiomssT accept both the long and short forms of

each header name.

7.4 Bodies

Requests, including new requests defined in extensions to this specificatiorcontain message bodies
unless otherwise noted.

For response messages, the request method and the response status code determine the type and inter-
pretation of any message body. All responses include a body.

7.4.1 Message Body Type

The Internet media type of the message brd\s T be given by theContent-Type header field. If the body
has undergone any encoding (such as compression) themubisbe indicated by th€ontent-Encoding
header field, otherwis€ontent-Encoding MusT be omitted. If applicable, the character set of the message
body is indicated as part of theéontent-Type header-field value.

The “multipart” MIME type defined in RFC 2046 [14JAY be used within the body of the message.
Implementations that send requests containing multipart message bogiasbe able to send a session
description as a non-multipart message body if the remote implementation requests this thrAagapn
header field.

7.4.2 Message Body Length

The body length in bytes is provided by tl@mntent-Length header field. Section 22.14 describes the
necessary contents of this header in detail.

The “chunked” transfer encoding of HTTP/IMMUST NOT be used for SIP. (Note: The chunked encoding
modifies the body of a message in order to transfer it as a series of chunks, each with its own size indicator.)

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 22]

839

840

841

842

843

844

845

846

847

848
849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

7.5 Framing SIP messages

Unlike HTTP, SIPMAY use UDP or other unreliable datagram protocols. Each such datagram carries one
request or response. Datagrams, including all headereuLD NOT be larger than the path maximum
transmission unit (MTU) if the MTU is known, or 1500 bytes if the MTU is unknown. However, implemen-
tationsMuUST be able to handle messages up to the maximum datagram packet size. For UDP, this size is
65,535 bytes, including headers.

The MTU of 1500 bytes accommodates encapsulation within the “typical” ethernet MTU without IP fragmen-
tation. Recent studies [15, p. 154] indicate that an MTU of 1500 bytes is a reasonable assumption. The next lower
common MTU values are 1006 bytes for SLIP and 296 for low-delay PPP (RFC 1191 [16]). Thus, another reason-
able value would be a message size of 950 bytes, to accommodate packet headers within the SLIP MTU without
fragmentation.

In the interest of robustness, any leading empty ling(s3T be ignored. In other words, if tieequest
or Response message begins with one or m@&LF, CR, or LFs, these charactersusT be ignored.

Likewise, Implementations processing SIP messages over stream oriented transjgarignore noise
between messages.

8 General User Agent Behavior

A user agent represents an end system. It contains a User Agent Client (UAC), which generates requests,
and a User Agent Server (UAS) which responds to them. A UAC is capable of generating a request based on
some external stimulus (the user clicking a button, or a signal on a PSTN line), and processing a response.
A UAS is capable of receiving a request, and generating response, based on user input, external stimulus,
the result of a program execution, or some other mechanism.

When a UAC sends a request, it will pass through some number of proxy servers, which forward the
request towards the UAS. When the UAS generates a response, the response is forwarded towards the UAC.

UAC and UAS procedures depend strongly on two factors. First, whether the request or response is
inside or outside of a dialog, and second, based on the method of a request. Dialogs are discussed thoroughly
in Section 12; they represent a peer-to-peer relationship between user agents, and are established by specific
SIP methods, such a8§VITE.

In this section, we discuss the method independent rules for UAC and UAS behavior when processing
of requests that are outside of a dialog. This includes, of course, the requests which themselves establish a
dialog.

8.1 UAC Behavior
8.1.1 Generating the Request

A valid SIP request formulated by a UAGUST at a minimum contain the following header, From,
CSeq, Call-ID, andVia; all of these headers are mandatory in all SIP messages. These five headers are
the fundamental building blocks of a SIP message, as they jointly provide for most of the critical message
routing services including the addressing of messages, the routing of responses, ordering of messages, and
the unique identification of transactions.

Examples of requests send outside of a dialog includ®&iT E to establish a session (Section 13) and
anOPTIONS to query for capabilities (Section 11).

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 23]

878

879

880

881

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

8.1.1.1 To TheTo general-header field first and foremost specifies the desired “logical” recipient of the
request, or the address of record of the user or resource that is the target of this request. This may or may
not be the ultimate recipient of the request. TloeheademAy contain a SIP URI, but it may also make

use of other URI schemes (for example as the tel URL [13]) when appropriateloTteader field allows

for a display name; this is meant to contain a descriptive version of the URI, and is intended to be displayed
to a user interface.

A UAC may learn how to populate thEo header field for a particular request in a number of ways.
Usually the user will suggest thio header field through a human interface, perhaps inputting the URI
manually or selecting it from some sort of address book.

A request outside of a dialagusT NOT contain a tag; the tag in thio field of a request identifies the
peer of the dialog. Since no dialog is established, no tag is present.

For further information on th&o header see Section 22.37.

The following is an example of validio header:

To: Carol <sip:carol@chicago.com>

8.1.1.2 From TheFrom general-header field indicates the logical identity of the initiator of the request,
possibly the user’s address of record. Like Tiwefield, it contains a URI and optionally a display name.
It is used by SIP elements to determine processing rules to apply to a request (for example, automatic call
rejection). As such, it is very important that the URI not contain IP addresses or host names, since these are
not logical names.

The From header field allows for a display nhame; this is meant to contain a descriptive version of the
URI, and is intended to be displayed to a user interface. A JAGULD use the display nhame “Anonymous”
if the identity of the client is to remain hidden.

Usually the value that populates tReom header field in requests generated by a particular user agent
is pre-provisioned by the user or by the administrators of the user’s local domain. If a particular user agent
is used by multiple users, it might have switchable profiles that include a URI corresponding to the identity
of the profiled user. Recipients of requests can authenticate the originator of a request in order to ascertain
that they are who thelfrom header field claims they are (see Section 20.2 for more on authentication).

The From field MUST contain a newtag” parameter, chosen by the UAC. See Section 21.3 for details
on choosing a tag.

For further information on therom header see Section 22.20.

Examples:

From: "Bob" <sip:bob@biloxi.com> ;tag=a48s
From: sip:+12125551212@server.phone2net.com;tag=887s
From: Anonymous <sip:c80qz84zk7z@privacy.org>;tag=hyh8

8.1.1.3 Call-ID TheCall-ID general-header field acts as a unigue identifier to group together series of
messages. It is always the same for all requests and responses sent by either UA in a dialog. It is also the
same in each registration from a UA within a single boot cycle.

In a new request created by a UAC outside of any dialog, unless overridden by method specific behavior,
it MUST be selected by the UAC as a a globally unique identifier over space and time; all SIP user agents
must have a means to guarantee that@aé-1D headers they produce will not be inadvertently generated
by any other user agent.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 24]

919
920
921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

Use of cryptographically random identifiers [17] in the generation of Call-|BREISOMMENDED. Im-
plementationavAy use the form “localid@host”.Call-IDs are case-sensitive and are simply compared
byte-by-byte.

Using cryptographically random identifiers provides some protection against session hijacking, and reduces the
likelihood of unintentional Call-ID collisions.

No provisioning or human interface is required for the selection ofxal-ID header field value for a
request.

For further information on th€all-ID header see Section 22.8.

Example:

Call-ID: f81d4fae-7dec-11d0-a765-00a0c91e6bf6@foo.bar.com

8.1.1.4 CSeq The Cseq header serves as a way to identify and order transactions. It consists of a
sequence number and a method. The methodT match that of the request. The sequence number value
is arbitrary, butMusT be expressible as a 32-bit unsigned integerrandT be less than 2**31.

As long as it follows the above guidelines, a client may use any mechanism it would like toG8keqgt
header field values.

For further information on th€Seq header see Section 22.16.

Example:

CSeq: 4711 INVITE

8.1.1.5 Via The Via header is used to determine the transport to use for sending a request, and for
identifying the IP address and port where the response is to be sent. Rules for setting and using the values
in this header are described in Section 19.

For further information on th¥ia header see Section 22.40.

8.1.1.6 Contact The Contact header provides a SIP URI that can be used to contact that specific in-
stance of the user agent for subsequent requestsC@htact heademusT be present in any request that
can result in the establishment of a dialog. For the methods defined in this specification, that includes only
the INVITE request. For these requests, the scope ofthtact is the dialog. That is, th€ontact header
refers to the URL that the UA would like to receive requests at, for requests that are part of that dialog only.
Only a single URIMUST be present.

For further information on th€ontact header, see Section 22.10.

8.1.1.7 Request-URI The initial Request-URI of the messageHOULD be set to the value of the URI
in the To field. One notable exception is tIREGISTER method; behavior for setting tHieequest-URI

of register is given in Section 10. Another exception is the case of pre-exRtote headers; in that case,
the procedures of Section 12.2.1.1 as they pertain t®Régest- URI are followed, even though there is
no dialog.

8.1.1.8 Supported and Require If the UAC supports extensions to SIP that can be applied by the
server to the response, the UABOULD include aSupported header in the request listing the option tags
for those extensions.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 25]

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986
987

988
989

990

991

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

The option-tags listeshusT only refer to extensions defined in standards track RFCs. This is to prevent
servers from insisting that clients implement non-standard, vendor defined features in order to receive ser-
vice. Extensions defined by experimental and informational RFCs are explicitly excluded from usage with
the Supported header in a request, since they too are often used to document vendor defined extensions.

If the UAC wishes to insist that a UAS understand an extension that the UAC will apply to the request in
order to process the requestmit'ST insert aRequire header into the request listing the option tag for that
extension. If the UAC wishes to apply an extension to the request and insist that a proxy understand that
extension, iMUST insert aProxy-Require header into the request listing the option tag for that extension.

8.1.1.9 Additional Message Components After a new request has been created, the headers described
above have been properly constructed, any additional optional headers are added, as are any headers specific
to the method.

SIP requestsiAY contain a MIME-encoded message-body. Regardless of the type of body that a request
contains, certain headers must be formulated to characterize the contents of the body. For further information
on these headers see Section 7.4.

8.1.2 Sending the Request

The destination for the request is then computed. This can be a preconfigured IP address, port and transport
of an outbound proxy, or it can be determined through DNS procedures appliedRedest-URI. These
procedures are described in Section 24, which yield an ordered set of address, port and transports to attempt.
The UAC sHouLD follow the procedures defined there for stateful elements, trying each address until a
server is contacted. Each try constitutes a new transaction, and therefore a new client transestibe
constructed for each.

8.1.3 Processing Responses

Responses are first processed by the transport layer, and then passed up to the transaction layer. The trans-
action layer performs its processing, and then passes it up to the TU. The majority of response processing
in the TU is method specific. However, there are some general behaviors independent of the method.

8.1.3.1 Unrecognized ResponsesA UAC MUST treat any response they do not recognize as being
equivalent to the x00 response code of that class,vwslT be able to process the x00 response code for

all classes. For example, if a UAC receives an unrecognized response code of 431, it can safely assume that
there was something wrong with its request and treat the response as if it had received a 400 (Bad Request)
response code.

8.1.3.2 Vias If more than oneVia header field is present in a response, the UMOULD discard the
message.

The presence of addition®ia header fields that precede the originator of the request suggests that the message
was misrouted or possibly corrupted.

8.1.3.3 Processing 3xx responsedJpon receipt of a redirection response (e.g. a 3xx response status
code), clientssHouLD use the URI(s) in th€ontact header field to formulate a new request.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 26]

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

To do that, the client copies all but thenethod-param” and “header” elements of thexddr-spec part
of the Contact header field into th®equest-URI of the request. It uses thbéader” parameters to create
headers for the request, replacing any default headers normally used.

In all other respects, requests sent upon receipt of a redirect respeosa D re-use the headers and
bodies of the original request.

The Contact values present in redirection responsesuULD NOT be cached across calls, as they may
not represent the most desirable location for a particular destination address.

8.1.3.4 Processing 4xx responsegCertain 4xx response codes require specific UA processing, indepen-
dent of the method.
If a 401 or 407 response is received, the Us@ouLD follow the authorization procedures of Section
20.2.2 and Section 20.2.3 to retry the request with credentials.
If a 413 response is received (Section 23.4.11), it means that the request contained a body that was
longer than the UAS was willing to accept. If possible, the U@ ULD retry the request, either omitting
the body or using one of a smaller length.
If a 415 response is received (Section 23.4.13), it means the request contained media types not supported
by the UAS. The UACSHOULD retry sending the request, this time only using content with types listed in
the Accept header in the response, with encodings listed inAbeept-Encoding header in the response,
and with languages listed in theccept-Language in the response.
If a 420 response is received (Section 23.4.14), it means the request contdeegliee or Proxy-
Require header listing an option-tag for a feature not supported by a proxy or UAS. Thess&D LD
retry the request, this time omitting any extensions listed in.thsupported header in the response.
In all of the above cases, retrying the request is accomplished by creating a new request with the appro-
priate modifications. This new requestiouLD have the same value of tigall-ID, To, andFrom of the
previous request, but tf@Seq should contain a new sequence number that is one higher than the previous.
With other 4xx responses, a retry may or may not be possible depending on the method and the use case.

8.2 UAS Behavior

When a request outside of a dialog is processed by a UAS, there are a set of processing rules which are
followed, independent of the method. Section 12 gives guidance on how a UAS can tell whether a request
is inside or outside of a dialog.

8.2.1 Authentication/Authorization

A UAS MAY authenticate the originator of a request, and this process may require the server to issue a
challenge for credentials. The required behavior is independent of the method of the request, and is detailed
in Section 20.2.

8.2.2 Method Inspection

Once a request is authenticated (or no authentication was desired), theWw#Snspect the method of the
request. If the UAS does not support the method of a requeststr generate a 405 (Method Not Allowed)
response. Procedures for generation of responses are described in Section 8.2.7. Mesuaio add
anAllow header to the 405 response. Th®w header fieldwusT list the set of methods supported by the
UAS generating the message.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 27]

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067
1068
1069

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

TheAllow header is presented in Section 22.5.
If the method is one supported by the server, processing continues.

8.2.3 Header Inspection

If a UAS does not understand a header field in a request (i.e. the header is not defined in this specification
or in any supported extension), the sermersT ignore that header and continue processing the message. A
UAS sHouLD ignore any malformed headers which are not necessary for processing requests.

8.2.3.1 To and Request-URI TheTo header field identifies the original recipient of the request desig-
nated by the user identified in theom field. The original recipient may or may not be the UAS processing
the request, do to call forwarding or other proxy operations. A UMAS apply any policy it wishes in
determination of whether to accept requests whethigeld is not the identity of the UAS. However, it is
RECOMMENDED that a UAS accept requests even if they do not recognize the URI scheme (elg., a
URI) in the To header, or if thélo header does not address a known or current user of this UAS. If, on the
other hand, the UAS decides to reject the requesti@uLD generate a response with a 403 status code and
send it to the server transaction for transmission.

However, theRequest-URI identifies the UAS that is to process the request. IfRleguest-URI does
not identify an address that the UAS is willing to accept requests f@a@uLD reject the request with
a 404 (Not Found) response. If tiRequest-URI does not provide sufficient information for the UAS to
determine whether it is willing to process the requestHibuULD return a 485 (Ambiguous) response. This
responsesHOULD contain aContact header field containing URIs of new addresses to be tried. Typically,
a UA which uses th®EGISTER method to bind its address of record to a specific contact address, will see
requests whosRequest-URI equals those contact addresses.

8.2.3.2 Require Assuming the UAS decides that it is the proper element to process the request, it ex-
amines théRequire header field, if present.

TheRequire general-header field is used by UAC to tell UAS about SIP extensions that the UAC expects
the UAS to support in order to properly process the request. If a UAS does not understand an option listed
in aRequire header field, iMUsT respond by generating a response with status code 420 (Bad Extension).
The UASMusST add aUnsupported, and list in it those options it does not understand amongst those in
the Require header of the request. Upon receipt of the 420 the chertiuLD retry the request, this time
without using those extensions listed in the Unsupported header in the response.

Example:

UACC->UAS: INVITE sip:watson@bell-telephone.com SIP/2.0
Require: com.example.billing
Payment: sheep_skins, conch_shells

UASS->UAC: SIP/2.0 420 Bad Extension
Unsupported: com.example.billing

This is to make sure that the client-server interaction will proceed without delay when all options are understood
by both sides, and only slow down if options are not understood (as in the example above). For a well-matched
client-server pair, the interaction proceeds quickly, saving a round-trip often required by negotiation mechanisms.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 28]

1070
1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

In addition, it also removes ambiguity when the client requires features that the server does not understand. Some
features, such as call handling fields, are only of interest to end systems.

8.2.4 Content Processing

Assuming the UAS understands any extensions required by the client, the UAS examines the body of the
message, and the headers that describe it. If there are any bodies whose type (indicateddmgehie
Type), language (indicated by theontent-Language) or encoding (indicated by tHeéontent-Encoding)
are not understood, and that body part is not optional (as indicated Iottent-Disposition) header, the
UAS MUST reject the request with a 415 (Unsupported Media Type) response. The respggiseontain
a Accept header listing the types of all bodies it understands, in the event the request contained bodies of
types not supported by the UAS. If the request contained content encodings not understood by the UAS,
the respons@iusT contain anAccept-Encoding header listing the encodings understood by the UAS. If
the request contained content with languages not understood by the UAS, the regpsmseontain an
Accept-Language header indicating the languages understood by the UAS.

Beyond these checks, body handling is method and type specific.

For further information on the processing of Content-specific headers see Section 7.4.

8.2.5 Applying Extensions

A UAS that wishes to apply some extension when generating the resparsseonly do so if support for

that extension is indicated in tl8upported header in the request. If the desired extension is not supported,

the serversHoULD rely only on baseline SIP and any other extensions supported by the client. To ensure
that thesHouLD can be fulfilled, any specification of a new extensiwasT include discussion of how

to gracefully return to baseline SIP when the extension is not present. In rare circumstances, where the
server cannot process the request without the extension, the setvesend a 421 (Extension Required)
response. This response indicates that the proper response cannot be generated without support of a specific
extension. The needed extensiongs)sT be included in &Require header in the response. This behavior

iSNOT RECOMMENDED, as it will generally break interoperability.

Any extensions applied to a non-421 responrgesT be listed in aRequire header included in the
response. Of course, the senwewsT NOT apply extensions not listed in tHeupported header in the
request. As a result of this, tiRequire header in a response will only ever contain option tags defined in
standards track RFCs.

8.2.6 Processing the Request

Assuming all of the checks in the previous subsections are passed, the UAS processing becomes method
specific. Section 10 deals with tHREGISTER request, section 11 deals with t@PTIONS request,
section 13 deals with theNVITE request, and section 15 deals with B¥E request.

8.2.7 Generating the Response

When a UAS wishes to construct a response to a request, it follows these procedures. Additional procedures
may be needed depending on the status code of the response and the circumstances of its construction. These
additional procedures are documented elsewhere.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 29]

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

The From field of the respons&usT equal theFrom field of the request. Th€all-ID field of the
response/usT equal theCall-ID field of the request. Th€seq field of the responseiusT equal theCseq
field of the request. Th¥ia headers in the responseJST equal theVia headers in the request, amd ST
maintain the same ordering.

If a request contained® tag in the request, thio field in the responssusT equal that of the request.
However, if theTo field in the request did not contain a tag, the URI in Tioefield in the responsetusT
equal the URI in thelo field in the request. Additionally, the UABUST add a tag to thdo field in the
response. This serves to identify the UAS that is responding, possibly resulting in a component of a dialog
ID. The same tagnusT be used for all responses to that request, both provisional and final. Procedures for
generation of tags are defined in Section 21.3.

8.3 Redirect Servers

In some architectures it may be desirable to reduce the processing load on proxy servers that are responsible
for routing requests by relying on redirection. Redirection allows servers to push routing information for a
request back in a response to the client, thereby taking themselves out of the loop of further messaging for
this transaction while still aiding in locating the target of the request. When the originator of the request
receives the redirection it will send a new request based on the routing information it has received. By
propagating routing information from the core of the network to its edges, redirection allows for considerable
network scalability.

A redirect server is logically constituted of a server transaction layer and a transaction user that has
access to a location service of some kind (see Section 10 for more on registrars and location services). This
location service is effectively a database containing mappings between a single URI and a set of one or more
alternative locations at which the target of that URI can be found.

A redirect server does not issue any SIP requests of its own. After receiving a request otli@hkhan
CEL, the server gathers the list of alternative locations from the location service and either returns a final
response of class 3xx or it refuses the request. For well-for@&NCEL requests, iSHOULD return a
2xx response. This response ends the SIP transaction. The redirect server maintains transaction state for an
entire SIP transaction. It is the responsibility of clients to detect forwarding loops between redirect servers.

When a redirect server returns a 3xx response to a request, it populates the list of (one or more) alterna-
tive locations intoContact headers. Anéxpires” parameter to th&ontact header may also be supplied
to indicate the lifetime of th€ontact data.

The Contact header field contains URIs giving the new locations or user names to try, or may simply
specify additional transport parameters. A 301 or 302 response may also give the same location and user-
name that was targeted by the initial request but specify additional transport parameters such as a different
server or multicast address to try, or a change of SIP transport from UDP to TCP or vice versa.

Note that theContact header fieldwAy also refer to a different entity than the one originally called. For
example, a SIP call connected to GSTN gateway may need to deliver a special informational announcement
such as “The number you have dialed has been changed.”

A Contact response header field can contain any suitable URI indicating where the called party can be
reached, not limited to SIP URIs. For example, it could contain URL'’s for phones, féx, @they were
defined) or anailto: (RFC 2368, [18]) URL.

The “expires” parameter of th€ontact header field indicates how long the URI is valid. The parameter
is either a number indicating seconds or a quoted string contain®idP-alate. If this parameter is not
provided, the value of th&xpires header field determines how long the URI is valid. Implementations

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 30]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

uso MAY treat values larger than 2**32-1 (4294967295 seconds or 136 years) as equivalent to 2**32-1.

1151 Redirect serversmusT ignore features that are not understood (including unrecognized he&gers,

us2 quired extensions, or even method names) and proceed with the redirection of the session in question. If
uss @ particular extension requires that intermediate devices support it, the extenssanbe tagged in the

uss Proxy-Require field as well (see Section 22.28).

uss 9 Canceling a Request

uss The previous section has discussed general UA behavior for generating requests, and processing responses,
us7 for requests of all methods. In this section, we discuss a general purpose method; ANIEEL.

1158 The CANCEL request, as the name implies, is used to cancel a previous request sent by a client. Specif-
use ically, it asks the user agent server to cease processing the request, and generate an error response to that
ueo request.CANCEL has no effect on a request that has already been responded to. Because of this, it is most
ue1 Useful toCANCEL requests which can take a long time to respond to. For this re@8NCEL is most

uez useful forINVITE requests, which can take a long time to generate a response. In that usage, a UAS that
1ues receives & ANCEL request for anNVITE, but has not yet sent a response, would “stop ringing”, and then

1ea respond to théNVITE with a specific error response (a 487).

1165 Cancel requests can be constructed and sent by any type of client, including both proxies and user
ues agent servers. Section 15 discusses under what conditions a UAC @ANEEL anINVITE request, and

ue7 Section 16 discusses proxy usageNVITE.

1168 Because a stateful proxy can generate its GNCEL, a stateful proxy also responds t€ANCEL,

uee rather than simply forwarding a response it would receive from a downstream element. For that reason,
u7o CANCEL is referred to as a “hop-by-hop” request, since it is responded to at each stateful proxy hop.

un 9.1 Client Behavior

u72 The following procedures are used to constru@ANCEL request. Th&kequest-URI, Call-ID, To, the

173 numeric part ofCSeq and From header fields in th€ ANCEL requestMusT be identical to those in the

u7a request being cancelled, including tags CANCEL constructed by a cliemiusT have only a singlé/ia

urs header, whose value matches the Yba in the request being cancelled. Using the same values for these
u7e headers allows th€ ANCEL to be matched with the request it cancels (Section 9.2 indicates how such
u77 - matching occurs). However, the method part of @s&eq heademusT have a value ofCANCEL. This

u7zs allows it to be identified and processed as a transaction in its own right (See Section 17).

1179 Once theCANCEL is constructed, the clie®HouLD check whether any response (provisional or final)
uso has been received for the request being cancelled (herein referred to as the "original requeSTANTTEL

us1 requestMusT NOT be sent if no provisional response has been received, rather, thenolismtwait for the

us2 arrival of a provisional response before sending the request. If the original request has generated a final
uss response, th€ANCEL sHOULD NOT be sent, as it is an effective no-op, sit€ANCEL has no effect on

usa requests which have already generated a final response. When the client decides to €&NGEL, it

uss creates a client transaction for tAidNCEL, and passes it theANCEL request along with the destination

uss address, port and transport. The destination address, port, and transporGaNEL MUusT be identical

us7 to those used to send the original request.

1188 If it was allowed to send th€ANCEL before receiving a response for the previous request the server could
1189 receive theaCANCEL before the original request.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 31]

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

Note that both the transaction corresponding to the original request aftiINEEL transaction will
complete independently. However, a UAC canceling a request cannot rely on receiving a 487 (Request
Terminated) response for the original request, as an RFC 2543-compliant UAS will not generate such a
response. If there is no final response for the original request in 64*T1 secondsliWV &k transaction,
and T3 seconds for a ndMNVITE transaction, the cliensHouLD then consider the original transaction
cancelled angHoULD destroy the client transaction handling the original request.

9.2 Server Behavior

The CANCEL method requests that the TU at the server side cancel a pending request with tii@adiame
ID, To, From, top Via header andRequest-URI andCSeq (sequence number only) header field values.

The processing of EBANCEL request at a server depends on the type of server. A stateless proxy will
forward it, a stateful proxy might respond to it and generate sGARCEL requests of its own, and a UAS
will respond to it. See Section 16.8 for proxy treatmenCaNCEL.

When a UAS receives @ANCEL, it looks for any server transactions which were created by requests
with the samélo, From, Call-ID, Cseq numeric valueRequest-URI and topVia header. If no matching
transactions are found, ti@@ANCEL is responded to with a 481 (Call Leg/Transaction Does Not Exist). If
the transaction for the original request still exists, the behavior of the UAS on recei@ANEEL request
depends on whether it has already sent a final response for original request. If it RANBGEL request
has no effect on the processing of the original request, no effect on any session state, and no effect on the
responses generated for the original request. If the UAS has not issued a final response for the original
request, it immediately responds to the original request with a 487 (Request Terminated).

The CANCEL request itself is answered with a 200 (OK) response in either case. Once the response is
constructed it is passed to the server transaction foE#ECEL request.

10 Registrations

10.1 Overview of Usage

SIP is a protocol that offers a discovery capability. For one user to initiate a session with another, SIP must
discover the current host(s) that the called user is reachable at. This discovery process is accomplished
by SIP proxy servers, which are responsible for receiving a request, determining where to send it based
on knowledge of the location of the user, and then sending it there. To do this, proxies consult an abstract
service known as lcation servicewhich provides address bindings for a particular domain. These address
bindings map an incoming SIP UREip:bob@Biloxi.com , for example, to one or more SIP URLs
which are somehow “closer” to the desired usgs;bob@engineering.Biloxi.com , for example.
Ultimately, a proxy will consult a location service which maps a received URL to the current host(s) that a
user is logged in to.

There are many ways by which the contents of the location service can be established. One way is
administratively. In the above example, Bob is known to be a member of the engineering department through
access to a corporate database. SIP provides a mechanism, however, for a user agent to explicitly create a
binding in the location service of a proxy. This mechanism is known as registration.

The process of registration entails sendin@EGISTER message to a special type of UAS known as a
registrar. The registrar acts as a front end to the location service for a domain, reading and writing mappings
based on the contents of tREEGISTER messages. This location service will then be consulted by a proxy

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 32]

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

server that is responsible for routing requests for that domain.

SIP does not mandate a particular mechanism for implementing the location service. The only require-
ment is that a registrar for some domainsT be capable of reading and writing data to the location service,
and a proxy for that domaimusT be capable of reading that same data. A registrar be co-located with
a particular SIP proxy server for the same domain, allowing usage of an in memory database for the location
service. Usage of a shared database is another implementation choice. The choice depends entirely on the
architectural requirements (redundancy, scalability, etc) of a particular deployment.

Registration creates bindings in a location service for a particular domain that associate an “address of
record” URI with one or more “contact addresses”. This means that when a proxy for that domain receives a
request whose request URI matches the address of record, the proxy will forward the request to the contact
addresses registered to that address of record. Generally, it only makes sense to register an address of record
at a location service for a domain when requests for that address of record would be routed to that domain.
In most cases, this means that the domain of the registration will need to match the domain in the URI of
the address of record.

The most important usage of the registration mechanism is to inform a proxy of the mapping between
the address of record and the current host on which the UA resides. However, the registration process is a
general mechanism for establishing bindings, and can be used for other purposes (for example, to set up call
forwarding).

bob
+——t
| UA |
||
+———t
I
[3)INVITE
| carol@chicago.com
chicago.com - + V
F—————— + 2)Store|Location|4)Query +————— +
|Registrar|=======>| Service|<=======|Proxy|sip.chicago.com
+—— + - +=======>+4———— +
A 5)Resp |
I I
I I
1)REGISTER| |
I I
+———t |
| VA |<-——""rrr———————— +
cube2214a| | 6)INVITE
+————t carol@cube2214a.chicago.com
carol

Figure 2:REGISTER example

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 33]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

1228 10.2 Construction of the REGISTER request

1229 Several operations can be performed wilREGISTER method with respect to a registrar. One of these is

1250 the basic registration operation that is described above, which provides a new binding between an address
121 Of record and one or more contact addresses. Registration on behalf of a particular address of record may be
152 performed by a third party if they are authorized to do so. A client may also remove previous bindings, or
1253 query to determine which bindings are currently in place for an address of record.

1254 Aside from the exceptions noted in this and the following sections, the construction REBETER

1255 method, and behavior of clients sendinBBGISTER is identical to the general UAC behavior described in

126 Section 8.1 and Section 17.1. Regardless of the operation that is perform@&ByISTER, the following

1257 header fieldsausT be formulated as follows:

1258 Request-URI: TheRequest-URI hames the domain of the location service that the registration is meant
1259 for (e.g. “chicago.com”). The user nammeST be empty.

1260 TO: The To header field contains the address of record whose registration is to be created or modified.

1261 Note that the initialTo header field and thRequest-URI field sHouLD therefore be different in a

1262 REGISTER message.

1263 From: TheFrom header field contains the address of record of the person responsible for the registration,
1264 which MAY be identical to the value of th&o header field. For third-party registrations theom

1265 header field ando header field are different.

166 Call-ID: All registrations from a user agent cliesHOULD use the sam€all-ID header value, at least
1267 within the same reboot cycle.

1268 If different Call-IDs were used for overlappifr@EGISTER messages coming from the same client, the
1269 registrar might have trouble determining their ordering.

1270 Contact: REGISTER requestavAy contain one or mor€ontact header fields. Contact addresses are

1271 presented in th€ontact header fields OREGISTER requests.

1272 Note that user agentg@usT NOT send a new registration (containing n€&wontact header fields, as

1273 Opposed to a retransmission) until they have received a response from the registrar for the previous one.
1274 The following optionalContact header parameters also contain behavior specific to the registration

1275 Process.

1276 action : The “action” parameter has been deprecated. UAB®ULDNOT use the action” parameter.

1277 expires : The “expires” parameter indicates how long the UAC would like the binding to be valid. The

1278 parameter is either a number indicating seconds or a quoted string contaiSifydate. If this

1279 parameter is not provided, the value of taepires header field determines how long the binding is
1280 valid. ImplementationsiAy treat values larger than 2**32-1 (4294967295 seconds or 136 years) as
1281 equivalent to 2**32-1.

122 10.2.1 Adding Bindings withREGISTER

1263 For a simple registration, REGISTER request sent to a registrar includes contact addresses to which
128¢ requests should be forward for the originating user’s address of record. The address of record itself (i.e.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 34]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

1285 'Sip:carol@chicago.com’MUsT populate thelo header of thdREGISTER. The Contact header fields of

1286 the request typically contain SIP URIs that identify particular SIP endpoints (i.e. 'sip:carol@cube2214a.chicago.cor
1287 but theymAy use any URI scheme; this way a SIP UA can choose to register telephone numbers (with the
1288 tel URL, [13]) or email addresses (with a mailto URL, [18])@sntacts for an address of record.

1289 For example, if Carol, whose address of record is 'sip:carol@chicago.com’, needed to register, she would
1200 typically want to register with the registrar associated with the location service of chicago.com. This location
1201 Service would then be accessed by a proxy server that receives requests targeting users in the chicago.com
1202 domain, and hence new requests for Carol’'s address of record will be routed to her SIP endpoint.

1203 Once a client has established bindings at a registrarat send subsequent registrations containing

1204 New bindings or modifications to pre-existing bindings as necessary. The 2xx respons ERI®TER

1205 Message will contain (i€ontact header fields) a complete list of bindings that have been registered for this

1206 address of record at this registrar.

17 10.2.1.1 Setting the Expiration Interval of Contact Addresses When a client sends REGISTER

1208 request, itMAY suggest an expiration interval that indicates how long the client would like the registration
1299 to be valid (although as is detailed in Section 10.3, the registrar has the ultimate say).

1300 There are two ways in which a client can suggest an expiration interval for a binding: throEgpises

1301 header, or anéxpires” Contact header parameter. The latter allows expiration intervals to be suggested
1302 0N a per-binding basis when more than one binding is given in a sRGBISTER, whereas the former

1303 Suggests an expiration interval for @lbntact header fields that do not contain thexpires” parameter.

1304 If neither mechanism for expressing a suggested expiration time is preseREGETER, a default

1305 suggestion of one hour is assumed.

s 10.2.1.2 Setting Preference among Contact Addressesf more than oneContact is sent in ®IS-
1307 TER, then the registering UA intends to associate all of the URIs given in {Bes¢act headers with the
1308 address of record present in the field. This list can be prioritized with theg™ mechanism.

s (: The “q” parameter indicates a relative preference for the particdQtamtact header field compared to
1310 other bindings present in thREGISTER message or existing within the location service of the
1311 registrar. For an example of how a proxy server usgs/élues, see Section 16.5.

132 10.2.2 Removing Bindings withREGISTER

1313 Registrations are removed from the registrar through an expiration process; registrations are soft state and
1314 need to be refreshed periodically. A client may attempt to influence the expiration intervals selected by the
1315 registrar as described in Section 10.2.1.

1316 A registering user agent requests the immediate removal of a binding by specifying an expiration in-
1317 terval of “0” for that contact address iInREGISTER. It is RECOMMENDED that user agents support this

1318 Mechanism so that bindings can be removed (for whatever reason) before their expiration interval has passed.
1319 TheREGISTER-specificContact header field value of “*” applies to all registrations, butit ST only

1320 be used when thExpires header is present with a value of “0".

1321 Use of the “*” Contact header field value allows a registering user agent to remove all of its bindings expediently.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 35]

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353
1354

1355

1356

1357

1358

1359

1360

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

10.2.3 Fetching Bindings withREGISTER

If no Contact headers are present iREGISTER, then the UA is not in fact registering any new bindings,
and the list of bindings is therefore left unchanged. As noted above, in a successful responseEGsthis
ISTER message, the complete list of existing bindings is returned, and tRRE$GASTER without Contact
headers serves as a fetch operation.

10.2.4 Refreshing Registrations

When a 2xx response has been received by the clientREG@ISTER request, the cliermiusT determine
when each of the bindings enumerated in the response needs to be refreshed. This may include bindings that
were registered in previolREGISTER transactions.

Since the list of bindings returned in the response RE&ISTER may contain bindings that were not
included in thisSREGISTER transaction, the client must correldBontact header fields in the response
with the Contact header fields it sent in the request in order to establish proper expiration timers. This
correlation should be performed in accordance with the URI comparison rules given in Section 21.1.4.

The registering UAMUST re-register each contact address at least as often as the mandated expiration
interval. A REGISTER that refreshes a bindingHouLD have the sam€all-ID as the request which
created the binding. Th€Seq headersHouLD have a numeric sequence number that is one higher than
the value sent in the last request with the s&@ad-ID.

Note that a UAMUST must update its expiration timers for refreshing each binding every time it receives
a response to a registration request.

Registration refreshesHoOULD be sent to the same address as the original registration, unless redirected.

10.2.5 Discovering a Registrar

Depending on the policy of their administrative domain, SIP UAs can be configured with the address of a
local registrar. Some UAs may be equipped with protocol tools (outside the scope of SIP) that allow them
to discover their local registrar dynamically.

Note that as an alternate means of discovering a registrar if no local registrar is configured in the user
agent, clientsvAy register via multicast. Multicast registrations are addressed to the well-known “all SIP
servers” multicast address “sip.mcast.net” (224.0.1.75). This request be scoped to ensure it is not
forwarded beyond the boundaries of the administrative system. MAnNsbe done with either TTL or
administrative scopes (see [19]), depending on what is implemented in the network. SIP usemagents
listen to that address and use it to become aware of the location of other local users (see [20]); however, they
do not respond to the request.

Multicast registration may be inappropriate in some environments, for example, if multiple businesses share the
same local area network.

If a SIP UA knows of an appropriate registrasitOULD attempt to register with this server periodically
- management of registration intervals is detailed below.
10.3 Processing of REGISTER at the Registrar

A registrar is a UAS that responds tdREGISTER request, and stores the information gathered from that
request in a location service that is in turn accessible to proxy servers within its administrative domain. A
registrar handles requests as a UAS (in conformity with Section 8.2 and Section 17.2) but it accepts only the

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 36]

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382
1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

REGISTER method and generates only the responses detailed in this section. Note tREGHSTER
method also does not support tRecord-Route or Route header, and that proxy servens/ST NOT add
Record-Route headers teREGISTER requests.

A registrar must know (through provisioning or some other mechanism) the set if administrative do-
main(s) for which its associated location service(s) are responsRiEGISTER requestavusT be pro-
cessed by a registrar in the order that they are received.

Upon the arrival of REGISTER message, the registratusT inspect theRequest-URI to determine
whether it has access to a location service responsible for the domain to which this request is addressed.
If this message is for some other administrative domain, then if the registrar can act as a proxy server, it
sHouLD forward the request to the addressed domain (following the general behavior for proxying messages
described in Section 16).

When a registrar receivesREGISTER message, it IRECOMMENDED that the registrar authenticate
the user agent client. Mechanisms for the authentication of SIP user agents are described in Section 20.2;
registration behavior in no way overrides the generic authentication framework for SIP. If no authentication
mechanism is available, the registrasy take the From address as the asserted identity of the originator of
the request.

Once the identity of the registering user has been ascertainedREd9MMENDED that the registrar
determine if the authenticated user agent is authorized to request and/or modify registrations for this address
of record. For example, a registrar might consult a authorization database (directly or through an appropriate
protocol) that maps credentials or other tokens of identity resulting from authentication to one or more
addresses of record for which this identity is responsible.

Note that in architectures that support third-party registration, one entity may be responsible for updating the
registrations associated with multiple addresses of record.

When the registrar has determined that the client is permitted to make the request, the negistrar
extract the address of record from tfe header field of thdREGISTER. Note that the registranmusT
extract the entirdo header field URI in order to use it as an index in the location service.

Next, the registraMmusT query its location service (the repository of previously registered bindings)
for the set of bindings associated with this address of record. If the address of record is not valid for this
administrative domain (for example, because the username is not assigned), then the registration attempt
fails (see below). A full URI comparison (as described in Section 21MUST be performed to determine
whether a given binding matches this address of record.

The registrar nowusT extract all theContact header fields from thREGISTER message (note that
there may be n@ontact header field).

Each contact address irREGISTER MUST now be compared to all existing registrations at this loca-
tion service according to the rules in Section 21.1.4. Note that URIs other than SIP URIs in contact addresses
MUST be compared according to the standard URI equivalency rules for the URI schema in question.

If a match is found among pre-existing registrations, the registtesT copy all parameters associated
with the currentContact header field from th®ISTER message into the pre-existing binding in its
location service (overwriting with changed values any existing parameters as necessary, with the exception
of “expires”). Expiration intervals for this contact addressJST also be reset, based on any suggested
expiration in theREGISTER (remember that this can be “0”).

If no match is found among the set of pre-existing registrations, the registrsir create a new binding
in its location service between the address of record and the c@mrict header field. AllContact
header field parameters are copied verbatim into this new binding (again with the exceptpicés”).
An expiration intervalMusT be selected by the registrar, taking into account any suggested expiration for

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 37]

1406

1407
1408

1409

1410

1411

1412
1413

1414

1415

1416

1417

1418
1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

this contact address in tHREGISTER.

Allowing the registrar to set the registration interval protects it against excessively frequent registration refreshes
while limiting the state that it needs to maintain and decreasing the likelihood of registrations going stale.

The expiration interval mandated by the registrar may be either longer or shorter than the interval sug-
gested by the sender of tHREGISTER, though the registrasHoOULD abide by the registering client’s
suggestion.

A servermAy decide to lengthen the expiration interval if the refresh rate of a particular client exceeds a thresh-
old, for example.

After the expiration interval selected by the registrar for a binding has passed, if the binding has not been
refreshed (increasing the expiration interval), the registrewuLD silently discard the binding.

Once all bindings in the location service have been updated to reflect any changes present to contact
addresses in thREGISTER message, the registrsirusT remove any bindings that expire immediately.

The REGISTER might have set the expiration interval for some bindings to “0” to remove them before their
expiration interval passes.

Finally, the registrar must generate a response. If the address of record givernTainhtbader field of
the REGISTER method is valid for its administrative domain, then a 200 responseT be sent, which
MUST contain a complete list (withiontact header fields) of the currently valid bindings in the location
service associated with the address of record contained ifotfield of theREGISTER request. This list
MAY be empty (in which case the 200 would not contain @mytact headers).

In a successful response tREGISTER, wherein the bindings for this address of record are enumerated
as described above, the registrawsT supply an expiration interval for each contact address in either an
“expires” parameter of a Contact header oriaxpires header. This interval specifies the expiration interval
that has been mandated by the registrar (taking into account the registering UA's suggestion).

If the registration failed because the address of record contained in the To fiel (REGKSTER is not
valid for this domain, then a 404usT be sent.

11 Querying for Capabilities

The SIP methodDPTIONS allows a client to query another client or server as to its capabilities. This
allows a client to discover information about the methods, content types, extensions, codecs etc. supported
without actually "ringing” the other party. For example, before a client inseRgguire header field into
an INVITE listing an option that it is not certain the destination UAS supports, the client can query the
destination UAS with ail©®PTIONS to see if this option is returned in@upported header field.

The target of the®OPTIONS request is identified by thRequest-URI, which could identify another
User Agent or a SIP Server. Alternatively, a server receivin@BTIONS request with aMax-Forwards
header value of @AY respond to the request regardless oftegjuest-URI.

This behavior is common with HTTP/1.1.

An OPTIONS request sent as part of an established dialog does not have any impact on the dialog.

11.1 Construction of OPTIONS Request

An OPTIONS request is constructed using the standard rules for a SIP request as discussed Section 8.1.1.
A Contact header fielduay be present in a@PTIONS.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 38]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

1445 OPEN ISSUE #197: What is the semantic of t@ientact

1446 An Accept header fieldsHOULD be included to indicate the type of message body the UAC wishes to
1447 receive in the response.
1448 ExampleOPTIONS request:

1449 OPTIONS sip:carol@chicago.com SIP/2.0

1450 Via: SIP/2.0/UDP 10.1.1.1:5060;branch=23411513a6
1451 Via: SIP/2.0/UDP 10.1.3.3:5060

1452 To: <sip:carol@chicago.com>

1453 From: Alice <sip:alice@atlanta.com>;tag=1928301774
1454 Call-ID: a84b4c76e66710@10.1.3.3

1455 CSeq: 63104 OPTIONS

1456 Contact: <sip:alice@10.1.3.3>

1457 Accept: application/sdp

1458 Contact-Length: 0

use 11.2 Processing of OPTIONS Request

1460 The response to a@PTIONS is constructed using the standard rules for a SIP response as discussed in

e1 Section 8.2.7. The response code chosen is the same that would have been chosen had the request been an
ez INVITE. That is, a 200 (OK) would be returned if the UAS is ready to accept a call, a 486 (Busy Here)

1463 Would be returned if the UAS is busy, etc. This allows@RTIONS request to be used to determine the

164 basic state of a UAS, which can be an indication of whether the UAC will acceit\aiT E request.

1465 Note that this use dDPTIONS has limitations due the differences in proxy handling@®@®TIONS and

1466 INVITE requests. While a forkeldNVITE can result in multiple 200 OK responses being returned, a forked

1467 OPTIONS will only result in a single 200 OK response, since it is treated by proxies using theNVImE

168 handling. See Section 13.2.1 for the normative details.

1469 Allow, Accept, Accept-Encoding, Accept-Language, and Supported header fieldssHouULD be
1470 present in a 200 OK response to@RTIONS request.

1471 A Contact header fielduAy be present in a 200 OK response.

1472 A Warning header fieldwAy be present.

1473 A message bodwAy be sent, the type of which is determined by faept header in th@©PTIONS
174 request.
1475 ExampleOPTIONS response (corresponding to the request in Section 11.1):

1476 SIP/2.0 200 OK

1477 Via: SIP/2.0/UDP 10.1.1.1:5060;branch=23411513a6
1478 Via: SIP/2.0/UDP 10.1.3.3:5060

1479 To: <sip:carol@chicago.com>;tag=93810874

1480 From: Alice <sip:alice@atlanta.com>;tag=1928301774
1481 Call-ID: a84b4c76e66710@10.1.3.3

1482 CSeq: 63104 OPTIONS

1483 Contact: <sip:carol@10.3.6.6>

1484 Allow: INVITE, ACK, CANCEL, OPTIONS, BYE

1485 Accept:. application/sdp

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 39]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

1486 Accept-Encoding: gzip

1487 Accept-Language: en

1488 Supported: foo

1489 Content-Type: application/sdp
1490 Contact-Length: 274

1491

1492 v=0

1493 o=carol 28908764872 28908764872 IN IP4 10.3.6.6
1494 S=-

1495 t=0 0

1496 c=IN IP4 10.3.6.6

1497 m=audio 0 RTP/AVP 0 1 3 99
1498 a=rtpmap:0 PCMU/8000

1499 a=rtpmap:1 1016/8000

1500 a=rtpmap:3 GSM/8000

1501 a=rtpmap:99 SX7300/8000

1502 m=video 0 RTP/AVP 31 34

1503 a=rtpmap:31 H261/90000

1504 a=rtpmap:34 H263/90000

ss 12 Dialogs

1506 A key concept for a user agentis that of a dialog. A dialog represents a peer- to-peer SIP relationship between
1507 @ two user agents that persists for some time. The dialog facilitates sequencing of messages between the
1508 USer agents, and proper routing of requests between both them. The dialog represents a context in which to
1500 interpret SIP messages. The previous section discussed method independent UA processing for requests and
1510 responses outside of a dialog. This section discusses how those requests and responses are used to construct
1511 a dialog, and then how subsequent requests and responses are sent within a dialog.

1512 A dialog is identified at each UA with a dialog ID, which consists afall-ID value, a local URI and

1513 local tag (together called the local address), and a remote URI and remote tag (together called the remote
1514 address). The dialog ID at each UA involved in the dialog is not the same. Specifically, the local URI and
1515 local tag at one UA are identical to the remote URI and remote tag at the peer UA. The tags are opaque
1516 tokens that facilitate the generation of unique dialog IDs.

1517 A dialog ID is also associated with all responses, and with any request that contains a tafpifietee

1518 The rules for computing the dialog ID of a message depend on whether the entity is a UAC or UAS. For a
1519 UAC, theCall-ID value of the dialog ID is set to theall-ID of the message, the remote address is set to the

1520 1O field of the message, and the local address is set tértma field of the message (these rules apply to

1521 both requests and responses). As one would expect, for a UAEallD value of the dialog ID is set to

1522 the Call-ID of the message, the remote address is set tBribva field of the message, and the local address

1523 IS set to theTo field of the message.

1524 A dialog contains certain pieces of state needed for further message transmissions within the dialog.
1525 This state consists of theall-ID, a local sequence number (used to order requests from the UA to its peer),

1526 @ remote sequence number (used to order requests from its peer to the UA), and a route set, which is an
1527 ordered list of URISs. The route set is the set of servers that need to be traversed to send a request to the peer.
1528 A dialog can also be in the “early” state, which occurs when it is created with a provisional response, and

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 40]

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550
1551

1552

1553
1554

1555

1556

1557

1558

1559
1560
1561
1562
1563
1564
1565
1566

1567

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

then transition to the “established” state when the final response comes.

12.1 Creation of a Dialog

Dialogs are created through the generation of non-failure responses to requests with specific methods.
Within this specification, only the 2xx and 1xx response$NWVITE establish a dialog. A dialog estab-
lished by a non-final response to a request is called an early dialog. Extemgiordefine other means for
creating dialogs. Section 13 gives more details that are specific iN¥H&E method. Here, we describe

the process for creation of dialog state that is not dependent on the method.

12.1.0.1 UAS When a UAS responds to a request with a response that establishes a dialog (such as a
2xx to INVITE), the UASMuUST copy all Record-Route headers from the request into the response, and
MUST maintain the order of those headers. This includes the URIs, URI parameters, aRecorg-
Route header parameters, whether they are known or unknown to the UAS. ThenUsBadd aContact
header field to the response. T@entact header field contains an address where the UAS would like to
be contacted for subsequent requests in the dialog (which includ@sCtidor a 2xx response in the case
of anINVITE). Generally, the host portion of this URI is the IP address of the host, or its FQDN. The URI
provided in theContact heademusT be a SIP URL.

The UAS then constructs the state of the dialog. This stateT be maintained for the duration of the
dialog. First, the route setusT be computed by following these steps:

1. The list of URIs in theRecord-Route headers in the request, if present, are taken, including any URI
parameters.

2. The URI in theContact header from the request if present, is taken, including any URI parameters.
The URI is appended to the bottom of the list of URIs from the previous step.

Contact was not mandatory in RFC2543. Thus, if the UAS is talking to an older UAC, the UAC might not
have inserted th€ontact header.

3. The resulting list of URIs is called theute set

These rules clearly imply that a URuST be able to parse and procd®scord-Route header fields. This is a
change from RFC2543, where all record-route and route processing was optional for user agents.

It is possible for theoute setto be empty. This will occur if neitheRecord-Route headers nor a
Contact header were present in the request. The WAST also remember whether the bottom-most entry
in theroute sewas constructed from@ontact header or not. This is effectively a boolean value, which we
refer to as CONTACTSET. This is needed in order for the UA to determine whether the bottom most value
can be updated from subsequent requests; if it was constructed fGamtact, it can be updated.

The remote sequence number sequence numbser be set to the value of the sequence number in the
Cseq header of the request. The local sequence numilneT be empty. The call identifier component
of the dialog IDMUST be set to the value of th€all-ID in the request. The local address component of
the dialog IDMUST be set to thdlo field in the response to the request (which therefore includes the tag),
and the remote address component of the dialogtI3T be set to thé-rom field in the request. A UAS
MUST be prepared to receive a request without a tag irFtioen field, in which case the tag is considered
to effectively have a value of null.

This is to maintain backwards compatibility with RFC2543, which did not marfelate tags.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 41]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

s 12.1.0.2 UAC When a UAC receives a response that establishes a dialog, it constructs the state of the
1560 dialog. This staterusT be maintained for the duration of the dialog. First, the routessstT be computed
1570 by following these steps:

1571 1. The list of URIs present in tHeecord-Route headers in the response are taken, if present, including
1572 all URI parameters, and their order is reversed.

1573 2. The URI in theContact header from the response, if present, is taken, including all URI parameters,
1574 and appended to the end of the list from the previous step.

1575 3. The list of URIs resulting from the above two operations is referred to astite set

1576 It is possible for theroute setto be empty. This will occur if neitheRecord-Route headers nor a
1577 Contact header were present in the response. The WAGT also remember whether the bottom-most
1578 entry in theroute setwas constructed from @ontact header or not. This is effectively a boolean value,
1579 Which we refer to as CONTACTBET. This is needed in order for the UA to determine whether the bottom

1580 MOSt value can be updated from subsequent requests; if it was constructedJomtaat, it can be updated.
1581 The local sequence number sequence numtsT be set to the value of the sequence number in the
1s5s2 Cseq header of the request. The remote sequence numbsTt be empty (it is established when the UA
1583 Sends a request within the dialog). The call identifier component of the dialagux be set to the value
1582 Of the Call-ID in the request. The local address component of the dialogilBT be set to the=rom

155 field in the request, and the remote address component of the dialeg $D be set to thelo field of the

1586 response. A UAGWUST be prepared to receive a response without a tag ifehigeld, in which case the
1557 tag is considered to effectively have a value of null.

1588 This is to maintain backwards compatibility with RFC2543, which did not mantiatags.

189 12.2 Requests within a Dialog

1590 Once adialog has been established between two UAs either oiMhgnmitiate new transactions as needed
101 Within the dialog. However, a dialog imposes some restrictions on the use of simultaneous transactions.
1592 A TU MUST NOT initiate a new regular transaction within a dialog while a regular transaction is in
1503 progress (in either direction) within that dialog.

1594 OPEN ISSUE #113: Should we relax the constraint on non-overlapping regular transactions?

1595 A refresh request sent within a dialog is defined as a request that can modibutbesetwnf the dialog.
106 For dialogs that have been established witiNMMITE, the only refresh request defined isINVYITE (see
1597 Section 14). Other extensions may define different refresh requests for dialogs established in other ways.

1598 Note that amlACK is NOT a refresh request.

1599 12.2.1 UAC Behavior

w0 12.2.1.1 Generating the Request A request within a dialog is constructed by using many of the com-

1601 ponents of the state stored as part of the dialog.

1602 TheTo header field of the requestusT be set to the remote address, andRham header fieldwusT

103 be set to the local address (both including tags, assuming the tags are not null).

1604 The Call-ID of the requestusT be set to theCall-ID of the dialog. Requests within a dialogysT

1605 contain strictly monotonically increasing and contigu@Seq sequence numbers (increasing-by-one) in

1606 €ach direction. Therefore, if the local sequence number is not empty, the value of the local sequence number
107 MUST be incremented by one, and this valuesT placed into theCseq header. If the local sequence

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 42]

1608

1609

1610
1611
1612
1613
1614

1615

1616

1617

1618

1619
1620
1621
1622
1623
1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636
1637
1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648
1649
1650

1651

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

number is empty, an initial valueusT be chosen using the guidelines of Section 8.1.1.4. The method field
in the Cseq heademusT match the method of the request.

With a length of 32 bits, a client could generate, within a single call, one request a second for about 136 years
before needing to wrap around. The initial value of the sequence number is chosen so that subsequent requests within
the same call will not wrap around. A non-zero initial value allows clients to use a time-based initial sequence
number. A client could, for example, choose the 31 most significant bits of a 32-bit second clock as an initial
sequence number.

TheRequest-URI of requests is determined according to the following rules:

The UAC takes the list of URI in theoute set The top URIMUST be inserted into the request URI of
the request, including all URI parameters. Any URI parameters not allowed in the requestudRthen
be stripped. Each of the remaining URIs (if any) from tbete setincluding all URI parametersjusT be

placed into &Route header field into the request, in order.

A TU sHouLD follow the rules just mentioned to build tiRequest-URI of the request, regardless of
whether the UA uses an outbound proxy server or not. However, in some instances, a UA may not be willing
or capable of sending the request to the top element irotite set One example is a UA that is not capable
of DNS, and therefore may not be able to follow those procedures. In these cases, kherUfend the
request to a local outbound server. In this casapisT NOT remove the togroute header.

In dialogs created by aiNVITE, if the UA is the caller, it sets thRequest-URI to the same value it used for
the initial request, and sends it to its local outbound server.
Bug#161: Which Request-URI does the callee use?
A UAC sHouLD include aContact header in any refresh requests within a dialog, and unless there is a
need to change it, the URHOULD be the same as used in previous requests within the dialog. As discussed
in Section 12.2.2, €ontact header in a refresh request updates the route set. This allows a UA to provide
a new contact address, should its address change during the duration of the dialog.
However, requests that are not refresh requests do not affeciteesefor the dialog.
Once the request has been constructed, the address of the server is computed and the request is sent,
using the same procedures for requests outside of a dialog (Section 8.1.1).

12.2.1.2 Processing the Responsedhe UAC will receives responses to the request from the transaction

layer.
The behavior of a UAC that receives a 3xx response for a request sent within a dialog is the same as if
the request would have been sent outside a dialog. This behavior is described in Section 13.2.2.

Note however that when the UAC tries alternative locations it still usesatite setfor the dialog to build the
Route header of the request.

If a UAC has aroute seffor a dialog, and receives a 2xx response to a refresh it ser@ahect header
field of the response is examined. If not present, rthée setremains unchanged. If the response had a
Contact header field, and the boolean variable CONTASHET is false, the URL in th€ontact header
field in the response is added to the bottom ofrtheée setand CONTACTSET is set to true. If the refresh
request response hadCantact header field, and CONTACSEET is true, the URL in th€ontact header
field of the response to the refresh request replaces the bottom valuerqutbeset If a refresh request is
responded with a non-2xx final response tihigte setremains unchanged as if no refresh request had been

issued.
If the response for the a request within a dialog is a 481 (Call/Transaction Does Not Exist) or a 408
(Request Timeout) the UAGHOULD terminate the dialog.

For INVITE initiated dialogs terminating the dialog consists of sendiBY&.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 43]

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

12.2.2 UAS behavior

The UAS will receive the request from the transaction layer. If the request has a taglim lleader field,
the UAS core computes the dialog identifier corresponding to the request and compares it with existing
dialogs. If there is a match, this is a mid-dialog request. In that case, the same processing rules for requests
outside of a dialog, discussed in Section 8.2, are applied by the UAS once the request is received from the
transaction layer.

Requests that do not change in any way the state of a dialog may be received within a dialog (e.g., an
OPTIONS request). They are processed as if they had been received outside the dialog.

Requests within a dialoglAy containRecord-Route and Contact header fields. However, requests
that are not refresh requests do not updaterdiige setfor the dialog. This specification only defines one
refresh request: riNVITE (see Section 14).

Special rules apply when updatBeécord-Route or Contact header fields are received inside a refresh
request. If a UAS has eoute setfor a dialog, and receives a refresh for that dialog contaiftegord-
Route header fields, inusT copy those header fields into any 2xx response to that request. If the boolean
variable CONTACTSET is true, th&Contact header field in the request (if present) replaces the last entry in
theroute set If the boolean variable CONTACEET is false, the UASMUST add the URL in theContact
header field in the relNVITE to the bottom of theoute set and then set CONTACHBET to true. If the
request did not contain @ontact header field, the route-set at the UAS remains unchanged.

If the remote sequence number is emptyitsT be set to the value of the sequence number irCteq
header in the request. If the remote sequence number was not empty, but the sequence number of the request
is lower than the remote sequence number, the request is out of orderusmtdbe rejected with a 500
response. If the remote sequence number was not empty, and the sequence number of the request is greater
than the remote sequence number, the request is in order. It is possible @Bdlacheader to be higher
than the remote sequence number by more than one. This is not an error condition, andadAS be
prepared to receive and process requests @8hq values more than one higher than the previous received
request. The UAS1UST then set the remote sequence number to the value of the sequence number in the
Cseq header in the request.

12.3 Termination of a Dialog

Dialogs can end in several different ways, depending on the method. When a dialog is established with
INVITE, itis terminated with 8YE. No other means to terminate a dialog are described in this specification,
but extensions can define other ways.

13 Initiating a Session

13.1 Overview

When a user agent client desires to initiate a session (for example, audio, video, or a game), it formulates
anINVITE request. ThéNVITE request asks a server to establish a session. This request is forwarded by
proxies, eventually arriving at one or more UAS which can potentially accept the invitation. These UAS's
will frequently need to query the user about whether to accept the invitation. After some time, those UAS can
accept the invitation (meaning the session is to be established) by sending a 2xx response. If the invitation
is not accepted, a 3xx,4xx,5xx or 6xx response is sent, depending on the reason for the rejection. Before

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 44]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

101 Sending a final response, the UAS can also send a provisional response (1xx) to advise the UAC of progress
1602 IN contacting the called user.

1693 After possibly receiving one or more provisional responses, the UA will get one or more 2xx responses or
1604 ONe non-2xx final response. Because of the protracted amount of time it can take to receive final responses
1s0s 10 INVITE, the reliability mechanisms faiNVITE transactions differ from those of other requests (like

106 OPTIONS). Once it receives a final response, the UAC needs sentiCit for every final response it

1607 receives. The procedure for sending thiSK depends on the type of response. For final responses between
108 300 and 699, th&CK processing is done in the transaction layer, and follows one set of rules (See Section
100 17). For 2xx responses, tWeCK is generated by the UAC core.

1700 A 2xx response to aiNVITE establishes a session, and it also creates a dialog between the UA that
1701 issued théNVITE and the UA that generated the 2xx response. Therefore, when multiple 2xx responses are
1702 received from different remote UAs (because IR¥ITE forked), each 2xx establishes a different dialog.

1703 All these dialogs are part of the same call.

1704 This section provides details on the establishment of a session INSHFE.

s 13.2 Caller Processing
106 13.2.1 Creating the Initial INVITE

1707 Since the initiaINVITE represents a request outside of a dialog, its construction follows the procedures of
1708 Section 8.1.1. Additional processing is required for the specific caBe\aTE.

1709 An Allow header field (Section 22.5H0OULD be present in théNVITE. It indicates what methods can

170 be invoked within a dialog, on the UA sending tieVITE, for the duration of the dialog. For example, a

1711 UA capable of receivingNFO requests within a dialog [213HouLD include anAllow header listing the

1712 INFO method.

1713 A Supported header field (Section 22.35HouULD be present in théNVITE. It enumerates all the

1714 extensions understood by the UAC.

1715 An Accept (Section 22.1) header fieMay be present in thitNVITE. It indicates which content-types

1716 are acceptable to the UA, in both the response received by it, and in any subsequent requests sent to it within
117 dialogs established by tHBVITE. TheAccept header is especially useful for indicating support of various
1718 Session description formats.

1719 The UAMAY add anExpires header field (Section 22.19) to limit the validity of the invitation. If the

1720 time indicated in théxpires header field is reached and no final answer forlléITE has been received

1721 the UAC coresHoOULD generate £ANCEL request for the origindNVITE.

1722 A UAC mAY also find useful to add, among othe&ybject (Section 22.34)Qrganization (Section

123 22.24) andUser-Agent (Section 22.39) header fields. They all contain useful information related to the
1724 INVITE.

1725 The UACMAY choose to add a message body tolMITE. Section 8.1.1.9 deals with how to construct
1726 the header field2ontent-Type among others- needed to describe the message body.
1727 There are special rules for message bodies that contain a session description - their corresponding

1728 Content-Disposition is “session”. SIP uses an offer/answer model where one UA sends a session de-

1720 Scription, called the offer, which contains a proposed description of the session. The offer indicates the
1730 desired communications means (audio, video, games), parameters of those means (such as codec types) and
1731 addresses for receiving media from the offerer. The other UA responds with another session description,
1732 called the answer, which indicates which communications means are accepted, the parameters which ap-
1733 ply to those means, and addresses for receiving media from the answerer. The offer/answer model can be

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 45]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

1732 mapped into théNVITE transaction in two ways. The first, which is the most intuitive, is thatMTE

1735 contains the offer, the 2xx response contains the answer, and no session description is provide@kh the

1736 In this model, the UAC is the offerer, and the UAS is the answerer. A second model is tiidiifé: con-

1737 tains no session description, the 2xx response contains the offer, aA@kieontains the answer. In this

173s model, the UAS is the offerer, and the UAC is the answerer. The second model is useful for gateways from
1739 H.323v1 to SIP, where the H.323 media characteristics are not known until the call is established. This is
1740 also useful for sessions that use third-party call control. As a result of these modeldNIAE contains

1741 @ session description, tWe&CK MUST NOT contain one. Conversely, if the caller chooses to omit the session
1742 description in thdNVITE, the ACK MUST contain one (if a 2xx response is received). 2xx responses to
17a3 - @anINVITE MuUST always contain a session description. All user agents that sulhpItE MusT support

1744 both models.

1745 The Session Description Protocol (SDP)§8)sT be supported by all user agents as a means to describe
1746 Sessions, and its usage for construction offers and ansness follow the procedures defined in [22].
1747 Note that the restrictions of the offer-answer model (session description only iNYH&E OR in

148 the ACK, but not in both) just described only apply to bodies wh@smtent-Disposition header field
1729 1S “session”. Therefore, it is possible that both I(h/ITE and theACK contain a body message (e.g.,
170 the INVITE carries a photoGontent-Disposition: render) and thé\CK a session descriptiorContent-
1751 Disposition: session)).

1752 If the Content-Disposition header field is missing, bodies @bntent-Type application/sdp imply the
1753 disposition “session”, while other content types imply “render”.
1754 Once thdNVITE has been created, the UAC follows the procedures defined for sending requests outside

1755 Of a dialog (Section 8). This results in the construction of a client transaction that will ultimately send the
176 request and deliver responses to the UAC.

1757 If a UA A sends afNVITE request taB and receives atNVITE request fromB before it has received

1758 the response to its request fra) A MAY return a 500 (Internal Server Error), whishkiouLD include a

1759 Retry- After header field specifying when the request should be resubmitted.

weo 13.2.2 ProcessingNVITE Responses

1e1 Once theNVITE has been passed to théVITE client trasaction, the UAC waits for responses for lie
1762 VITE. Responses are matched to their correspontidi TE because they have the sa@all-ID, the same
1763 From header field, the sami® header field, excluding the tag, and the sad$®qg. Rules for comparisons
1762 Of these headers are described in Section 22.

ies 13.2.2.1 1xx responses Zero, one or multiple provisional responses may arrive before one or more
166 final responses are received. Provisional responses ftIN\AITE request can create “early dialogs”. If a

1767 provisional response has atag in ffeefield, and if the dialog ID of the response does not match an existing
1768 dialog, one is constructed using the procedures defined in Section 12.1.0.2.

1769 The early dialog will only be needed if the UAC needs to send a request to its peer within the dialog
1770 before the initiallNVITE transaction completes. Header fields present in a provisional response are appli-
1771 cable for the duration of the early dialog (e.g.,Alow header field in a provisional response contains the
1772 methods that can be used in the early dialog).

173 13.2.2.2 3xxresponses A 3xx response may containGontact header field providing new addresses
1774 Where the callee might be reachable. Depending on the status code of the 3xx response (see Section 23.3)
1775 the UACMAY choose to try those new addresses.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 46]

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789
1790
1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

13.2.2.3 4xx, 5xx and 6xx responses A single non-2xx final response may be received forltte
VITE. 4xx, 5xx and 6xx responses may contai@@ntact header field indicating the location where addi-
tional information about the error can be found.

All early dialogs are considered terminated upon reception of the non-2xx final response.

After having received the non-2xx final response the UAC core considers the INVITE transaction com-
pleted. TheNVITE client transaction handles generationA@Ks for the response (see Section 17).

13.2.2.4 2xx responses Multiple 2xx responses may arrive at the UAC for a sind®&/ITE request
due to a forking proxy. Each response is distinguished byap@arameter in thdo header field, and each
represents a distinct dialog, with a distinct dialog identifier.

If the dialog identifier in the 2xx response matches the dialog identifier of an existing dialog, the dialog
MUST be transitioned to the “established”, and the route set for the dialsy be recomputed based on the
2xx response using the procedures of Section 12.1.0.2. Otherwise, a new established dialog is constructed
in the same fashion.

The route set only is recomputed for backwards compatibility. RFC 2543 did not mandate mirrdRagartl-
Route headers in a 1xx, only 2xx. However, we cannot update the entire state of the dialog, since mid-dialog
requests may have been sent within the early call leg, modifying the sequence numbers, for example.

The UAC coremusT generate a\CK request for each 2xx received from the transaction layer. The
header fields of thACK are constructed in the same way as for any request sent within a dialog (see Section
12) with the exception of th€Seq. The sequence number of tlESeq header fieldMusT be the same as
the INVITE being acknowledged, but tf@Seq methodmusT be ACK. If the INVITE did not contain an
offer, the 2xx will contain one, and therefore tAEK MUST carry an answer in its body.

Once theACK has been constructed, the procedures of Section 24 are used to send it. However, the
request is passed to the transport layer directly for transmission, rather than a client transaction. This is
because the UAC core handles retransmissions of@i€, not the transaction layer. THECK MuUST be
passed to the client transport every time a retransmission of the 2xx final response that triggé&@H the
arrives.

The UAC core considers th&VITE transaction completed 62*T1 seconds after the reception of the
first 2xx response. At this point all the early dialogs that have not transitioned to established dialogs are
terminated. Once theNVITE transaction is considered completed by the UAC core, no more new 2xx
responses are expected to arrive.

If, after acknowledging any 2xx response tol&lVITE, the caller does not want to continue with that
dialog, then the callemusT terminate the dialog by sendind®E request as described in Section 15.

13.3 Callee Processing

13.3.1 Processing of the INVITE

The UAS core will receivéNVITE requests from the transaction layer. It first performs the request process-
ing procedures of Section 8.2, which are applied for both requests inside and outside of a dialog.

Assuming these processing states complete without generating a response, the UAS core performs the
additional processing steps:

1. If the request is atNVITE that contains afxpires header field the UAS core inspects this header
field. If the INVITE has already expired a 487 response is generated.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 47]

1816
1817
1818
1819

1820
1821
1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837
1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

2. Ifthe request has no tag in thie the UAS core checks ongoing transactions. IftagFrom, Call-ID,
CSeq exactly match (including tags) those of any request received previously, but the branch-ID in
the topmosWia is different from those received previously, the UAS cereOULD generate a 482
(Loop detected) response and pass it to the server transaction.

The same request that was generated by the UAC has arrived to the UAS more than once following different
paths. The UAS processes the request that was received first and responds with 482 (Loop detected) to the rest
of them.

If no match is found, the request does not belong to any existing dialog. If the requesN¥ I3k
the UAS core follows the procedures described in this section.

3. Ifthe request is a mid-dialog request, the method-independent processing described in Section 12.2.2
is first applied. It might also modify the session; Section 14 provides details.

4. If the request has a tag in tie header field but the dialog identifier does not match any of the
existing dialogs, the UAS may have crashed and restarted, or may have received a request for a
different (possibly failed) UAS. The UA®IAY either accept or reject the request. Accepting the
request provides robustness, so that dialogs can persist even through crashes. UAs wishing to support
this capability must choose monotonically increas@f§eq sequence numbers even across reboots.
This is because subsequent requests from the crashed-and-rebooted UA towards the other UA need to
have aCSeq sequence number higher than previous requests in that direction.

Note also that the crashed-and-rebooted UA will have lostRayte headers which would need to
be inserted into a subsequent request. Therefore, it is possible that the requests may not be properly
forwarded by proxies.

RTP media agents allowing restarts need to be robust by accepting out-of-range timestamps and sequence
numbers.

If the UAS wishes to reject the request, because it does not wish to recreate the dialogTit
respond to the request with a 481 (Call/Transaction Does Not exist) status code and pass that to the
server transaction.

Processing from here forward assumes thatRNETE is outside of a dialog, and is thus for the purposes
of establishing a new session.

TheINVITE may contain a session description, in which case the UAS is being presented with an offer
for that session. It is possible that the user is already a participant in that session, even thohighTiae
is outside of a dialog. This can happen when a user is invited to the same multicast conference by multiple
other participants. If desired, the UA®AY use identifiers within the session description to detect this
duplication. For example, SDP contains a session id and version number in the oyifield. If the user
is already a member of the session and the session parameters contained in the session description have not
changed, the UASIAY silently accept théNVITE

The INVITE may not contain a session description at all, in which case the UAS is being asked to
participate in a session, but the UAC has asked that the UAS provide the offer of the session.

The callee can indicate progress, accept, redirect, or reject the invitation. In all of these cases, it formu-
lates a response using the procedures described in Section 8.2.7.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 48]

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886
1887

1888

1889

1890

1891

1892

1893

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

13.3.1.1 Progess The UAS may not be able to answer the invitation immediately, and might choose

to indicate some kind of progress to the caller (for example, an indication that a phone is ringing). This is
accomplished with a provisional response between 101 and 199. These provisional responses establish early
dialogs and therefore follow the procedures of Section 12.1.0.1 in addition to those of Section 8.2.7. A UAS
MAY send as many provisional responses as it likes. Each of thesg indicate the same dialog ID. SIP,
however, does not guarantee that these provisional responses are reliably delivered to the UAC.

13.3.1.2 The INVITE is redirected If the UAS decides to redirect the call, a 3xx response is sent. A
300 (Multiple Choices), 301 (Moved Permanently) or 302 (Moved Temporarily) resmHiseLD contain
aContact header field containing URIs of new addresses to be tried. The response is passéNWTEe
server transaction, which will deal with its retransmissions.

13.3.1.3 The INVITE is rejected A common scenario occurs when the callee is currently not willing

or able to take additional calls at this end system. A 486 (Busy Here)uLD be returned in such scenario.

If the UAS knows that no other end system will be able to accept this call a 600 (Busy Everywhere) response
SHOULD be sent instead. However, it is unlikely that a UAS will be able to know this in general, and thus
this response will not usually be used. The response is passedINMMHIEE server transaction, which will

deal with its retransmissions.

13.3.1.4 The INVITE is accepted The UAS core generates a 2xx response. This response establishes
a dialog, and therefore follows the procedures of Section 12.1.0.1 in addition to those of Section 8.2.7.

A 2xx response to alNVITE sHoOULD contain theAllow header field and th8upported header field,
andMAY contain theAccept header field. Including these header fields allows the UAC to determine the
features and extensions supported by the UAS for the duration of the call, without probing.

If the INVITE request contained an offer, the 2w sT contain an answer. If tH&lVITE did not contain
an offer, the 2xxMuUST contain an offer.

Once the response has been constructed it is passed lIMHEE server transaction. Note, however,
that thelNVITE server transaction does not retransmit 2xx responses \ATE. Therefore, it is neces-
sary to pass periodically the response to the server transaction untiCikearrives. The 2xx response is
resubmitted to the server transaction with an interval that starts at T1 seconds and doubles for each retrans-
mission until it reaches T2 seconds (T1 and T2 are defined in Section 17). Response retransmissions cease
when anACK request is received with the same dialog ID as the response. This is independent of whatever
transport protocols are used to send the response.

Since 2xx is retransmitted end-to-end, there may be hops between UAS and UAC which are UDP. To ensure
reliable delivery across these hops, the response is retransmitted periodically even if the transport at the UAS is
reliable.

If the server retransmits the 2xx response for 64*T1 seconds without receivilsGlanit considers the
dialog completed, the session terminated, and therefaieatuLD send aBYE.

14 Modifying an Existing Session
A successfullNVITE request (see Section 13) establishes both a dialog between two user agents and a

session (using the offer/answer model). Section 12 explains how to modify an existing dialog using a
refresh request (e.g., changing theate setof the dialog). This section describes how to modify the actual

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 49]

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930
1931
1932
1933
1934

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

session. This modification can involve changing addresses or ports, adding a media stream, deleting a media
stream, and so on. This is accomplished by sending alN&ATE request within the same dialog that
established the session. AVITE request sent within an existing dialog is known as NI TE.

Note that a single réNVITE can modify at the same time the dialog and the parameters of the session.

Either the caller or callee can modify an existing session.

14.1 UAC Behavior

The same offer-answer model that applies to session descriptidN&/ITEs (Section 13.2.1) applies to
re-INVITEs. As a result, a UAC that wants to add a media stream, for example, will create a new offer that
contains this media stream, and send that itNMITE request to its peer. It is important to note that the

full description of the session, not just the change, is sent. This maintains the idempotency of SIP, supports
stateless session processing in various elements, and supports failover and recovery capabilities. Of course,
a UACMAY send a rdNVITE with no session description, in which case the response to théfigE will

contain the offer.

If the session description format has the capability for version numbers, the dffecerLD indicate
that the version of the session description has changed.

The To, From, Call-ID, CSeq, andRequest-URI of a reINVITE are set following the same rules as
for regular requests within an existing dialog, described in Section 12.

Note that, as opposed to inititNVITEs (see Section 13), iNVITESs contain tags in th@o header
field and are sent using thieute setfor the dialog. Therefore, a single final (2xx or non-2xx) response is
received for redNVITEs.

Note that a UAQWUST NOT initiate a newINVITE transaction within a dialog while another transaction
(INVITE or nonINVITE) is in progress. However, a URAY initiate a regular transaction within an early
dialog - while anINVITE transaction is in progress.

If a reINVITE is responded with a non-2xx final response the session paranveisrsremain un-
changed, as if no riNVITE had been issued.

The rules for transmitting a rNVITE and for generating aACK for a 2xx response to riNVITE are
the same as for diNVITE (Section 13.2.1).

14.2 UAS Behavior

Section 13.3.1 describes the steps to follow in order to distinguish incomigid-Es from incoming
initial INVITEs. This Section describes the procedures to follow upon reception ofNMIGE for an
existing dialog.

A UAS that receives a secontlVITE before it sent the final response to a fildWITE with a lower
CSeq sequence number on the same dialogsT return a 500 response to the secdNYITE andMusT
include aRetry-After header field with a randomly chosen value of between 0 and 10 seconds. Similarly,
a UAS the receives aiNVITE on a dialog while adNVITE it had sent on that dialog is in progregg/sT
return a 500 response to the recei8¥ITE andmusT include aRetry-After header field with a randomly

chosen value of between 0 and 10 seconds.

If a user agent receives a IVITE for an existing dialog iMusT check any version identifiers in the
session description or, if there are no version identifiers, the content of the session description to see if it has
changed. If the session description has changed, the user agentvsesieadjust the session parameters
accordingly, possibly after asking the user for confirmation.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 50]

1935
1936

1937

1938

1939
1940
1941
1942
1943
1944
1945

1946

1947
1948
1949
1950

1951

1952
1953
1954
1955
1956
1957

1958
1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970
1971
1972
1973

1974
1975
1976

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

Versioning of the session description can be used to accommodate the capabilities of new arrivals to a conference,
add or delete media or change from a unicast to a multicast conference.

If a UAS generates a 2xx response and never receivé&C it SHOULD generate a réNVITE itself
with an offer equal to the last session description sent to the peer. The purpose of this is to ensure that both

caller and callee have a consistent view of the session parameters.

A UAS providing an offer in a 2xx (because tHeVITE did not contain an offerMusT offer the same
session description as last provided to the peer, with the exception of being able to change the IP address/port
if so desired.

Under error conditions (e.g., the UAS has crashed and restarted) the session description in the 2xx response for
an empty relNVITE may be different than the one in use at that moment. If the new session description is not
acceptable for the UAC sHouLD then send 8YE (after ACKing the 2xx response).

15 Terminating a Session

Terminating a session is done either with BME request, or th€ ANCEL request, depending on the state

of the dialog. Either caller or callee can terminate, and may do so for any reason. Sections 13 and 12
document some cases where call termination is normative behavior. As a general rule, if a UA decides that
the session is to be terminatedyit ST follow the procedures here to initiate signaling action to convey that.

Note that both the session and the dialog between both user agents will be terminated.

When a UAC sends alNVITE request to create a session, if a 1xx response with a tag ifotfield
is received, an early dialog is created. When a 2xx response is received, the dialog becomes established.
For either state of the dialog, if the UAC desires to terminate the session, thesda&QLD follow the
procedures described in Section 15.1.1 to terminate the session. If the callee for a new session wishes to
terminate the dialog, it uses the procedures of Section 15.1. MUt NOT do so until it has receive an
ACK or until the server transaction times out.

This does not mean a user can’'t hang up right away; it just means that the software in their phone needs to
maintain state for a short while in order to properly clean up.

OPEN ISSUE #202: Is this the right solution.

If the UAC desires to end the session before any type of dialog has been createduitb send a
CANCEL for the INVITE request that requested establishment of the session that is to be terminated. The
UAC constructs and sends tiBRANCEL following the procedures described in Section 9. T&WSNCEL
will normally result in a 487 response to be returned to HKW¥ITE, indicating successful cancellation.
However, it is possible that tHeANCEL and a 2xx response to thieVITE “pass on the wire”. In this case,
the UAC will receive a 2xx to th&NVITE. It sHouLD then terminate the call by following the procedures
described in Section 15.1.1.

15.1 Terminating a Dialog with a BYE

15.1.1 UAC Behavior

A user agent client usd&YE request, sent within a dialog, to indicate to the server that it wishes to terminate
the session. This will also terminate the dialogBXE requestAY be issued by either caller or callee. A
BYE requestsHOULD NOT be sent before the creation of a dialog (either early or established). In that case
the UAC sHoULD follow the procedures described in Section 9 instead.

Proxies ensure that @ANCEL request is routed in the same way as IN¥ITE was. However, a proxy
performing load balancing may routd3& E without aRoute header field in a different way than theVITE, since
both requests have differeBSeq sequence numbers.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 51]

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

The To, From, Call-ID, CSeq, andRequest-URI of a BYE are set following the same rules as for
regular requests sent within a dialog, described in Section 12.

Once theBYE is constructed, it creates a new niNVITE client transaction, and passes it tB¥E
request. The user agesHOULD stop sending media as soon as B¥E request is passed to the client
transaction.

15.1.2 UAS Behavior

A UAS core receiving 8BYE request checks to see if it matches an existing dialog. IfBM& does
not match an existing dialog, the UAS caseloULD generate a 481 response and pass that to the server
transaction.

A UAS core receiving 8BYE request for an existing dialogusT follow the procedures of Section
12.2.2 to process the request. Once done, the MAST cease transmitting media streams for the session
being terminated. The UAS comeusT generate a 2xx response to tB¥E, andMusT pass that to the
server transaction for transmission.

The UASMuUST still respond to any pending requests received for that dialog, (which can only be an
INVITE). It is RECOMMENDED that a 487 (Request Terminated) response is generated to those pending
requests.

16 Proxy Behavior

16.1 Overview

SIP proxies are elements that route SIP requests to user agent servers and SIP responses to user agent clients.
A request may traverse several proxies on its way to a UAS. Each will make routing decisions, modifying
the request before forwarding it to the next element. Responses will route through the same set of proxies
traversed by the request in the reverse order.

It is important to note that being a proxy is a logical role for a SIP element. When a request arrives, an
element that can play the role of a proxy must first decide if it needs to respond to the request on its own.
For instance, the request could be malformed or the element may need credentials from the client before
acting as a proxy. The elememiy respond with any appropriate error code. When responding directly to
a request, the element is playing the role of a UAS g T behave as described in Section 8.2.

A proxy can operate in either a stateful or stateless mode for each new request.

When stateless, a proxy acts as a simple forwarding element. It forwards each request downstream to
a single element determined by making a routing decision based on the request. It simply forwards every
response it receives upstream. A stateless proxy discards information about a message once it has been
forwarded.

On the other hand, a stateful proxy remembers information (specifically, transaction state) about each
incoming request and any requests it sends as a result of processing the incoming request. It uses this
information to affect the processing of future messages associated with that request. A statefuigyroxy
chose to “fork” a request, routing it to multiple destinations. Any request that is forwarded to more than
one locatiormMusT be handled statefully. Any request processed using TCP (or any other mechanism that is
inherently stateful)MusT be handled statefully.

Much of the processing involved when acting statelessly or statefully for a request is identical. The next
several subsections are written from the point of view of a stateful proxy. The last section calls out those

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 52]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

2017 places where a stateless proxy behaves differently.

28 16.2 Stateful Proxy

2019 When stateful, a proxy is purely a SIP transaction processing engine. Its behavior is modeled here in terms of
2020 the Server and Client Transactions defined in Section 17.A stateful proxy has a server transaction associated
2021 With one or more client transactions by a higher layer proxy processing component (see figure 3), known as
2022 @ Proxy core. Anincoming request is processed by a server transaction. Requests from the server transaction
2023 are passed to a proxy core. The proxy core determines where to route the request, choosing one or more
2024 Next-hop locations. An outgoing request for each next-hop location is processed by its own associated
2025 Client transaction. The proxy core collects the responses from the client transactions and uses them to send
2026 fesponses to the server transaction.

2027 A stateful proxy creates a new server transaction for each new request received. Any retransmissions of
2028 the request will then be handled by that server transaction per Section 17.
2029 Note that this is a model of proxy behavior, not of software. An implementation is free to take any

2030 @pproach that replicates the external behavior this model defines.

=
Q
©
? proxy "higher" 2
< layer 2
<'_l?i o
=
Q
©
Figure 3: Stateful Proxy Model
2031 For all new requests, including any with unknown methods, an element intending to proxy the request

2032 MUST:

2033 1. Validate the request (Section 16.3)

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 53]

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

2.
3.

4,

Make a routing decision (Section 16.4)
Forward the request to each chosen destination (Section 16.5)

Process all responses (Section 16.6)

16.3 Request Validation

Before an element can proxy a requestyitsT verify the message’s validity. A valid message must pass
the following checks:

a & w0 npoE

Reasonable Syntax
Max-Forwards
Loop Detection
Proxy-Require

Proxy-Authorization

If any of these checks fail, the elememtST behave as a user agent server (see Section 8.2) and respond
with an error code.

1.

Reasonable Syntax check

The requestmusT be well-formed enough to be handled with a server transaction. Any components
involved in the remainder of these Request Validation steps or the Request Processingvsegtion

be well-formed. Any other components, well-formed or re#ouULD be ignored. For instance, an
elementsHOULD NOTreject a request because of a malforniede header field.

This protocol is designed to be extended. Future extensions may define new methods and header fields
at any time. An elememiusT NOT refuse to proxy a request because it contains a method or header
field it does not know about.

. Max-Forwards check

The Max-Forwards header (Section 22.22) is used to limit the number of elements a SIP request can
traverse.

If the request does not containviax-Forwards header field, this check is passed.

If the request containsMax-Forwards header field with a field value greater than zero, the check is
passed.

If the request containsMax-Forwards header field with a field value of zero (0), the elemenisT
NoT forward the request. If the request was@PTIONS, the elementiAy act as the final recipient
and respond per Section 11. Otherwise, the elemerstr return a 483 (Too many hops) response.

. Loop Detection check

An elementmusT check for forwarding loops before forwarding a request. If the request contains a
Via header field value with A sent-by value that equals a value placed into previous requests by the

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 54]

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

proxy, the request has been forwarded by this element before. The request has either looped or is
legitimately spiraling through the element. To determine if the request has looped, the elersent
perform thebranch parameter calculation described in Section 3 on this message and compare it to
the parameter received in thdta field value. If the parameters match, the request has looped. If
they differ, the request is spiraling, and processing continues. If a loop is detected, the elersent

return a 482 (Loop Detected) response.

An elementmusT NOT forward a request to a multicast group which already appears in any of the
Via headers.

4. Proxy-Require check

Future extensions to this protocol may introduce features that require special handling by proxies.
Endpoints will include &roxy-Require header in requests that use these features, telling the proxy
it should not process the request unless the feature is understood.

If the request contains Broxy-Require header (Section 22.28) with one or more option-tags this
element does not understand, the elemens T return a 420 (Bad Extension) response. The response
MUST include anUnsupported (Section 22.38) header field listing those option-tags the element did
not understand.

5. Proxy-Authorization check

If an element requires credentials before forwarding a request, the raequestbe inspected as
described in Section 20.2.3. That section also defines what the element must do if the inspection fails.

16.4 Making a Routing Decision

At this point, the proxy must decide where to forward the request. This can be modeled as computing a set
of destinations for the request. This set will either be predetermined by the contents of the request or will
be obtained from an abstract location service. Each destination is represented as a URI and an optional IP
address, port and transport. This combination is referred to as a “next-hop location”.

First, the proxy core checks the received requesiNoute headers. If anyRoute header fields are
present in the request, the elemenisTt use the URL (including all of its parameters) from the topmost
Route header field as only next hop URI in the destination set, with no IP address, port and transport set for
that next hop. The destination set is complete, containimy this URL, and the proxyusT proceed to
the Request Processing of Section 16.5.

TheRoute mechanism is used to control the path a request takes through SIP elements, much like strict
IP source routing. The UAC will inseRoute header fields (see Section 12), usually based on information
provided by proxies througRecord-Route header fields (see Section 6).

Assuming there were nRoute headers in the received request, the proxy checkRéwpiest-URI of
the received request. If it has an maddr parameter, and that parameter does not indicate an interface the
proxy is listening on, th&equest-URI MUSsT be placed into the destination set as the only next hop URI,
with no IP address, port and transport set for that next hop, and the progy proceed to Section 16.5.

If the maddr parameter was present, but did indicate an interface the proxy is listening on, thepsaxy
strip the maddr and continue processing as if no maddr were present.

OPEN ISSUE #213: Do we strip just the maddr, or the port and transport as well?

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 55]

2106
2107
2108

2109

2110

2111

2112

2113
2114
2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138
2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

OPEN ISSUE #218: Are we really sure this ordering of preceden&oate, maddr, and domain is correct??
Itis not yet clear. This needs resolution asap finally, since it affects things like loose source routing, outbound proxy
processing at a UA, and so on.

If the domain of theRequest-URI indicates a domain this element is not responsible fer®ULD set
the next hop URI to th®equest-URI, and leave the IP address, port and transport of the next hop empty.
That next hops1usT be placed into the destination set as the only next hop, and the elememtproceed
to the task of Request Processing (Section 16.5.
There are many circumstances in which a proxy might receive a request for a domain it is not responsible for.

A firewall proxy handling outgoing calls (the way HTTP proxies handle outgoing requests) is an example of where
this is likely to occur.

If the destination set for the request has not been predetermined as described above, this implies that the
element is responsible for the domain in RRequest-URI, and the elememiiAy use whatever mechanism
it desires to determine where to send the request. Any of these mechanisms can be modeled as accessing
an abstract Location Service. This may consist of obtaining information from a location service created
by a SIP Registrar, reading a database, consulting a presence server, utilizing other protocols, or simply
performing an algorithmic substitution on tiRequest-URI. The output of these mechanisms is used to
construct the destination set.

Any information in or about the request or the current environment of the elewrenbe used in the
construction of the destination set. For instance, different sets may be constructed depending contents or
presence of header fields and bodies, the time of day of the request’s arrival, the interface on which the
request arrived, failure of previous requests, or even the element’s current level of utilization.

As potential destinations are located through these services, their next hops are added to the destination
set. Next-hop locations may only be placed in the destination set once. If a next-hop location is already
present in the set (based on the definition of equality for the URI type and equality of the optional parame-
ters), itMUST NOT be added again.

A proxy MAY continue to add destinations to the set after beginning Request Processing.Use any
information obtained during that processing to determine new locations. For instance, a proxy may choose
to incorporate contacts obtained in a redirect response (3xx class) into the destination set. If a proxy uses a
dynamic source of information while building the destination set (for instance, if it consults a SIP Registrar),
it SHouLD monitor that source for the duration of processing the request. New locatiomsLD be added
to the destination set as they become available. As above, any givemUsRI NOT be added to the set
more than once.

Allowing a URI to be added to the set only once reduces unnecessary network traffic, and in the case of incor-
porating contacts from redirect requests prevents infinite recursion.

An example trivial location service is achieved by configuring an element with a default outbound des-
tination. All requests are forwarded to this location. TRequest-URI of the request is placed in the
destination set with the optional next-hop IP address, port and transport parameters set to the default out-
bound destination. The destination set is complete, contamihgthis URI, and the element proceeds to
the task of Request Processing.

If the Request-URI indicates a resource at this proxy that does not exist, the pnagr return a 404
(Not Found) response.

If the destination set remains empty after applying all of the above, the pnagr return an error
response, whicBHouLD be the 480 (Temporarily Unavailable) response.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 56]

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

16.5 Request Processing

As soon as the destination set is non-empty, a pmxy begin forwarding the request. A stateful proxy

MAY process the set in any orderMay process multiple destinations serially, allowing each client transac-
tion to complete before starting the nextmlay start client transactions with every destination in parallel. It
alsomAy arbitrarily divide the set into groups, processing the groups serially and processing the destinations
in each group in parallel.

A common ordering mechanism is to use the qvalue parameter of destinations obtained from Contact
header fields (see Section 22.10). Destinations are processed from highest gvalue to lowest. Destinations
with equal gvalues may be processed in parallel.

A stateful proxy must have a mechanism to maintain the destination set as responses are received and
associate the responses to each forwarded request with the original request. For the purposes of this model,
this mechanism is a “response context” created by the proxy layer before forwarding the first request.

For each destination, the proxy forwards the request following these steps:

Make a copy of the received request

Update the Request-URI

Add a Via header field value

Update the Max-Forwards field if present
Update the Route header field if present
Optionally add a Record-route header field value

Optionally add additional headers

© N o 0o M w0 NP

send the new request
Each of these steps is detailed below:

1. Copy request

The proxy starts with a copy of the received request. The eopyT initially contain all of the header

fields from the received request. Only those fields detailed in the processing described below may be
removed. The copgHOULD maintain the ordering of the header fields as in the received request. The
proxy MUST NOT reorder field values with a common field name (See Section 7.3.1).

An actual implementation need not perform a copy; the primary requirement is that the processing of each
next hop begin with the same request.
2. Request-URI

The Request-URI in the copy’s start linenusT be replaced with the URI for this destination. If the
URI contains any parameters not allowed in a Request-URI, NheyT be removed.

This is the essence of a proxy’s role. This is the mechanism through which a proxy routes a request
toward its destination.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 57]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

2183 3. Via

2184 The proxymusT insert aVia header field into the copy before the existWig header fields. Th¥ia

2185 header maddr, ttl, and sent-by components will be set when the request is processed by the transport
2186 layer (Section 19). Th¥ia headers ensure that responses will follow the same set of elements that
2187 the request traversed.

2188 The proxymusT include a ‘branch” parameter (Section 22.40) in thda header. When the path of

2189 a request through one or more forking proxies is graphed, the result is a tree. The branch parameter
2190 identifies the “branch” each request was forwarded on.Brhach parameter valueusT be unique

2191 for each client transaction to which the request is forwarded. The precise formatwétiwh. token

2192 is implementation-defined. In order to be able to both detect loops and associate responses with the
2193 corresponding request, the parametgpuLD consist of two parts separable by the implementation.

2194 The first part is used to detect loops and distinguish loops from spirals. The second is used to match
2195 responses to requests.

2196 Loop detection is performed by verifying that those fields having an impact on the routing decision
2197 have not changed. The value placed in the this part obthach parameteisHouLD reflect all of

2198 those fields (which include arroxy-Require andProxy-Authorization headers). This is to ensure

2199 that if the request is routed back to the proxy, and one of those fields changes, it is treated as a spiral
2200 and not a loop (Section 3). A common way to create this value is to compute a cryptographic hash
2201 of theTo, From, Call-ID header fields, thRequest-URI of the request received (before translation)

2202 and the sequence number from tb8eq header field, in addition to arroxy-Require andProxy-

2203 Authorization fields that may be present. The algorithm used to compute the hash is implementation-
2204 dependent, but MD5 [23], expressed in hexadecimal, is a reasonable choice. (Note that base64 is not
2205 permissible for @oken.)

2206 In order to correctly match responses to requests (Section 17.1.3), thesvabwa D also contain a

2207 part that is a globally unique function of of the branch on which this request will be forwarded. One
2208 example is a hash of a sequence number, local IP addressa@uneist-URI of the request

2209 For example7a83e5750418bce23d5106b4c06cc632.1

2210 The “branch” parametemusT depend on all information used for routing decisions, including the incom-

2211 ing request-URI and any header values affecting the routing choices. This is necessary to distinguish looped

2212 requests from requests whose routing parameters have changed before returning to this server.

2213 Note that the request methedusT NOT be included in the calculation of tHeranch parameter.

2214 In particular, CANCEL and ACK requestavusT have the sambranch value as the corresponding

2215 request they cancel or acknowledge. Tmanch parameter is used in correlating those requests at

2216 server handling them (see Section 17.2.3 and 9.2).

2217 4. Max-Forwards
2218 If the copy contains a Max-Forwards header field, the proxy must decrement its value by one (1).

2219 5. Route

2220 If the copy contains a Route header field, the proxy must remove the first (topmost) value. Note that
2221 this value was placed in the destination set and then int&Reguiest-URI of this copy in previous
2222 steps.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 58]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

2223 6. Record-Route

2224 If this proxy wishes to request to remain on the path of future requests in this dialogsitinsert a

2225 Record-Route header value (Section refsec:record-route) into the copy before any exk&oayd-

2226 Route header values. See Section 12 for details on whether this request will be honored. Each proxy
2227 in the path of a request makes this request independently the presence of a Record-Route header does
2228 not obligate this proxy to add a value.

2229 If the request is honored, the information the proxy places irRtbeord-Route header value will be

2230 used at the endpoints to constribute headers. As shown in the processing steps alRuete

2231 headers determine forwarding destinations much like strict IP source routing.

2232 The URL placed in thdRecord-Route header valuaiusT be a SIP URL. This URWMAY be dif-

2233 ferent for each destination the request is forwarded to. The BiRbULD NOT contain the transport

2234 parameter unless the proxy has knowledge (such as in a private network) that the next downstream
2235 element that will be in the path of subsequent requests supports that transport.

2236 The URL this proxy provides will be used by some other element to make a routing decision. This proxy, in

2237 general, has no way to know what the capabilities of that element are, so it must restrict itself to the mandatory

2238 elements of a SIP implementation: SIP URLs and UDP transports.

2239 The URL placed in th&kecord-Route header valuaiusT resolve to this element when the server

2240 location procedures of Section 24are applied to it. This ensures subsequent requests are routed back
2241 to this element.

2242 The URL placed in th&kecord-Route header valusHOULD be such that if a subsequent request is

2243 received with this URL in th&Request-URI, the proxy’s normal request processing will cause it to be

2244 forwarded to one of the previous elements, including the originating client, traversed by the original
2245 request. This improves robustness, ensuring thaRéguest-URI contains enough information to

2246 forward subsequent requests to a reasonable destination even in the abseogte dfeaders.

2247 The URL placed in th®ecord-Route header valugusT vary with theRequest-URI in the received

2248 request. A request may legitimately pass through this proxy more than once on the way to its final
2249 destination (this is called a spiraling request). TRequest-URI will be different each time the

2250 request passes through. If this proxy places the same URL in the Record-Route header field each
2251 time, subsequent requests will be rejected as looped requests. It is insufficient to simply copy the
2252 Request-URI from each request into the Record-Route header. Some modification, such as adding
2253 an maddr parameter, is necessary.

2254 URLSs satisfying the above paragraphs can be constructed in many ways. One way is to use a URL
2255 that is nearly the same as tlmntact header in the initial request (if present, else Hnem field),

2256 but with the maddr and port set to resolve to the proxy, and with a transaction identifier added to the
2257 user part of the request-URI (in order to meet the requirement that the URL Reberd-Route

2258 be different for each distindRequest-URI). A call stateful proxy could use a URL of the form

2259 sip:proxy.example.com and use information from the stored call state to meet the requirements.

2260 The proxyMAY include Record-Route header parameters in the value it provides. These will be

2261 returned in some responses to the request (200 responiddgITE for example) and may be useful

2262 for pushing state into the message.

2263 The Record-Route process is designed to work for any SIP request that initiates a dialog. The only
2264 such request in this specificationlSVITE. Extensions to the protocolAy define others, and the

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 59]

2265

2266

2267

2268

2269
2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295
2296
2297

2298

2299

2300

2301

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

mechanisms described here will apply. The request that initiates a dialog and all refreSNa4 Tie-

for example)MusT haveRecord-Route header values added to them if the proxy wishes to remain
in the request path. This means a proxy will often need to record-route requests that Burnissn
headers. Section 12 describes how this will affect a dialog.

Including Record-Route even when Route headers already exist in a request improves robustness in the
presence of a preload&bute header field and recovery from endpoint failure.

If a proxy needs to be in the path of any type of dialog (such as one straddling a firewsifut_D
add aRecord-Route header value to every request with a method it doesn’t understand.

Generally, the choice about whether to record-route or not is a tradeoff of features vs. performance.
Faster request processing and higher scalability is achieved when proxies do not record route. How-
ever, provision of certain services may require a proxy to observe all messages in a dialog. It is
RECOMMENDED that proxies do not automatically record route. They should do so only if specifi-
cally required.

7. Adding Additional Headers
The proxymAY add any other appropriate headers to the copy at this point.

8. Forward Request

A stateful proxy creates a new client transaction for this request as described in Section 17.1. If
the next-hop location used in building this request contains the optional addressing parameters, the
transaction is instructed to send the request based on those parameters. Otherwise, the proxy uses
the procedures of Section 24 to compute an ordered set of addresses fr&eaqgthest-URI, and

as described there, attempts to contact the first one by instructing the client transaction to send the
request there. If this fails, the stateful proxy continues down the list. Each attempt is a new client
transaction, and therefore represents a new branch, so that the processing described above for each
branch would need to be repeated. This results in a requirement to use a different branch ID parameter
for each attempt.

16.6 Response Processing

When a response is received by an element, it first tries to locate a client transaction (Section 17.1.3) match-
ing the response. If none is found, the elemgoisT process the response (even if it is an informational
response) as a stateless proxy (described below). If a match is found, the response is handed to the client
transaction.

Forwarding responses for which a client transaction (or more generally any knowledge of having sent an asso-
ciated request) is not found improves robustness. In particular, it ensures that “late” 2xx class responses to INVITE
requests are forwarded properly.

As client transactions pass responses to the proxy layer, the following processitgake place:

1. Find the appropriate response context
2. Remove the topmost Via

3. Add the response to the response context

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 60]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

2302 4. Check to see if this response should be forwarded

2303 The following processingnusT be performed on each response that is forwarded. Note that more than
2304 ONe response to each request will likely be forwarded - each provisional and one final at the least.

2305 1. Aggregate authorization header fields if necessary
2306 2. Forward the response

2307 3. Generate any necess@ANCEL requests

2308 If no final response has been forwarded after every client transaction associated with the response context
2200 has been terminated, the proxy must choose and forward the “best” response from those it has seen so far.
2310 Each of the above steps are detailed below:

2311 1. Find Context

2312 The proxy locates the “response context” it created before forwarding the original request using the
2313 key described in Section 16.5. The remaining processing steps take place in this context.

2314 2. Via

2315 The proxy removes the topmogia field value from the response. The address in this value necessar-
2316 ily matches the proxy since the response matched a client transaction above. The branch parameter
2317 from this value can be used to determine which branch the response corresponds to.

2318 If no Via field values remain in the response, the response was meant for this elemeamt snd

2319 NOT be forwarded. The remainder of the processing described in this section is not performed on this
2320 message. This will happen, for instance, when the element gen&ANGEL requests as described

2321 in Section sec:proxy-response-processing-cancel.

2322 3. Add response to context

2323 Final responses received are stored in the response context until a final response is generated on
2324 the server transaction associated with this context. The response may a candidate for the best final
2325 response to be returned on that server transaction. Information from this response may be needed in
2326 forming the best response even if this response is not chosen.

2327 If the proxy chooses to recurse on a 3xx class respong@,St NOT add the response to the response

2328 context

2329 4. Check response for forwarding

2330 Until a final response has been sent on the server transaction, the following resposgese for-
2331 warded immediately:

2332 e Any provisional response other than 100 Trying

2333 e Any 2xx response

2334 If a 6xx response is received, it is not immediately forwarded, but the stateful pra®yLD cancel
2335 all pending transactions as described in Section 9.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 61]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

2336 This is a change from RFC2543, which mandated that the 6xx be forwarded immediately. The problem

2337 with this is that it is possible for a 2xx to arrive on another branch, in which case the proxy would have to

2338 forward that in the case of dNVITE transaction. The result is that the UAC could receive a 6xx followed by

2339 a 2xx, which should never be allowed to happen. So, instead, upon receiving a 6xx, a pro2ANIEL,

2340 which will generally result in 487s to all outstanding client transactions, and then at that point the 6xx is

2341 forwarded upstream.

2342 After a final response has been sent on the server transaction, the following respossese for-

2343 warded immediately:

2344 e Any 2xx class response to #NVITE request

2345 A stateful proxymusT NOT immediately forward any other responses. In particular, a stateful proxy
2346 MUST NOT forward any 100 Trying response. Those responses that are candidates for forwarding later
2347 as the “best” response have been gathered as described in step “Add Response to Context”.

2348 Any response chosen for immediate forwardimgsT be processed as described in steps “Aggregate
2349 authorization headers” through “Record-Route”.

2350 5. Choosing the best response

2351 A stateful proxyMusT send a final response to a response context’s server transaction if no final
2352 responses have been immediately forwarded by the above rules and all client transactions in this
2353 response context have been terminated.

2354 The stateful proxymusT choose the “best” final response among those received and stored in the
2355 response context.

2356 If there are no final responses in the context, the proxgT send a 408 (Request Timeout) response

2357 to the server transaction.

2358 Otherwise, the proxyusT forward one of the responses from the lowest response class stored in the
2359 response context. The proxyay select any response within that lowest class. The pgxguULD

2360 give preference to responses that provide information affecting resubmission of this request, such as
2361 401, 407, 415, 420, and 484.

2362 A proxy which receives a 503 resporseouLD NOTforward it upstream unless it can determine that

2363 any subsequent requests it might proxy will also generate a 503. In other words, forwarding a 503
2364 means that the proxy knows it cannot service any requests, not just the one Reghest-URI in

2365 the request which generated the 503.

2366 The forwarded responseusT be processed as described in steps “Aggregate authorization headers”
2367 through “Record-Route”.

2368 For example, if a proxy forwarded a request to 4 locations, and received 503, 407, 501, and 404
2369 responses, it may choose to forward the 407 response.

2370 The tag in theTo header field serves to distinguish responses at the UAC. If the forwarded response
2371 did not have one, ittUST NOT be inserted into the response by the proxy.

2372 6. Aggregate authorization headers

2373 If the selected response is a 401 or 407, the praxgT collect anyWWWW-Authenticate andProxy-
2374 Authenticate header fields from all other 401 and 407 responses received so for in this response
2375 context and add them to this response before forwarding.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 62]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

2376 This is necessary because any or all of the destinations the request was forwarded to may have re-
2377 quested credentials. The client must receive all of those challenges and supply credentials for each of
2378 them when it retries the request. Motivation for this behavior is provided in Section 20.

2379 7. Record-Route

2380 If the selected response contairRecord-Route header field value originally provided by this proxy,

2381 the proxyMAY chose to rewrite the value before forwarding the response. This allows the proxy to
2382 provide different URLSs for itself to the next upstream and downstream elements. A proxy may choose
2383 to use this mechanism for any reason. For instance, it is useful for multi-homed hosts.

2384 The new URL provided by the proxyusT satisfy the same constraints on URLSs place®&é&tord-

2385 Route header fields in requests (see Section 6) with the following modifications:

2386 The URLSHOULD NOT contain the transport parameter unless the proxy has knowledge that the next
2387 upstream (as opposed to downstream) element that will be in the path of subsequent requests supports
2388 that transport.

2389 The URL placed in th&kecord-Route header valusHOULD be such that if a subsequent request is

2390 received with this URL in th&Request-URI, the proxy’s normal request processing will cause it to

2301 be forwarded to the same next-hop element (as opposed to some previous element) as the originally
2392 forwarded request.

2393 When a proxy does decide to modify tRecord-Route header in the response, one of the operations

2394 it must perform is to locate thRecord-Route that it had inserted. If the request spiraled, and the

2395 proxy inserted eRecord-Route in each iteration of the spiral, locating the correct header in the

2396 response (which must be the proper iteration in the reverse direction) is tricky. Note that the rules
2397 above dictate that a proxy insert a different URI into Bhecord-Route for each distincRequest-

2398 URI received. The two issues can be solved jointlyRBCOMMENDED mechanism is for the proxy

2399 to append a piece of data to the user portion of the URL. This piece of data is a hash of the transaction
2400 key for the incoming request, concatenated with a unique identifier for the proxy instance. Since the
2401 transaction key includes thHRequest-URI, this key will be unique for each distin®equest-URI.

2402 When the response arrives, the proxy modifies the Restord-Route whose identifier matches the

2403 proxy instance. The modification results in a URI without this piece of data appended to the user
2404 portion of the URI. Upon the next iteration, the same algorithm (find the topResbrd-Route

2405 header with the parameter) will correctly extract the neecord-Route header inserted by that

2406 Proxy.

2407 8. Forward response

2408 After performing the processing described in steps “Aggregate authorization headers” through “Record-
2409 Route”, the proxy may perform any feature specific manipulations on the selected response. Unless
2410 otherwise specified, the proxyusT NOT remove the message body or any header values other than
2011 the Via header value discussed in Section refsec:proxy-response-processing-via. Thei1psixy

2412 pass the response to the server transaction associated with the response context. This will result in
2413 the response being sent to the location now indicated in the topvii@dteld value. If the server

2414 transaction is no longer available to handle the transmission, the eleraemtforward the response

2415 statelessly by sending it to the server transport.

2416 Even after forwarding a final response, the proxysT maintain the response context until all of its

2417 associated transactions have been terminated.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 63]

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434
2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

9. Generat€€ ANCELs

OPEN ISSUE #7: If CANCEL is restricted to INVITE only, this behavior must restrict itself to
INVITE requests.

OPEN ISSUE #122: ThetusT below reflects list discussion, but the question of how strong this
requirement should be was not formally closed.

If the forwarded response was a final response, the pvaxgT generate £ ANCEL request for all

pending client transactions associated with this response context. A pHDXYLD also generate a
CANCEL request for all pending client transactions associated with this response context when it
receives a 6xx response. A pending client transaction is one that has received a provisional response,
but no final response and has not had an assocAMICEL generated for it. GeneratingANCEL

requests is described in Section 9.1.

16.7 Handling transport errors

If the transport layer notifies a proxy of an error when it tries to forward a request (see Section 19.4), the
proxy MUST behave as if the forwarded request received a 400 response.

If the proxy is notified of an error when forwarding a response, it drops the response. ThespmxyD
NOT cancel any outstanding client transactions associated with this response context due to this notification.

If a proxy cancels its outstanding client transactions, a single malicious or misbehaving client can cause all
transactions to fail through its Via header field.

16.8 CANCEL Processing

A stateful proxy may generate@ANCEL to any other request it has generated at any time. For instance,

it may choose to generateANCELs based on having a transaction exceed the time specified Exthe

pire header of certain requests, or as a result of any logic it applies while forwarding requests. A proxy
MUST cancel any pending client transactions associated with a response context when it receives a matching
CANCEL request.

OPEN ISSUE #185: Should generating CANCEL at a proxy based on Expires in INVITE be deprecated?

While aCANCEL request is handled in a stateful proxy by its own server transaction, a hew response
context is not created for it. Instead, the proxy layer searches its existing response contexts for the server
transaction handling the request associated withGABICEL. If a matching response context is found, the
elementMusT immediately return a 200 OK response to @ANCEL request. In this case, the element is
acting as a user agent server as defined in Section 8.2. Furthermore, the elerseigenerateCANCEL
requests for all pending client transactions in the context as described in Section 9.

If a response context is not found, the element does not have any knowledge of the request to apply
the CANCEL to. It musT forward theCANCEL request statelessly (it may have statelessly forwarded the
associated request previously).

16.9 Stateless proxy

When acting statelessly, a proxy is a simple message forwarder. Much of the processing performed when
acting statelessly is the same as when behaving statefully. The differences are detailed here.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 64]

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486
2487
2488
2489
2490
2491

2492
2493
2494
2495

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

A stateless proxy does not have any notion of a transaction, or of the response context used to describe
stateful proxy behavior. Instead, the stateless proxy takes messages, both requests and responses, directly
from the transport layer (See section 19). As a result, stateless proxies do not retransmit messages on their
own. They do, however, forward all retransmission they receive (they do not have the ability to distinguish
a retransmission from the original message). Furthermore, when handling a request statelessly, an element
MUST NOT generate its own 100 Trying (or any other provisional) response.

A stateless proxy must validate a request as described in Section 16.3

A stateless proxy must make a routing decision as described in Section 16.4 with the following excep-
tion:

e A stateless proxyusT choose one and only one destination from the destination set. This choice
MUST only rely on fields in the message and time-invariant properties of the server. In particular, a
retransmitted requestusT be forwarded to the same destination each time it is processed. Further-
more, CANCEL and non-Routed\CK requestavusT generate the same choice as their associated
INVITE.

A stateless proxy must process the request before forwarding as described in Section 16.5 with the
following exceptions:

e Thebranch parameter on the insert&la header fieldvusT be the same each time a retransmitted
request is forwarded. Thus for a stateless proxypth@ch parameter calculatiomusT only depend
on message parameters affecting the routing of the request which are invariant on retransmission.

e The request is sent directly to the transport layer instead of through a client transaction. If the next-
hop destination parameters don't provide an explicit destination, the element applies the procedures
of Section 24 to th&Request-URI to determine where to send the request.

Stateless proxie®uUsT NOT perform special processing fQ/ANCEL requests. They are processed by
the above rules as any other requests.

Response processing as described in Section 16.6 does not apply to a proxy behaving statelessly. When
aresponse arrives at a stateless proxy, the proxy inspects the address in the first (fgjaninestjler value.
If that address matches the proxy, the proxysTt remove that value from the response and forward the
result to the location indicated in the néia header value. Unless specified otherwise, the praxgT
NOT remove any other header values or the message body. If the address does not match the proxy, the
message1usT be silently discarded.

17 Transactions

SIP is fundamentally a transactional protocol. This means that interactions between components take place

in a series of independent message exchanges. Specifically, a SIP transaction consists of a single request,
and any responses to that request (which include zero or more provisional responses and one or more final

responses). In the case of a transaction where the request Waglait (known as aiNVITE transaction),

the transaction also includes tA€K only if the final response was not a 2xx response. If the response was

a 2xx, theACK is not considered part of the transaction.

The reason for this separation is rooted in the importance of delivering all 200 OK responsdditd Ha to
the UAC. To deliver them all to the UAC, the UAS alone takes responsibility for retransmitting them, and the UAC
alone takes responsibility for acknowledging them wWibK. Since thisACK is retransmitted only by the UAC, it
is effectively considered its own transaction.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 65]

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

Transactions have a client side and a server side. The client side is known as a client transaction, and the
server side, as a server transaction. The client transaction sends the request, and the server transaction sends
the response. The client and server transactions are logical functions that are embedded in any number of
elements. Specifically, they exist within user agents and stateful proxy servers. Consider the example of
Section 4. In this example, the UAC executes the client transaction, and its outbound proxy executes the
server transaction. The outbound proxy also executes a client transaction, which sends the request to a
server transaction in the inbound proxy. That proxy also executes a client transaction, which in turn, sends
the request to a server transaction in the UAS. This is shown pictorially in Figure 4.

F———————— + Fm———————— + Fm———————— + Fm———————— +
| +-+|Request |+-+ +-+|Request |[+—-+ +-+|Request|+-+ |
| IC[l====——= >[|S| |C||===———~ >[|S| [C||==————~ >[IS| |
[] llef] llel [l llel |
[ill [Irl1il] Il 1ill il |
[lell vl lell v lell vl |
| Inll llef|nl] llel | llel |
(] Il 1] [Irf 1] lIrf |
|1l 111l (11l 1
[1Tl 1Tl [Tl [T 1] L
[Il [IrlIrl] Il Irll Il |
[lall llal [all llal [all llal |
| Inll [Inf |nl] lInf | Il |
| [s||Responsel|s| |s||Responsel|s| |s||Response||s| |
| +—t| <= [+—+ +—+|<—————- [+—+ +—+|<—————— [+—+
+—— + +——— + +——— + +——— +
UAC Outbound Inbound UAS
Proxy Proxy

Figure 4. Transaction relationships

A stateless proxy does not contain a client or server transaction. The transaction exists between the
UA or stateful proxy on one side of the stateless proxy, and the UA or stateful proxy on the other side.
As far as SIP transactions are concerned, stateless proxies are effectively transparent. The purpose of the
client transaction is to receive a request from the element the client is embedded in (call this element the
“Transaction User” or TU; it can be a UA or a stateful proxy), and reliably deliver the request to that server
transaction. The client transaction is also responsible for receiving responses, and delivering them to the
TU, filtering out any retransmissions or disallowed responses (such as a respé&€)tdn the case of
anINVITE transaction, that includes generation of &@€K request for any final response excepting a 2xx
response.

Similarly, the purpose of the server transaction is to receive requests from the transport layer, and deliver
them to the TU. The server transaction filters any request retransmissions from the network. The server
transaction accepts responses from the TU, and delivers them to the transport layer for transmission over the
network. In the case of dlNVITE transaction, it absorbs tHCK request for any final response excepting
a 2xx response.

The 2xx response, and tWe&CK for it, have special treatment. This response is retransmitted only by a

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 66]

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

UAS, and itsACK generated only by the UAC. This end-to-end treatment is needed so that a caller knows
the entire set of users that have accepted the call. Because of this special handling, retransmissions of the
2xx response are handled by the UA core, not the transaction layer. Similarly, generatioAGklier the

2xx is handled by the UA core. Each proxy along the path merely forwards each 2xx resptdséTia,

and its correspondingCK.

17.1 Client transaction

The client transaction provides its functionality through the maintenance of a state machine.

The TU communicates with the client transaction through a simple interface. When the TU wishes to
initiate a new transaction, it creates a client transaction, and passes it the SIP request to send, a value for
timer C (described below), and an IP address, port, and transport to send it to. The client transaction begins
execution of its state machine. Valid responses are past up to the TU from the client transaction.

There are two types of client transaction state machines, depending on the method the request passed
by the TU. One handles client transactions HdVITE request. This type of machine is referred to as an
INVITE client transaction. Another type handles client transactions for all requests éXd4pE and
ACK. This is referred to as a ndNVITE client transaction. There is no client transaction A@K. If the
TU wishes to send aACK, it passes one directly to the transport layer for transmission.

TheINVITE transaction is different from those of other methods because of its extended duration. Nor-
mally, human input is required in order to respond tdldWITE. The long delays expected for sending a
response argue for a three way handshake. Requests of other methods, on the other hand, are expected to
completely rapidly. In fact, because of its reliance on just a two way handshakesA&sLD respond
immediately to noriNVITE requests. Protocol extensions which require longer durations for generation of
aresponse (such as a new method that does require human interagtion)d instead use two transactions
- one to send the request, and another in the reverse direction to convey the result of the request.

17.1.1 INVITE Client Transaction

17.1.1.1 Overview ofNVITE Transaction ThelINVITE transaction consists of a three-way handshake.

The client transaction sends 8dVITE, the server transaction sends responses, and the client transaction
sends am\CK. For unreliable transports (such as UDP), the client transaction will retransmit requests at an
interval that starts at T1 seconds and doubles after every retransmission. The request is not retransmitted over
reliable transports. After receiving a 1xx response, any retransmissions cease altogether, and the client waits
for further responses. The server transaction can send additional 1xx responses, which are not transmitted
reliably. Eventually, the server transaction decides to send a final response. For unreliable transports, that
response is retransmitted periodically, and for reliable transports, its sent once. For each final response that
is received at the client transaction, the client transaction send€Knthe purpose of which is to quench
retransmissions of the response.

17.1.1.2 Formal Description The state machine for tHBIVITE client transaction is shown in Figure 5.
The initial state, “calling”MuUsT be entered when the TU initiates a hew client transaction wittNafiTE
request. The client transactiomusT pass the request to the transport layer for transmission (see Section
19). If an unreliable transport is being used, the client transadionuLD start timer A with a value

of T1, andsHouLD NOT start timer A when a reliable transport is being used (Timer A controls request
retransmissions). For any transport, the client transastiosT start timer B with a value of 64*T1 seconds

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 67]

2559

2560

2561

2562

2563

2564

2565

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

[INVITE from TU
Timer Afires |INVITE sent

Reset A, Y Timer B fires
INVITE sent +——————————— + t.o.to TU
F——— | |- +
| | Calling | |
e >| |- >|
= + 2XX |
300-699 |] 2xxto TU |
ACK sent | |1xx |
= + |1xxto TU |
I I I
| 1xx \% Timer C fires |
| Ixxto TU ——————————- +to.toTU |
| #mmmmmmmes |- >
| | |Proceeding | |
|+ I >
| - + 2XxX |
300-699	2xxto TU
ACK sent,	
resp. to TU	
300-699 V	
ACKsent +——————————- +	transitions
+———————	
+——————— >	[
- +	to take
I o	
————— +	-
I	
v I	
+—— +	
I I	
Terminated	<—————————————- +

Figure 5:INVITE client transaction

(Timer B controls transaction timeouts).

When timer A fires, the client transacti@mouLD retransmit the request by passing it to the transport
layer, andsHOULD reset the timer with a value of 2*T1. When the timer fires 2*T1 seconds later, the
requestsHouLDbe retransmitted again (assuming the client transaction is still in this state). This process
sHouLDcontinue, so that the request is retransmitted with intervals that double after each transmission.
These retransmissiorssiouLDbonly be done while the client transaction is in the “calling” state.

The default value for T1 is 500ms. T1 is an estimate of the RTT between the client and server transac-

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 68]

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590
2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

tions. The optional RTT estimation procedure of Section 18 be followed, in which case the resulting
estimatemAy be used instead of 500ms. If no RTT estimation is used, other valsebe used in private
networks where it is known that RTT has a different value. On the public InterneiaY Ibe chosen larger,
but sHouLD NOTbe smaller.

If the client transaction is still in the “calling” when timer B fires, the client transactisouLD inform
the TU that a timeout has occurred. The client transactiosT NOT generate aACK. The value of 64*T1
is equal to the amount of time required to send seven requests in the case of an unreliable transport.

If the client transaction receives a provisional response while in the "calling” state, it transitions to
the “proceeding” state. Upon entering this state, the client transartisT start timer C with the value
provided by the TU when the client transaction was created. This timeout dictates how long the client
transaction waits for a final response before giving up (i.e., roughly how long does it “let the phone ring”). In
the “proceeding” state, the client transact&mouLD NOT retransmit the request any longer. Furthermore,
the provisional responseusT be passed to the TU. Any further provisional responsesT be passed up
to the TU while in the “proceeding” state. When timer C fires, the client transagtigsT transition to the
terminated state, andntusT inform the TU of the timeout.

When in either the "calling” or “proceeding” states, reception of a response with status code from 300-
699 MUST cause the client transaction to transition to “completed”. The client transagti®T pass the
received response up to the TU, andvitST generate arRCK request, even if the transport is reliable
(guidelines for constructing th&CK from the response are given in Section 17.1.1.3) and then pa&€kie
to the transport layer for transmission. TREK MUST be sent to the same address, port and transport that
the original request was sent to. The client transacieauLD start timer D when it enters the “completed”
state, with a value of T3 seconds for unreliable transports, and zero seconds for reliable transports. T3 is
the total amount of time that the server transaction can remain in the “completed” state when unreliable
transports are used. For the default values of the timers below, this is 16 seconds.

OPEN ISSUE #210: Timer D should be based on the values of the timers selected at the server, but these values
aren’t known by the client. We could alternatively specify an absolute minimum.

Any retransmissions of the final response that are received while in the “completedistate D cause
the ACK to be re-passed to the transport layer for retransmission, but the newly received raegpsmse
NOT be passed up to the TU. A retransmission of the response is defined as any response which would match
the same client transaction, based on the rules of Section 17.1.3.

If timer D fires while the client transaction is in the “completed” state, the client transagtism move
to the terminated state, anoMtusT inform the TU of the timeout.

When in either the “calling” or “proceeding” states, reception of a 2xx respsiuser cause the client
transaction to enter the terminated state, and the response be passed up to the TU. The handling of
this response depends on whether the TU is a proxy core or a UAC core. A UAC core will handle generation
of the ACK for this response, while a proxy core will always forward the 200 OK upstream. The differing
treatment of 200 OK between proxy and UAC is the reason that handling of it does not take place in the
transaction layer.

The client transactiomusT be destroyed the instant it enters the terminated state. This is actually nec-
essary to guarantee correct operation. The reason is that 2xx responsés\éTdhare treated differently;
each one is forwarded by proxies, and &@K handling in a UAC is different. Thus, each 2xx needs to be
passed to a proxy core (so that it can be forwarded) and to a UAC core (so it can be acknowledged). No
transaction layer processing takes place. Whenever a response is received by the transport, if the transport
layer finds no matching client transaction (using the rules of Section 17.1.3, the response is passed directly
to the core. Since the matching client transaction is destroyed by the first 2xx, subsequent 2xx will find no

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 69]

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

match and therefore be passed to the core.

17.1.1.3 Construction of theACK Request The ACK request constructed by the client transaction
MUST contain values for th&€all-ID, From, and Request-URI which are equal to the values of those
headers in the request that created the client transaction (call this the “original request figié in the
ACK MusT equal theTo field in the response being acknowledged, and will therefore usually differ from
theTo field in the original request by the addition of the tag parameter. AT MUST contain a singl&/ia
header, and thisiusT be equal to the tolia header of the original request. TAEK requestMusT NOT
contain anyRoute headers. Th€Seq header in thédCK MUST contain the same value for the sequence
number as was present in the original request, but the method parametebe equal to ACK”.

These rules for construction #iCK only apply to the client transaction. A UAC core which generates
anACK for 2xx MUST instead follow the rules described in Section 13.

For example, consider the following request:

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP 10.1.3.3

To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=88sja8x
Call-ID: 987asjd97y7atg@10.1.3.3

CSeq: 986759 INVITE

The ACK request for a non-2xx final response to this request would look like:

ACK sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP 10.1.3.3

To: Bob <sip:bob@biloxi.com>;tag=99sa0xk
From: Alice <sip:alice@atlanta.com>;tag=88sja8x
Call-ID: 987asjd97y7atg@10.1.3.3

CSeq: 986759 ACK

17.1.2 noniNVITE Client Transaction

17.1.2.1 Overview of the nonNVITE Transaction nondNVITE transactions do not make useA€K.
They are a simple request-response interaction. For unreliable transports, requests are retransmitted at an
interval which starts at T1, and doubles until it hits T2. If a provisional response is received, retransmis-
sions continue for unreliable transports, but at an interval of T2. The server transaction retransmits the last
response it sent (which can be a provisional or final response) only when a retransmission of the request is
received. This is why request retransmissions need to continue even after a provisional response, they are
what ensure reliable delivery of the final response.

Unlike anINVITE transaction, a nofNVITE transaction has no special handling for the 2xx response.
The result is that only a single 2xx response to a NWWITE is ever delivered to a UAC.

17.1.2.2 Formal Description The state machine for the ndNVITE client transaction is shown in Fig-
ure 6. Itis very similar to the state machine fBWVITE.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 70]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

|Request from app
|send request

Timer E \Y Timer F

send request +——————————- + t.o.to TU
t————— | |- +
I | Trying | I
o >| I I

Fo———————— + |

200-699 | | |

resp.to TU | |1xx |

o + |resp. to TU |

I |
Timer E \% Timer F |

| .
|
| send req +——————————- +to.to TU |
+=———		--— >	
		Proceeding	
+=—————— >		-———- +	
B — +	Ixx		
	~ resptoTU		
200-699	+———————— 4		
resp.to TU			
I			
V			
e +			
I			
	Completed		
I			
e +			
n			
		Timer K	
+———— +	-		
I			
v |
NOTE: —————— e + |
I I |
transitions | Terminated|<-————————————————— +
labeled with | |
the event Fmm +
over the action
to ta ke

Figure 6: nonNVITE client transaction

2648 The “Trying” state is entered when the TU initiates a new client transaction with a request. When
2629 €ntering this state, the client transactisouLD set Timer F to fire in T3 seconds. The requestsT be

2650 passed to the transport layer for transmission. If an unreliable transport is in use, the client tramsastion

2651 Settimer E to fire in T1 seconds. If timer E fires while still in this state, the timer is reset, but this time with a

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 71]

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675
2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

value of MIN(2*T1, T2). When the timer fires again, it is reset to a MIN(4*T1, T2). This process continues,
so that retransmissions occur with an exponentially increasing inverval that caps at T2. The default value
of T2 is 4s, and it represents the amount of time a MWITE server transaction will take to respond to a
request, if it does not respond immediately. For the default values of T1 and T2, this results in intervals of
500ms, 1s,2s,4s,4s,4s, etc.

If Timer F fires while the client transaction is still in the “Trying” state, the client transaionuLD
inform the TU about the timeout, and thersitouLDenter the “Terminated” state. If a provisional response
is received while in the “Trying” state, the respongesT be passed to the TU, and then the client transaction
SHOULD move to the “Proceeding” state. If a final response (status codes 200-699) is received while in the
“Trying” state, the responsRUST be passed to the TU, and the client transactinrsT transition to the
“Completed” state.

If Timer E fires while in the “Proceeding” state, the requestsT be passed to the transport layer
for retransmission, and Timer BUST be reset with a value of T2 seconds. If timer F fires while in the
“Proceeding” state, the TMUST be informed of a timeout, and the client transactiomsT transition to the
terminated state. If a final response (status codes 200-699) is received while in the “Proceeding” state, the
responsevMusT be passed to the TU, and the client transactiarsT transition to the “Completed” state.

Once the client transaction enters the “Completed” stateUgT set Timer K to fire in T4 seconds for
unreliable transports, and zero seconds for reliable transports. The “Completed” state exists to buffer any
additional response retransmissions that may be received (which is why the client transaction remains there
only for unreliable transports). T4 represents the amount of time the network will take to clear messages
between client and server transactions. The default value of T4 is 5s. A response is a retransmission when it
matches the same transaction, using the rules specified in Section 17.1.3. If Timer K fires while in this state,
the client transactiomusT transition to the “Terminated” state.

OPEN ISSUE #211: This special treatment for reliable transports, where the state machine transactions directly
to terminated, is new.

Once the transaction is in the terminated stateusT be destroyed. As with client transactions, this is
needed to ensure reliability of the 2xx responseNidITE.

17.1.3 Matching Responses to Client Transactions

When the transport layer in the client receives a response, it has to figure out which client transaction will
handle the response, so that the processing of Sections 17.1.1 and 17.1.2 can take place.

A response matches a client transaction through a comparison process with fields in the request that
created the transaction. Specifically, fimm, Call-ID, CSeq, and the topmosVia heademusT match
the same fields in the request, using the matching operations for those headers defined in Section 22. If
the To field in the request had a tag, tfe field in the responseusT match theTo field in the request,
as described in Section 22.37. However, if the To field in the request did not contain a tag,fiblel in
the responseusT match that in the request, except that the NagsT NOT be considered as part of the
matching process. This is needed since a UAS will add a tag toatffield of the response.

17.1.4 Handling Transport Errors

When the client transaction sends a request to the transport layer to be sent, the following procedures are
followed if the transport layer indicates a failure.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 72]

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

The client transactiosHouLD inform the TU that a transport failure has occurred, and the client trans-
actionsHouULD transition directly to the terminated state.

17.2 Server Transaction

The server transaction is responsible for the delivery of requests to the TU, and the reliable transmission of
responses. It accomplishes this through a state machine. Server transactions are created by the core when a
request is received, and transaction handling is desired for that request (this won'’t always be the case).

As with the client transactions, the state machine depends on whether the received reqUeB iSEN
request or not.

17.2.1 INVITE Server Transaction

The state diagram for tH&lVITE server transaction is shown in Figure 7.

When a server transaction is constructed with a request, it enters the “Proceeding” state. The server
transactiormusT generate a 100 response (not any status code - the specific value of 100) unless it knows
that the TU will generate a provisional or final response within 200 ms, in which ceige igenerate a 100
response. This provisional response is needed to rapidly quench request retransmissions in order to avoid
network congestion. The request/sT be passed to the TU.

The TU passes any number of provisional responses to the server transaction. So long as the server
transaction is in the “Proceeding” state, each of thessT be passed to the transport layer for transmis-
sion. They are not sent reliably (they are not retransmitted), and do not cause a change in the state of the
server transaction. If a request retransmission is received while in the “Proceeding” state, the most recent
provisional response that was received from theMUBT be passed to the transport layer for retransmis-
sion. A request is a retransmission if it matches the same server transaction based on the rules of Section
17.2.3.

If, while in the “proceeding” state, the TU passes a 2xx Response to the server transaction, the server
transactionMUST pass this response to the transport layer for transmission. It is not retransmitted by the
server transaction; retransmissions of 2xx responses are handled by the TU. The server transaation
then transition to the “terminated” state.

While in the “Proceeding” state, if the TU passes a response with status code from 300 to 699 to the
server transaction, the responsesT be passed to the transport layer for transmission, and the state machine
MUST enter the “Completed” state. For unreliable transports, timer G is set to fire in T1 seconds, and is not
set to fire for reliable transports.

This is a change from RFC2543, where responses were always retransmitted, even over reliable transports.

When the “Completed” state is entered, timemHST be set to fire in 64*T1 seconds, for all transports.
Timer H determines when the server transaction gives up retransmitting the response. Its value is chosen to
equal Timer B, the amount of time a client transaction will continue to retry sending a request. If timer G
fires, the response is passed to the transport layer once more for retransmission, and timer G is set to fire in
MIN(2*T1, T2) seconds. From then on, when timer G fires, the response is passed to the transport again for
transmission, and timer G is reset with a value that doubles, unless that value exceeds T2, in which case it
is reset with the value of T2. This is identical to the retransmit behavior for requests in the “Trying” state of
the non-INVITE client transaction. Furthermore, while in the “completed” state, if a request retransmission
is received, the server SHOULD pass the response to the transport for retransmission.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 73]

2732

2733

2734

2735

2736

2737

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

[INVITE
|[pass to TU, send 100
INVITE Vv

e | |[-——————- +101-199 from TU
| | Proceeding| |send response

300-699 from TU | |2xx from TU
send response | |send response

INVITE \% Timer G fires |

| Timer H fires |
\% failto TU |

Figure 7:INVITE server transaction

If an ACK is received while the server transaction is in the “Completed” state, the server transaction
MUST transition to the “confirmed” state. As Timer G is ignored in this state, any retransmissions of the
response will cease.

If timer H fires while in the “Completed” state, it implies that tAEK was never received. In this case,
the server transactionusT transition to the terminated state, andsT indicate to the TU that a transaction
failure has occurred.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 74]

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

The purpose of the “confirmed” state is to absorb any additid@ messages that arrive, triggered
from retransmissions of the final response. When this state is entered, timer | is set to fire in T4 seconds for
unreliable transports, and zero seconds for reliable transports. Once timer | fires, thevseyvéransition
to the “Terminated” state.

Once the transaction is in the terminated stateusT be destroyed. As with client transactions, this is
needed to ensure reliability of the 2xx responseNidITE.

17.2.2 noniNVITE Server Transaction

The state machine for the ndNVITE server transaction is shown in Figure 8.

The state machine is initialized in the “Trying” state, and is passed a request othdNW@&IE or
ACK when initialized. This request is passed up to the TU. Once in the “Trying” state, any further request
retransmissions are discarded. A request is a retransmission if it matches the same server transaction, using
the rules specified in Section 17.2.3.

While in the “Trying” state, if the TU passes a provisional response to the server transaction, the server
transactionMusT enter the “Proceeding” state. The resporsesT be passed to the transport layer for
transmission. Any further provisional responses that are received from the TU while in the “Proceeding”
stateMUST be passed to the transport layer for transmission. If a retransmission of the request is received
while in the “Proceeding” state, the most recently sent provisional response be passed to the transport
layer for retransmission. If the TU passes a final response (status codes 200-699) to the server while in the
“Proceeding” state, the transacti®usT enter the “Completed” state, and the responsesT be passed to
the transport layer for transmission.

When the server transaction enters the “Completed” state)$tr set Timer J to fire in T3 seconds for
unreliable transports, and zero seconds for reliable transports. While in the “Completed” state, the server
transactiormusT pass the final response to the transport layer for retransmission whenever a retransmission
of the request is received. Any other final responses passed by the TU to the server tramsastidore
discarded while in the “Completed” state. The server transaction remains in this state until Timer J fires, at
which point itMUST transition to the “Terminated” state.

The server transactionusT be destroyed the instant it enters the “Terminated” state.

17.2.3 Matching Requests to Server Transactions

When anINVITE or ACK request is received from the network by the server, it has to be matched to an
existing INVITE transaction. ThéNVITE request matches a transaction if fRequest-URI, To, From,
Call-ID, CSeq, and topVia header match those of thRVITE request which created the transaction. The
ACK request matches a transaction if Request-URI, From, Call-ID, CSeq method (not the number),
and topVia header match those of thRVITE request which created the transaction, andTihdield of
the ACK matches thdo field of the response sent by the server transaction (which then includes the tag).
Matching is done based on the matching rules defined for each of those headers. The usage of the tag in
the To field helps disambiguat&CK for 2xx from ACK for other responses at a proxy which may have
forwarded both responses (which can occur in unusual conditions).

For all other request methods, a request is matched to a transactionRetheest-URI, To, From,
Call-ID andCseq (including the method) and togia header match those of the request which created the
transaction. Matching is done based on the matching rules defined for each of those headers.

Because the matching rules include Bequest-URI, the server cannot match a response to a transac-
tion. When the TU passes a response to the server, it must inform the TU which transaction the response is

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 75]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

|Request received

|[pass to TU
\Y
+——————— +
I I
| Trying |-—————————- +
I I I
F—————— + |[200-699 from TU
| |send response
|[1xx from TU |
|send response |
I
Request \/ 1xx from TU |
send response+——————————— +send response|
— I e +
| | Proceeding| |]
+————— >| |<=————— + |
- + |

|200-699 from TU |
|send response |

Request \ |
send response+——————————- +
#ommm e | |
| | Completed |-———————————- +
+ommmmmm 5
+——————— +
o
[Timer J fires
|_
I
\Y
+——————— +
|
| Terminated]|
I I
+——————— +

Figure 8: nonINVITE server transaction

2180 for.

2731 17.3 RTT Estimation

2722 Most of the timeouts used in the transaction state machines derive from T1, which is an estimate of the RTT
2783 between the client and server transactions. This subsection defines optional procedures that a client can use

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 76]

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

to build up estimates of the RTT to a particular IP address. To perform this procedure, thevclEnt
maintain a table of variables for each destination IP address to which an RTT estimate is being made.

OPEN ISSUE #212: Is destination IP address the right index for an RTT estimate? HowRanuést-URI?

If a client wishes to measure RTT for a particular IP addressy#T include aTimestamp header into
a request containing the time when the request is initially created and passed to a new client transaction,
which transmits the request. If a 100 response (not any 1xx, only the 100 response) is received before the
client transaction generates a retransmission, an RTT estimate is made. This is consistent with the RFC
2988 requirements on TCP for using Karn’s algorithm in RTT estimation.

The estimate, called R, is made by computing the difference between the current time and the value of
Timestamp header in the 100 response. The value of R is applied to the estimation of RTO as described
in Section 2 of RFC 2988 [24], with the following differences. First, the initial value of RTO is 500 ms for
SIP, not 3 s as is used for TCP. Second, there is no minimum value for the RTO, as there is for TCP, if SIP
is being run on a private network. When run on the public Internet, the minimum is 500 ms, as opposed to
1 s for TCP. This difference is because of the expected usage of SIP in private networks where rapid call
setup times are service critical. Once RTO is computed, the timer T1 is set to the value of RTO, and all other
timers scale proportionally as described above.

18 Reliability of Provisional Responses

Placeholder.
Reliability of provisional responses will be incorporated into bis. This is a heads up on that.

19 Transport

The transport layer is responsible for the actual transmission of requests and responses over network trans-
ports. This includes determination of the connection to use for a request or response, in the case of connec-
tion oriented transports.

The transport layer is responsible for managing any persistent connections (for transports like TCP, TLS
and SCTP) including ones it opened, as well as ones opened to it. This includes connections opened by the
client or server transports, so that connections are shared between client and server transport functions. It is
RECOMMENDEDthat connections be kept open for some implementation defined time after the last message
was sent or received over that connection. This tBreuULD be at least 16 seconds in order to ensure with
high probability that responses can be sent over the same connection a request was sent.

All SIP elementsvwusT support UDP at a minimum.

19.1 Clients
19.1.1 Sending Requests

The client side of the transport layer is responsible for sending the request and receiving responses. The
user of the transport layer passes the client transport the request, an IP address, port, transport, and possibly
TTL for multicast destinations.

A client that sends a request to a multicast addrassT add the addr” parameter to itd/ia header
field, andsHouLD add the ttI” parameter. (In that case, tlreaddr parameteisHouLD contain the des-
tination multicast address, although under exceptional circumstaneesy itcontain a unicast address.)

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 77]

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

Requests sent to multicast groupsouLD be scoped to ensure that they are not forwarded beyond the
administrative domain to which they were targeted. This scoogimg be done with either TTL or admin-
istrative scopes [19], depending on what is implemented in the network.

It is important to note that the layers above the transport layer do not operate differently for multicast
as opposed to unicast requests. This means that SIP treats multicast more like anycast, assuming that there
is a single recipient generating responses to requests. If this is not the case, the first response will end
up “winning”, based on the client transaction rules. Any other responses from different UA will appear
as retransmissions and be discarded. This limits the utility of multicast to cases where an anycast type of
function is desired, such as registrations.

OPEN ISSUE #7: This is a proposed resolution to whether or not multicast should be removed entirely.

Before a request is sent, the client transpausT insert a value of the sent-by field into thiéa header.

This field contains an IP address or host name, and port. In certain cases discussed in Section 19.2.2, this
IP address and port are used to construct a SIP URL for sending the response. The transpeudayer

be prepared to receive incoming connections (and receive responses sent over such connections) on any IP
addresses and ports that this SIP URL might resolve to using the procedures defined in Section 24. The
transport layeMusT also be prepared to receive an incoming connection on the source IP address that the
request was sent from, and port number in the sent-by field. The client tramspsrtalso be prepared to

receive the response on the same connection used to send the request.

For unreliable unicast transports, the client transpassT be prepared to receive responses on the
source IP address that the request is sent from (as responses are sent back to the source address), but the
port number in the sent-by field. Furthermore, as with reliable transports, in certain cases the IP address and
port are used to construct a URL for sending the response. The client tramgfgarbe prepared to receive
responses on any IP address/port combinations that this SIP URL might resolve to using the procedures of
Section 24.

For multicast, the client transpavtusT be prepared to receive responses on the same multicast group
and port that the request is sent to.

If a request is destined to an IP address, port, and transport to which an existing connection is open, it
is RECOMMENDED that this connection be used to send the request, but another connestidre opened
and used.

If a request is sent using multicast, it is sent to the group address, port, and TTL provided by the transport
user. If a request is sent using unicast unreliable transports, it is sent to the IP address and port provided by
the transport user.

19.1.2 Receiving Responses

When a response is received, the client transport examines thdadpeader. If the value of the sent-by
parameter in that header does not correspond to a value that the client transport is configured to insert into
requests, the responseJST be rejected.

If there are any client transactions in existence, the client transport uses the matching procedures of Sec-
tion 17.1.3 to attempt to match the response to an existing transaction. If there is a match, the respaonse
be passed to that transaction. Otherwise, the respense be passed to the core (whether it be stateless
proxy, stateful proxy, or UA) for further processing. Handling of these “stray” responses is dependent on
the core (a stateless proxy will forward all responses, for example).

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 78]

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

19.2 Servers
19.2.1 Receiving Requests

When the server transport receives a request over any transpetsit examine the value of the sent-by
parameter in the tol/ia header field. If the host portion of the sent-by parameter contains a domain name,
or if it contains an IP address that differs from the packet source address, thensesreadd a fteceived”
attribute to thawia header field. This attribut@usT contain the source address that the packet was received
from. This is to assist the server transport layer in sending the response, since it must be sent to the source
IP address that the request came from.

Consider a request received by the server transport which looks like, in part:

INVITE sip:bob@Biloxi.com SIP/2.0
Via: SIP/2.0/UDP bobspc.biloxi.com:5060

The request is received with a source IP address of 1.2.3.4. Before passing the request up, the transport
would add a received parameter, so that the request would look like, in part:

INVITE sip:bob@Biloxi.com SIP/2.0
Via: SIP/2.0/UDP bobspc.biloxi.com:5060

Next, the client transport attempts to match the request to the client transaction. It does so using the
matching rules described in Section 17.2.3. If a matching server transaction is found, the request is passed
to that transaction for processing. If no match is found, the request is passed to the core, which may decide
to construct a new server transaction for that request.

19.2.2 Sending Responses

The server transport uses the value of the top Via header in order to determine where to send a response. It
MuUsST follow the following process:

e If the “sent-protocol” is a reliable transport protocol such as TCP, TLS or SCTP, the response
be sent using the existing connection to the source of the original request that created the transaction, if
that connection is still open. This does require the server transport to maintain an association between
server transactions and transport connections. If that connection is no longer open, theirserver
open a connection to the IP address inréeeived parameter, if present, using the port in Hemt-by
value, or the default port for that transport, if no port is specified (5060 for UDP and TCP, 5061 for
TLS and SSL). If that connection attempt fails, the sesseouULD construct a SIP URL of the form
“sip:jsent-by host¢ ;transport=jsent-protocol¢,” and then use the procedures defined in Section 24 to
determine the IP address and port to open the connection and send the response to.

e Otherwise, if theVia header field contains arfaddr’ parameter, forward the response to the address
listed there, using the port indicated iseht-by”, or port 5060 if none is present. If the address is
a multicast address, the resporsseULD be sent using the TTL indicated in th&l® parameter, or
with a TTL of 1 if that parameter is not present.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 79]

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

e Otherwise (for unreliable unicast transports), if the ¥ip has areceived parameter, send the re-
sponse to the address in threteived” parameter, using the port indicated in theeht-by” value, or
using port 5060 if none is specified explicitly. If this fails, e.g., elicits an ICMP “port unreachable”
response, send the response to the address irsémd-by” parameter. The address to send to is de-
termined by constructing a SIP URL of the form “sip:jsent-by¢”, and then using the DNS procedures
defined in Section 24 to send the response.

e Otherwise, if it is not receiver-tagged, send the response to the address indicated dgnitey”
value.

19.3 Framing

In the case of message oriented transports (such as UDP), if the messadeodsrd-Length header, the
message body is assumed to contain that many bytes. If there are additional bytes in the transport packet
below the end of the body, theyusT be discarded. If the transport packet ends before the end of the
message body, this is considered an error. If the message is a respangsy ibe discarded. If its a
request, the elemesHouLD generate a 400 class response. If the message @sment-Length header,
the message body is assumed to end at the end of the transport packet.

In the case of stream oriented transports (such as TCPEdhéent-Length header indicates the size
of the body. TheContent-Length heademusT be used with stream oriented transports.

19.4 Error Handling

Error handling is independent of whether the message was a request or response.

If the transport user asks for a message to be sent over an unreliable transport, and the result is an ICMP
error, the behavior depends on the type of ICMP error. A host, network, port or protocol unreachable errors,
or parameter problem erros10ULD cause the transport layer to inform the transport user of a failure in
sending. Source quench and TTL exceeded ICMP esewsuLD be ignored.

If the transport user asks for a request to be sent over a reliable transport, and the result is a connection
failure, the transport layesHouLD inform the transport user of a failure in sending.

20 Security Considerations

The fundamental security issues confronting SIP are: preserving the confidentiality and integrity of messag-
ing, preventing replay attacks or message spoofing, ensuring the privacy of the participants in a session, and
preventing denial of service attacks.

SIP messages frequently contain sensitive information about their senders not just what they have to
say, but with whom they communicate, when they communicate and for how long, and from where they
participate in sessions. Many applications and their users require that this sort of private information be
hidden from any parties that do not need to know it.

Encryption provides the best means to preserve the confidentiality of signaling it can also guarantee
that messages are not modified by any malicious intermediaries. However, SIP requests and responses
cannot be encrypted end-to-end (that is, between a pair of distinct user agents who share encryption keys)
in their entirety because message fields such aRk#west-URI, Route andVia need, in most network
architectures, to be visible to proxies so that SIP requests are routed correctly. Note that proxy servers need

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 80]

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

to modify signaling as well (addinyia headers) in order for SIP to function. Proxy servers must therefore
be a part of trust relationships in SIP networks.

Note that there are also less direct ways in which private information can be divulged. If a user or service
chooses to be reachable at an address that is guessable from the person’s name and organizational affiliation
(which describes most addresses of record), the traditional method of ensuring privacy by having an unlisted
“phone number” is compromised. A user location service can infringe on the privacy of the recipient of a
session invitation by divulging their specific whereabouts to the caller; an implementation consequently
SHOULD be able to restrict, on a per-user basis, what kind of location and availability information is given
out to certain classes of callers.

SIP entities also have a need to identify one another in a secure fashion. Ordinarily a SIP UA asserts
an identity for the initiator of a request in tlf#om header field, but in many systems this information
is controlled directly by the end user, and thus spoofing the contents &rdine is trivial. When a SIP
endpoint asserts the identity of its user to a peer user agent or to a proxy server, that identity should in some
way be verifiable. A cryptographic authentication mechanism is provided in SIP to address this requirement.

The most comprehensive mechanisms for securing SIP messages (providing confidentiality and integrity
guarantees for signaling as well as authentication) make use of transport or network layer encryption. en-
cryption encrypts the entire SIP request or response on the wire so that packet sniffers or other eavesdroppers
cannot see who is calling whom.

Note that the security of SIP signaling itself has no bearing on the security of protocols used in concert
with SIP such as RTP, or with any MIME types carried as SIP bodies, such as SDP. Any media associated
with a session can be encrypted end-to-end without any of the problems associated with encrypting SIP
signaling. Media encryption is outside the scope of this document.

20.1 Transport and Network Layer Security

SIP requests and responsesy be protected by security mechanisms at the transport or network layer. No
particular mechanism is recommended by this document, but two popular alternatives are briefly examined:
protection at the transport layer can be afforded by TLS [25], and network layer security is provided by
IPSec [26].

Transport or network layer security encrypts signaling traffic, guaranteeing message confidentiality and
integrity (note however that the originator and recipient of a session may be deducible by observers per-
forming a network traffic analysis). The keys used to establish encrypt traffic can also be used to verify an
asserted identity in many architectures, and therefore provide a means of authentication.

IPSec is a network layer protocol essentially, a secure replacement for traditional IP (Internet Protocol).
IPSec is most suited to VPN (virtual private network) architectures in which a set of SIP hosts (mingled user
agents and proxy servers) or bridged administrative domains have a trust relationship with one another.

TLS is a transport protocol and hence, like TCP and UDP, TLS can be specified as the desired transport
protocol within aVia header field or a SIP-URI. TLS is most suited to architectures in which a chain of trust
joins together a set of hosts (e.g. Alice trusts her local proxy server, which in turn trust Bob’s local proxy
server, which Bob trusts, hence Bob and Alice can communicate securely).

TLS must be tightly coupled with a SIP application. Note that transport mechanisms are specified on
a hop-by-hop basis in SIP, and that in some networks TLS might be used for only certain portions of the
signaling path.

Itis RECOMMENDED that SIP endpoints support TLS as a secure transport for SIP.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 81]

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

20.2 SIP Authentication

SIP provides a stateless challenged-based mechanism for authentication. Any time that a proxy server or
user agent receives a request, tiveyr challenge the initiator of the request to provide assurance of their
identity. Once the originator has been identified, the recipient of the requesiLD ascertain whether or

not this user is authorized to make the request in question. No authorization systems are recommended or
discussed in this document.

The “basic” and “digest” authentication mechanisms described in this section provide message authen-
tication only, without message integrity or confidentiality. Protective measures above and beyond authen-
tication need to be taken to prevent active attackers from modifying and/or replaying SIP requests and
responses.

Due to its weak security, the usage of “basic” authenticatiostois RECOMMENDED However, servers
MAY support it to handle older RFC 2543 clients that might still use it.

20.2.1 Framework

The framework for SIP authentication closely parallels that of HTTP (RFC 2617 [27]). In particular, the
BNF for auth- scheme, auth-param, challenge, realm, realm-value, andcredentials is identical. The
401 response is used by user agent servers in SIP to challenge the identity of a user agent client. Additionally,
registrars and redirect servensy make use of 401 (Unauthorized) responses for authentication, but proxies
MUST NOT, and instead1Ay use the 407 (Proxy Authentication Required) response. The requirements for
inclusion of theProxy-Authenticate, Proxy- Authorization, WWW-Authenticate, and Authorization in
the various messages are identical to those described in RFC 2617 [27].

Since SIP does not have the concept of a canonical root URL, the notion of protection spaces is inter-
preted differently in SIP. The realm is a protection domain for all SIP URIs with the same value for the
userinfo, host andport part of the SIFRequest-URI. For example:

INVITE sip:bob@biloxi.com SIP/2.0
WWW:-Authenticate: Basic realm="business"

and

INVITE sip:robert@biloxi.com SIP/2.0
WWW-Authenticate: Basic realm="business"

Generally, SIP authentication is for a specific requRstuest-URI and realm, a protection domain.
Thus, for basic and digest authentication, each such protection domain has its own set of user names and
secrets. If a user agent does not care about difféequest-URIs, it makes sense to establish a “global”
user name, secret and realm that is the default challenge if a parfredprest-URI does not have its own
realm or set of user names (e.g. an INVITE to 'sip:10.3.6.6"). Similarly, SIP entities representing many
users, such as PSTN gatewaysyy try a pre- configured global user name and secret when challenged,
independent of thRequest-URI.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 82]

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049
3050

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

20.2.2 User to User Authentication

When a UAS receives a request from a UAC, the UA& authenticate the originator before the request

is processed. If no credentials (in tAathorization header field are provided in the request, the UAS can
challenge the originator to provide credentials by rejecting the request with a 401 (Unauthorized) status
code.

TheWWW-Authenticate response-header fieldusT be included in 401 (Unauthorized) response mes-
sages. The field value consists of at least one challenge that indicates the authentication scheme(s) and
parameters applicable to tRRequest-URI. See [H14.47] for a definition of the syntax.

An example of theV\WW-Authenticate in a 401 challenge is:

WWW:-Authenticate: Basic realm="business"

When the originating UAC receives the 401s#iOULD, if it is able, re-originate the request with the
proper credentials. The UAC may require input from the originating user before proceeding. The content
of the “realm” parameter of theWWW:-Authenticate headersHouLD be displayed to the user. Once
authentication credentials have been supplied (either directly by the user, or discovered in a keyring), user
agentssHoOULD cache the credentials for a given value of Request-URI and ‘realm” and attempt to
re-use these values on the next request for that destination.

Any user agent that wishes to authenticate itself with a UAS or registrar — usually, but not necessarily,
after receiving a 401 responsemAY do so by including aruthorization header field with the request.

The Authorization field value consists of credentials containing the authentication information of the user
agent for the realm of the resource being requested.

An example of théduthorization header is:

Authorization: Basic QWxhZGRpbjpvcGVuUlHNIc2FtZQ==

When a UAC resubmits a request with its credentials after receiving a 401 (or 407) responseT it
increment theCSeq header field as it would normally do when sending an updated request.

20.2.3 Proxy to User Authentication

Similarly, when a UAC sends a request to a proxy server, the proxy semeruthenticate the originator

before the request is processed. If no credentials (irPtioay-Authorization header field) are provided

in the request, the UAS can challenge the originator to provide credentials by rejecting the request with a

407 (Proxy Authentication Required) status code. The pmoxgT populate the 407 (Proxy Authentication

Required) message withRroxy- Authenticate header applicable to the proxy for the requested resource.
The use of theProxy-Authentication and Proxy-Authorization parallel that described in [27, Sec-

tion 3.6], with one difference. ProxieausT NOT add theProxy-Authorization header. 407 (Proxy Au-

thentication Required) responses sT be forwarded upstream towards the UAC following the procedures

for any other response. It is the client’s responsibility to addRhexy-Authorization header containing

credentials for the realm of the proxy which has asked for authentication.

If a proxy were to resubmit a request withPaoxy-Authorization header field, it would need to increment the
CSeq in the new request. However, this would mean that the UAC which submitted the original request would
discard a response from the UAS, as @feq value would be different.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 83]

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

When the originating UAC receives the 407s#ouULD, if it is able, re-originate the request with the
proper credentials. It should follow the same procedures for the display ofdhén” parameter that are
given above for responding to 401.

Any user agent that wishes to authenticate itself to a proxy server — usually, but not necessarily, after
receiving a 407 responsemAy do so by including arProxy-Authorization header field with the request.

The Proxy-Authorization request-header field allows the client to identify itself (or its user) to a proxy
which requires authentication. THroxy-Authorization field value consists of credentials containing the
authentication information of the user agent for the proxy and/or realm of the resource being requested.

A Proxy-Authorization header field applies only to the proxy whose realm is identifier in thaltn”
parameter (this proxy may previously have demanded authentication usiRgakeAuthenticate field).

When multiple proxies are used in a chain, Brexy-Authorization header fieldvusT NOT be consumed
by any proxy whose realm does not match tihealm” parameter specified in thBroxy-Authorization
header.

Note that if an authentication scheme is used inRhaxy- Authorization that does not support realms,

a proxy servemusT attempt to parse alProxy-Authorization headers to determine whether or not one

of them has what it considers to be valid credentials. Because this is potentially very time consuming in
large networks, proxy servesHOULD use an authentication scheme that supports realms iRritwey-
Authorization header.

It is also possible that a 401 or 407 response will contain several challenges, from a mixture of proxies
and user agent servers, if the request was forked. If at least one user agent responds to a request with a
challenge, than a 401 should be used; otherwise a 407 should be used. When resubmitting its request in
response to the challenge, the UAC needs to include an Authorization for each WWW-Authenticate and
Proxy- Authorization for each Proxy-Authenticate.

See [H14.34] for a definition of the syntax Bfoxy- Authentication andProxy-Authorization.

20.2.4 Authentication Schemes

SIP implementationsiAY use HTTP’s basic and digest authentication mechanisms ([27]) to provide a rudi-
mentary form of security. This section overviews usage of these mechanisms in SIP. The scheme usage is
almost completely identical to that for HTTP [27]. This section outlines this operation, pointing to RFC
2617 ([27]) for details and noting the differences that arise when using SIP. Since RFC 2543 is based on
HTTP basic and digest as defined in RFC 2069 [28], SIP servers supporting RF@@61#&nsure they

are backwards compatible with RFC 2069. Procedures for this backwards compatibility are specified in
RFC 2617.

20.2.4.1 HTTP Basic The rules for basic authentication follow those defined in [27, Section 2] but with
the words “origin server” replaced with “user agent server, redirect server , or registrar”.

Since SIP URIs are not hierarchical, the paragraph in [27, Section 2] that states that “all paths at or
deeper than the depth of the last symbolic element in the path field of the Request-URI also are within the
protection space specified by the Basic realm value of the current challenge” does not apply for SIP. SIP
clientsmAY preemptively send the correspondiAgthorization header with requests for SIP URIs within
the same protection realm (as defined above) without receipt of another challenge from the server.

20.2.4.2 HTTP Digest The rules for digest authentication follow those defined in [27, Section 3], with
“HTTP 1.1" replaced by “SIP/2.0” in addition to the following differences:

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 84]

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114
3115
3116
3117
3118
3119
3120

3121

3122

3123

3124

3125
3126

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

1. The URI included in the challenge has the following BNF:
URI = SIP-URL

2. The BNF in RFC 2617 has an error in that the URI is not enclosed in quotation marks. (The example
in Section 3.5 is correct.) For SIP, the URUST be enclosed in quotation marks.

3. The BNF fordigest-uri-value is:

digest-uri-value = Request-URI ; as defined in Section 26
4. The example procedure for choosing a nonce baséttamdoes not work for SIP.
5. The text in RFC 2617 [27] regarding cache operation does not apply to SIP.

6. RFC 2617 [27] requires that a server check that the URI in the request line, and the URI included in
the Authorization header, point to the same resource. In a SIP context, these two URI’s may actually
refer to different users, due to forwarding at some proxy. Therefore, in SIP, a sesvecheck
that theRequest-URI in the Authorization header corresponds to a user for whom that the server is
willing to accept forwarded or direct calls.

RFC2543 did not allow usage of tiaithentication-Info header (it effectively used RFC 2069). How-
ever, we now allow usage of this header, since it provides integrity checks over the bodies and provides
mutual authentication. RFC2617 [27] defines mechanisms for backwards compatibility using the qop at-
tribute in the request. These mechanismssT be used by a server to determine if the client supports the
new mechanisms in RFC 2617 that were not specified in RFC 2069.

20.3 SIP Encryption

No mechanism is currently specified for encrypting entire SIP messages end-to-end for the purpose of con-
fidentiality. This is a hard problem because network intermediaries (like proxy servers) need to view certain
headers in order to route messages correctly, and if these intermediaries are excluded from security associa-

tions then SIP messages will essentially be unroutable.

That much said, SIP messages carry MIME bodies and the MIME standard includes mechanisms for
securing MIME contents to ensure both integrity and confidentiality (including the 'multipart/encrypted’
MIME type, see [29]), but detailed description of the use of secure MIME types are outside the scope of this
document. Implementors should note, however, that there may be rare network intermediaries (not typical
proxy servers) that rely on viewing or modifying the bodies of SIP messages (especially SDP), and that
secure MIME may prevent these sorts of intermediaries from functioning.

This applies particularly to certain types of firewalls.

End-to-end encryption relies on keys shared by the two user agents involved in the request. Typically,
the message is sent encrypted with the public key of the recipient, so that only that recipient can read the
message. SIP does not define any mechanism for end-to-end key exchange.

Note that the PGP mechanism for encrypting the headers and bodies of SIP messages described in RFC2543 has
been deprecated.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 85]

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156
3157
3158
3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

20.4 Denial of Service

Denial of service attacks focus on rendering a particular network element unavailable, usually by directing
an excessive amount of network traffic at its interfaces. A distributed denial of service attack allows one
network user to cause multiple network hosts to flood a target host with a large amount of network traffic.

In many architectures SIP proxy servers face the public Internet in order to accept requests from world-
wide IP endpoints. When the host on which a SIP proxy server is operating is routable from the public
Internet, it should be deployed in an administrative domain with secure routing policies (blocking source-
routed traffic, preferably filtering ping traffic).

SIP creates a number of potential opportunities for distributed denial of service attacks that must be
recognized and addressed by the implementors and operators of SIP systems.

Floods of messages directed at proxy servers can lock up proxy server resources and prevent desirable
traffic from reaching its destination. There is a computational expense associated with processing a SIP
transaction at a proxy server, and that expense is greater for stateful proxy servers that it is for stateless
proxy servers. Therefore stateful proxies are more susceptible to flooding than stateless proxy servers.

Attackers can create bogus requests that contain a falsifeetieader field which identifies a targeted
host as the originator of the message and then send this message to a large number of SIP network elements,
thereby using hapless SIP UAs or proxies to generate denial of service traffic aimed at the target.

Similarly, attackers might use falsifidRloute headers in a request that identify the target host and then
send such messages to forking proxies that will amplify messaging sent to the Regetd-Route could
be used to similar effect when the attacker is certain that the SIP dialog initiated by the request will result in
numerous transactions originating in the backwards direction.

One could prevent one’s host from being commandeered for such an attack by disallowing requests that
do not make use of a persistent security association established through a transport or network layer security
instrument such as TLS or IPsec. This could be an appropriate security solution for two proxy servers that
trust one another and exchange significant amounts of signaling traffic with one another, or between a user
agent and its outbound proxy.

Both TLS and IPSec can also make use of bastion hosts at the edges of administrative domains that
participate in the security associations to aggregate secure tunnels and sockets. These bastion hosts can also
take the brunt of denial of service attacks, ensuring that SIP hosts within the administrative domain are not

encumbered with superfluous messaging.

If such a persistent security association is not feasible, user agents and proxy seiwero chal-
lenge questionable requests with onlgiagle401 (Unauthorized) or 407 (Proxy Authentication Required)
forgoing the normal response retransmission algorithm.

Retransmitting the 401 or 407 status response amplifies the problem of an attacker using a falsified header (such
asVia) to direct traffic to a third party.

A number of denial of service attacks open UREGISTER requests are not properly authenticated
and authorized by registrars. Attackers could de-register some or all users in an administrative domain,
thereby preventing these users from being invited to new sessions. An attacker could also register a large
number of contacts designating the same host for a given address of record in order to use the registrar and
any associated proxy servers as amplifiers in a denial of service attack. Attackers might also attempt to
deplete available memory and disk resources of a registrar by registering huge numbers of bindings.

With either TCP or UDP, a denial of service attack exists by a rogue proxy sending 6xx responses.
Although a clientsHouULD choose to ignore such responses if it requested authentication, a proxy cannot do
so. Itis obliged to forward the 6xx response back to the client. The client can then ignore the response, but
if it repeats the request it will probably reach the same rogue proxy again, and the process will repeat.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 86]

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

The use of multicast to transmit SIP requests can greatly increase the potential for denial of service
attacks.

21 Common Message Components

There are certain components of SIP messages that appear in various places within SIP messages (and
sometimes, outside of them), which merit separate discussion.

21.1 SIP Uniform Resource Locators

A SIP URL identifies a communications resource. Like all URLSs, SIP URLs may be placed in web pages,
email messages or printed literature. They contain sufficient information to initiate and maintain a commu-
nication session with the resource.

Examples of communications resources include

e a user of an online service

an appearance on a multiline phone

a mailbox on a messaging system

a PSTN phone number at a gateway service

a group (such as “sales” or “helpdesk”) in an organization

21.1.1 SIP URL components

The “sip:” scheme follows the guidelines in RFC 2396 [9]. It uses a form similar tono URL, al-

lowing the specification of SIRRquest-header fields and the Slifhessage- body. This makes it possible

to specify the subject, media type, or urgency of sessions initiated by using a URL on a web page or in an
email message. The formal syntax for a SIP URL is presented in Section 26. Its general form is

sip:user:password@host:port;url-parameters?headers

These tokens, and some of the tokens in their expansion, have the following meanings.

user: The identifier of a particular resource at the host being addressed. Note that “host” as used here may,
and frequently does, refer to a domain.

The “userpart” of a URL consists of this user field, the password field and the @ sign following them.
The userpart of a URL is optional amhy be absent when the destination host does not have a notion
of users or when the host itself is the resource being identified. If the @ sign is present in a SIP URL,
the user fieldMusT NOT be empty.

If the host being addressed is capable of processing telephone numbers, an Internet telephony gateway
for instance, delephone- subscriber field defined in RFC 2806 [13}1AY be used to populate the

user field. There are special escaping rules for encodéhgphone-subscriber fields in SIP URLs
described in Section 21.1.2.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 87]

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222
3223
3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

password : A password associated with the user

host :

port :

While the SIP URL syntax allows this field to be present, its useds RECOMMENDED, because

the passing of authentication information in clear text (such as URIS) has proven to be a security risk
in almost every case where it has been used. For instance, transporting a PIN number in this field
exposes the PIN.

The entity hosting the SIP resource

Thehost part contains either a fully-qualified domain name or numeric IPv4 or IPv6 address. Using
the fully-qualified domain name form BECOMMENDED whenever possible.

The port number where the request is to be sent.

URL parameters: Parameters affecting a request constructed from the URL.

URL parameters are added after thastport component and are separated by semi-colons. This
extensible mechanism includes tin@nsport, maddr, ttl, user, andmethod parameters.

Thetransport parameter determines the transport mechanism to be used for sending SIP messages.
SIP can use any network transport protocol. Parameter names are defined for UDP [30], TCP [31],
TLS [25], and SCTP [32].

Themaddr parameter indicates the server address to be contacted for this user, overriding any address
derived from thehost field. Section 24 describes the proper interpretation otidwesport, maddr
andhostport in order to obtain the destination address, port and transport for sending a request.

Themaddr field can be used as a simple form of loose source routing. It allows a URL to specify a specific
proxy that must be traversed en-route to the destination. This capability is useful for a roaming user that is
forced to use an outbound proxy, but wishes to force requests through their home proxy.

The ttl parameter determines the time-to-live value of the UDP multicast packetaisd only
be used ifmaddr is a multicast address and the transport protocol is UDP. UBee parameter
was described above. For example, to specify to alidle @atlanta.com using multicast to
239.255.255.1 with a ttl of 15, the following URL would be used:

sip:alice@atlanta.com;maddr=239.255.255.1;ttI=15

The set of validtelephone-subscriber strings is a subset of validser strings. Theuser URL
parameter exists to distinguish telephone numbers from user names that happen to look like telephone
numbers. If the user string contains a telephone number formattetetephone-subscriber, the

user parameter valuephone” sHoULD be present. Even without this parameter, recipients of SIP
URLs MAY interpret the pre-@ part as a telephone number if local restrictions on the name space for
user name allow it.

The method of the SIP request constructed from the URL can be specified witlethed parameter.

Since the url-parameter mechanism is extensible, SIP elemests silently ignore any url-parameters
that they do not understand.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 88]

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

Headers: Headers to be included in a request constructed from the URL.

Headers fields in the SIP request can be specified with the “?” mechanism within a SIP URL. The
header names and values are encoded in ampersand seperamee = hvalue pairs. The special
hname “body” indicates that the associatbdalue is themessage-body of the SIP request.

Table 1 summarizes the use of SIP URL components based on the context in which the URL appears.
The external column describes URLs appearing anywhere outside of a SIP message, for instance on a web
page or business card. Entries marked “m” are mandatory, those marked “0” are optional, and those marked
“-" are not allowed. Elements processing UREBOULD ignore any disallowed components if they are
present. The second column indicates the default value of an optional element if it is not present.
indicates that the element is either not optional, or has no default value.

SIP URLs inContact header fields have different restrictions depending on the context in which the
header field appears. One set applies to messages that establish and maintain dialogs (INVITE and its 200
OK response). The other applies to registration and redirection messages (REGISTER, its 200 OK response,
and 3xx class responses to any method).

OPEN ISSUE #203: maddr is disallowed in To/From, but not port. Should port be disallowed?

OPEN ISSUE #204: Password is disallowed in From, but not To. Why?

OPEN ISSUE #205: Should we allow method and header URL components in registration/redirect
Contacts. What do they mean?

dialog
reg./redir. Contact/
default Req.-URI To From Contact R-R/Route external

user - 0 o] 0 o] o] 0
password - 0 o] - o] (o] o]
host - m m m m m m
port 5060 o] o] o] o] o] o]
user-param ip o] 0 o] 0 0 o]
method INVITE - - - 0 - 0
maddr-param — 0 - - o} o] 0
ttl-param 1 0 - - o] - o]
transp.-param udp o] - - o] o] o}
other-param - 0 o] 0 o} o} 0
headers - - - - o] - o]

Table 1: Use and default values of URL components for SIP healergjest-URI and references

21.1.2 Character escaping requirements

SIP follows the requirements and guidelines of RFC 2396 when defining the set of characters that must be
escaped in a SIP URL, and uses its “"%"” HEX HEX” mechanism for escaping. From RFC 2396:

The set of characters actually reserved within any given URI component is defined by that com-
ponent. In general, a character is reserved if the semantics of the URI changes if the character
is replaced with its escaped US-ASCII encoding. [9].

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 89]

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

3294

3295

3296

3297

3298

3299

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

Excluded US-ASCII characters [9, Sec. 2.4.3], such as space and control characters and characters used as
URL delimiters, alssvusT be escaped. URLgUST NOT contain unescaped space and control characters.

For each component, the set of valid BNF expansions defines exactly which characters may appear
unescaped. All other charactens/ST be escaped.

For example, “@” is not in the set of characters in the user component, so the user “j@s0n” must have
at least the @ sign encoded, as in “j%40s0n”.

Expanding the hname and hvalue tokens in Section 26 show that all URL reserved characters in header
names and valuegusT be escaped.

Thetelephone-subscriber subset of thaiser component has special escaping considerations. The set
of characters not reserved in the RFC 2806 [13] descriptiaielephone-subscriber contains a number
of characters in various syntax elements that need to be escaped when used in SIP URLs. Any characters
occurring in a@elephone-subscriber that do not appear in an expansion of the BNF foruker rule MusT
be escaped.

21.1.3 Example SIP URLs

sip:alice@atlanta.com
sip:alice:secretword@atlanta.com;transport=tcp
sip:alice@atlanta.com?subject=project%20x&priority=urgent
sip:+1-212-555-1212:1234@gateway.com;user=phone
sip:1212@gateway.com

sip:alice@10.1.1.1
sip:atlanta.com;method=REGISTER?to=alice%40atlanta.com
sip:alice;day=tuesday@atlanta.com

The last example URL above hasiger field value of “alice;day=tuesday”. The escaping rules defined
above allow a semicolon to appear unescaped in this field. Note, however, that for the purposes of this
protocol, the field is opaque. The apparent structure in that value is only useful to the entity responsible for
the resource.

21.1.4 SIP URL Comparison

SIP URLs are compared for equality according to the following rules:

e Comparisons of scheme name (“sip”), domain names, parameter names and header names are case-
insensitive, all other comparisons are case-sensitive. (OPEN ISSUE #100 : There is a proposal to
make only quoted string comparisons case-sensitive.)

e The ordering of parameters and headers is not significant in comparing SIP URLSs.

e Characters other than those in the “reserved” and “unsafe” sets (see RFC 2396 [9]) are equivalent to
their “"%” HEX HEX” encoding.

e An IP address that is the result of a DNS lookup of a host namemmasatch that host name.

e For two URLSs to be equal, theser, password, host, andport components must match. A URL
omitting the optional port component will match a URL explicitly declaring port 5060. A URL

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 90]

3300

3301

3302

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

omitting the user component witlot match a URL that includes one. A URL omitting the password
component willnot match a URL that includes one.

e URL url-parameter components are compared as follows
— Any url-parameter appearing in both URLs must match.

— A user, transport, ttl, or methodrl-parameter appearing in only one URL must contain its
default value or the URLs do not match.

— All other url-parameters appearing in only one URL are ignored when comparing the URLSs.

e URL header components are never ignored. Any predesdder componentMUST be present in
both URLs and match for the URLs to match. The matching rules are defined for each header in
Section sec:header-fields.

The URLs within each of the following sets are equivalent:

sip:alice@%61tlanta.com:5060
sip:alice@AtLanTa.CoM;Transport=udp

sip:carol@chicago.com
sip:carol@chicago.com;newparam=5
sip:carol@chicago.com;security=on

sip:biloxi.com;transport=tcp;method=REGISTER?to=sip:bob%40biloxi.com
sip:biloxi.com;method=REGISTER;transport=tcp?to=sip:bob%40biloxi.com

sip:alice@atlanta.com?subject=project%20x&priority=urgent
sip:alice@atlanta.com?priority=urgent&subject=project%20x

The URLs within each of the following sets amet equivalent:

SIP:ALICE@AtLanTa.CoM;Transport=udp (different usernames)
sip:alice@AtLanTa.CoM;Transport=UDP

sip:bob@biloxi.com (different port and transport)
sip:bob@biloxi.com:6000;transport=tcp

sip:carol@chicago.com (different header component)
sip:carol@chicago.com?Subject=next%20meeting

sip:bob@phone21.boxesbybob.com (even though that's what
sip:bob@10.4.1.4 phone21.boxesbybob.com resolves to)

Note that equality is not transitive:

sip:carol@chicago.com and sip:carol@chicago.com;security=on are equivalent

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 91]

3331

3332

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

3365

3366

3367

3368

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

and sip:carol@chicago.com and sip:carol@chicago.com;security=off are equivalent

But sip:carol@chicago.com;security=on and sip:carol@chicago.com;security=oibtaequivalent

Comparing URLs is a major part of comparing several SIP headers (see Section 22).

21.2 Option Tags

Option tags are unique identifiers used to designate new options (extensions) in SIP. These tags are used in
Require (Section 22.30)Proxy-Require (Section 22.28Supported (Section 22.35) antUnsupported

(Section 22.38) header fields. Note that these options appear as parameters in those headptmim-tay

=token form (see Section 26 for the definition twken).

The creator of a new SIP optiomusT either prefix the option with their reverse domain name or register
the new option with the Internet Assigned Numbers Authority (IANA) (See Section 27).

An example of a reverse-domain-name option is “com.foo.mynewfeature”, whose inventor can be reached
at “foo.com”. For these features, individual organizations are responsible for ensuring that option names do
not collide within the same domain. The host name part of the optiosT use lower-case; the option name
is case-sensitive.

Options registered with IANA do not contain periods and are globally unique. IANA option tags are
case-sensitive.

21.3 Tags

The “tag” parameter is used in thEo andFrom fields of SIP messages. It serves as a general mechanism
to identify a particular instance of a user agent for a particular SIP URI.

As proxies can fork requests, the same request can reach multiple instances of a user (mobile and home
phones, for example). Since each can respond, there needs to be a means for the originator of a session to
distinguish the responses. Tag fields in TeeandFrom disambiguate these multiple instances of the same
user.

This situation also arises with multicast requests.

When atag is generated by a UA for insertion into a request or responss itbe globally unique and
cryptographically random with at least 32 bits of randomness. A property of this selection requirement is
that a UA will place a different tag into tiierom header of aiNVITE as it would place into th&o header
of the response to the sardVITE. This is needed in order for a UA to invite itself to a session, a common
case for “hairpinning” of calls in PSTN gateways.

Besides the requirement for global uniqueness, the algorithm for generating a tag is implementation
specific. Tags are helpful in fault tolerant systems, where a dialog is to be recovered on an alternate server
after a failure. A UAS can select the tag in such a way that a backup can recognize a request as part of a
dialog on the failed server, and therefore determine that it should attempt to recover the dialog and any other
state associated with it.

22 Header Fields

The general syntax for header fields is covered in Section 7.3. This section lists the full set of header fields
along with notes on syntax, meaning, and usage. Throughout this section, we use [HX.Y] to refer to Section
X.Y of the current HTTP/1.1 specification RFC 2617 [27]. Examples of each header field are given.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 92]

3369

3370

3371

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

Information about header fields in relation to methods and proxy processing is summarized in Ta-
bles 2 and 3.

The “where” column describes the request and response types in which the header field can be used.
Values in this column are:

R: refers to header fields that can be used in requests.

r: designates a header field as applicable to all responses, while a list of numeric values indicates the status
codes with which the header field can be used.

c: indicates a header field is copied from the request to the response.
The “proxy” column describes the operations a proxy may perform on a header.
c: indicates that a proxy can add (concatenate) comma-separated elements to the header
m: indicates that a proxy can modify the header
a: indicates that a proxy can add the header if not present

r: indicates that a proxy must be be able to read the header. Headers that need to be read cannot be en-
crypted.

The next six columns relate to the presence of a header field in a method, with the contents indicating:
o: for optional
m: for mandatory

m*; indicates a header thaHouLD be sent, but servers need to be prepared to receive messages without
that header field.

*. indicates that the header fields are required if the message body is not empty. See sections 22.14, 22.15
and 7.4 for details.

-. for not applicable.

“Optional” means thata UMAAY include the header field in a request or response, and sAYAignore
the header field if present in the request or response (The exception to this rul®ecghiee header field
discussed in 22.30). A “mandatory” header fi®ldsT be present in a request, amd sT be understood by
the UAS receiving the request. A mandatory response headewfigda be present in the response, and the
header fielduusT be understood by the UAC processing the response. “Not applicable” means for header
fields that the header fieldusT NOT be present in a request. If one is placed in a request by mistake, it
MUST be ignored by the UAS receiving the request. Similarly, a header field labeled “not applicable” for a
response means that the UM®ST NOT place the header in the response, and the WAGT ignore the
header in the response.

A compact form of some common header fields is also defined for use when overall message size is an
issue.

The Contact, From andTo header fields contain a URL. If the URL contains a comma, question mark
or semicolon, the URIMUST be enclosed in angle brackets énd>). Any URL parameters are contained
within these brackets. If the URL is not enclosed in angle brackets, any semicolon-delimited parameters are
header-parameters, not URL parameters.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 93]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

Header field where proxy ACK BYE CAN INV OPT REG
Accept R - o] - m* o] o]
Accept 2XX - - - m* o] o]
Accept 415 - o] - o] o] o]
Accept-Encoding R - o] - m* 0 0
Accept-Encoding 2XX - - - m* o] o]
Accept-Encoding 415 - o] - (o] o] o]
Accept-Language R - 0] - m* o] o]
Accept-Language 2XX - - - m* 0] 0]
Accept-Language 415 - o] - o] 0] 0]
Alert-Info R am - - - o] - -
Alert-Info 180 am - - - o] - -
Allow R 0 0 o] o] o] o]
Allow 2XX - o] o] m* m* o]
Allow r - 0 0 o] o] o]
Allow 405 - m m m m m
Authentication-Info 2XX - o] - o] o] o]
Authorization R 0 0 o] o] o] o]
Call-ID c r m m m m m m
Call-Info am - - - 0 o] o]
Contact R 0 - - m 0 o]
Contact Ixx - - - o] o] -
Contact 2XX - - - m o] o]
Contact 3xX - 0] - o] o] o]
Contact 485 - o] - o] o] o]
Content-Disposition o] o] - o] o] o]
Content-Encoding o] o] - o] o] o]
Content-Language o] o] - o] o] o]
Content-Length r m* m* m* m* m* m*
Content-Type * * - * * *
CSeq c r m m m m m m
Date a o] o] o] (o] 0] 0]
Error-Info 300-699 - o] o] o] o] o]
Expires - - - o] - o]
From c r m m m m m m
In-Reply-To R - - - 0 - -
Max-Forwards R rm o] 0] o] o] o] o]
MIME-Version o] o] o] o] o] o]
Organization am - - - 0 o] o]

Table 2: Summary of header fields, A-O

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 94]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

Header field where proxy ACK BYE CAN INV OPT REG
Priority R a - - - o] - -
Proxy-Authenticate 407 - m m m m m
Proxy-Authorization R r 0 o] o] o] o] o]
Proxy-Require R r o] 0] o] o] o] o]
Record-Route R amr o] o] 0] o] 0] o]
Record-Route 2xx,401,484 - 0 0 o] 0] 0]
Require g acr 0 o] o] 0 o] o]
Retry-After 404,413,480,486 - 0 0 0 0 o]
500,503 - 0 o] 0 o] o]
600,603 - 0 o] o] o] 0
Route R r o] 0] 0] 0] o] o]
Server r - o] o] 0 o] o]
Subject R - - - o] - -
Supported - o] o] 0 0 0
Timestamp o] 0 0 o] o] o]
To gc(1) r m m m m m m
Unsupported 420 - o] o] o] o] o]
User-Agent 0] o] o] o] o] o]
Via c acmr m m m m m m
Warning r o] 0 0 0 o] o]
WWW-Authenticate 401 - m m m m m

Table 3: Summary of header fields, P-Z; (1): copied with possible addition of tag

aos 22.1 Accept

sa07 TheAccept header follows the syntax defined in [H14.1]. The semantics are also identical, with the excep-
a8 tion that if noAccept header is present, the sengrouLD assume a default value application/sdp
3409 Example:

3410 Accept: application/sdp;level=1, application/x-private, text/html

s 22.2 Accept-Encoding

a2 The Accept-Encoding header field is similar té\ccept, but restricts the content-codings [H3.5] that are

sz acceptable in the response. See [H14.3]. The syntax of this header is defined in [H14.3]. The semantics in
sa1a SIP are identical to those defined in [H14.3].

3415 An empty Accept-Encoding header field is permissible, even though the syntax in [H14.3] does not
sai6 provide for it. It is equivalent téAccept-Encoding: identity, i.e., only the identity encoding, meaning no

a7 encoding, is permissible. If this header is not present, the default valdensity. This differs slightly

sa1s from the HTTP definition, which indicates that when not present, any encoding can be used, but the identity
a9 encoding is preferred.

3420 Example:

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 95]

3421

3422

3423

3424

3425

3426

3427

3428

3429

3430

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

Accept-Encoding: gzip

22.3 Accept-Language

The Accept-Language header follows the syntax defined in [H14.4]. The rules for ordering the languages
based on thed” parameter apply to SIP as well.
TheAccept-Language header is used in requests to indicate the preferred languages for reason phrases,
session descriptions or status responses carried as message bodies in the respofsseepiti@nguage
header field is present in a request, the server assumes all languages are acceptable to the client.
Example:

Accept-Language: da, en-gb;q=0.8, en;q=0.7

22.4 Alert-Info

When present in ailNVITE request, thélert-Info header field specifies an alternative ring tone to the UAS.
When present in a 180 (Ringing) response,Alert-Info header field specifies an alternative ringback tone
to the UAC. A typical usage is for a proxy to insert this header to provide a distinctive ring feature.

The Alert-Info header can introduce security risks. These risks, and the ways to handle them, are
discussed in Section 22.9 which discussesGh#-Info header, as the risks are identical.

In addition, a usesHOULD be able to disable this feature selectively.

This helps prevent disruptions that could result from the use of this header by untrusted elements.

Example:

Alert-Info: <http://wwww.example.com/sounds/moo.wav>

22.5 Allow

TheAllow header field lists the set of methods supported by the user agent generating the message.

All methods, includingACK and CANCEL, understood by the UMUST be included in the list of
methods in theAllow header, when present. The absence ofAbBow heademusT NOT be interpreted to
mean that the UA sending the message supports no methods. Rather, it implies that the UA is not providing
any information on what methods it supports.

Supplying anAllow header in responses to methods other RTIONS cuts down on the number of
messages needed.

Example:

Allow: INVITE, ACK, OPTIONS, CANCEL, BYE

22.6 Authentication-Info

TheAuthentication-Info header provides for mutual authentication with HTTP Digest. A WAS include
this header in a 2xx response to a request that was successfully authenticated using digest based on the
Authorization header.

Syntax and semantics follow those specified in RFC2617 [27].

Example:

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 96]

3456

3457

3458

3459

3460

3461

3462

3463

3464

3465

3466

3467

3468

3469

3470

3471

3472

3473

3474

3475

3476

3477

3478

3479

3480

3481

3482

3483

3484

3485

3486

3487

3488

3489

3490

3491

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

Authentication-Info: nextnonce="47364c23432d2e131a5fh210812¢"

22.7 Authorization

The Authorization header field contains authentication credentials of a UA. Section 20.2.2 overviews the
use of theAuthorization header field, and Section 20.2.4 describes the syntax and semantics when used
with HTTP Basic and Digest authentication.

Note that this header field, along wifProxy-Authorization breaks the general rules about multiple
header fields. Although not a comma-separated list, this header field may be present multiple times, and
MUST NOT be combined into a single header using the usual rules described in Section 7.3.

Example:

Authorization: Digest username="Alice", realm="Bob’s Friends",
nonce="84a4cc6f3082121f32b42a2187831a9e",
response="7587245234h3434cc3412213e5f113a5432"

22.8 Call-ID

The Call-ID header field uniquely identifies a particular invitation or all registrations of a particular client.
Note that a single multimedia conference can give rise to several calls with diffeadiriDs, e.g., if a user
invites a single individual several times to the same (long-running) confefeaitdDs are case- sensitive
and are simply compared byte-by-byte.

The compact form of th€all-IDheader field is.

Examples:

Call-ID: f81d4fae-7dec-11d0-a765-00a0c91e6bf6@biloxi.com
i:f81d4fae-7dec-11d0-a765-00a0c91e6bf6@10.4.1.4

22.9 Call-Info

The Call-Info header field provides additional information about the caller or callee, depending on whether
it is found in a request or response. The purpose of the URI is described bpuhgose” parameter.
“icon” designates an image suitable as an iconic representation of the caller or dalleedéscribes the
caller or callee in general, e.g., through a web pagard” provides a business card (e.g., in vCard [33] or
LDIF [34] formats). Additonal tokens can be registered using IANA and the procedures in Section 27.

Usage of theCall-Info header can pose a security risk. If a callee fetches the URLSs provided by an
malicious caller, the callee may be at risk for displaying inappropriate or offensive content, dangerous or
illegal content, and so on. Therefore, itRECOMMENDED that a UA only render the information in the
Call-Info header if it can verify the authenticity of the element which originated the header, and trusts that
element. This need not be the peer UA; a proxy can insert this header into requests.

The use of this header is important in converged applications.

Example:

Call-Info: <http://wwww.example.com/alice/photo.jpg> ;purpose=icon,
<http://www.example.com/alice/> ;purpose=info

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 97]

3492

3493

3494

3495

3496

3497

3498

3499
3500
3501
3502

3503

3504

3505

3506

3507

3508

3509

3510

3511

3512

3513

3514

3515

3516

3517

3518

3519

3520

3521

3522

3523

3524

3525

3526

3527

3528

3529

3530

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

22.10 Contact

TheContact header field provides a URL whose meaning depends on the the type of request or response it
is in.

Parameters defined f@ontact include “g” and “expires”. Additional parameters may be defined in
other specifications.Even if thelisplay-name” is empty, the hame-addr” form MUST be used if the
“addr-spec” contains a comma, semicolon or question mark. Note that there may or may not be LWS
between thalisplay-name and the <.

TheContact header field fulfills functionality similar to thieocation header field in HTTP. However, the HTTP
header only allows one address, unquoted. Since URIs can contain commas and semicolons as reserved characters,
they can be mistaken for header or parameter delimiters, respectively. The current syntax corresponds to that for the
To andFrom header, which also allows the use of display names.

The compact form of th€ontact header field isn (for "moved”).
Examples:

Contact: "Mr. Watson" <sip:watson@worcester.bell-telephone.com>
:g=0.7; expires=3600,
"Mr. Watson" <mailto:watson@bell-telephone.com> ;q=0.1

m. <sip:bob@10.5.1.5>

22.11 Content-Disposition

The Content-Disposition header field describes how the message body or, in the case of multipart mes-
sages, a message body part is to be interpreted by the UAC or UAS. The SIP header extends the MIME
Content-Type (RFC 1806 [35]).

The value Session” indicates that the body part describes a session, for either calls or early (pre-call)
media. The valuerénder” indicates that the body part should be displayed or otherwise rendered to the
user. For backward-compatibility, if theéontent-Disposition header is not missing, bodies Gbntent-

Type application/sdp imply the disposition §ession”, while other content types implyrender”.

The disposition typeiton” indicates that the body part contains an image suitable as an iconic repre-
sentation of the caller or callee. The valért” indicates that the body part contains information, such as
an audio clip, that should be rendered instead of ring tone.

The handling parametenandling-parm, describes how the UAS should react if it receives a message
body whose content type or disposition type it does not understand. The parameter has defined values of
“optional” and “required”. If the handling parameter is missing, the valueduired” is to be assumed.

If this header field is missing, the MIME type determines the default content disposition. If there is none,
“render” is assumed.
Example:

Content-Disposition: session

22.12 Content-Encoding

The Content-Encoding header field is used as a modifier to theedia-type”. When present, its value
indicates what additional content codings have been applied to the entity-body, and thus what decoding
mechanisms1UusT be applied in order to obtain the media-type referenced byCthwtent-Type header

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 98]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

ss31 field. Content-Encoding is primarily used to allow a body to be compressed without losing the identity of
3532 its underlying media type.

3533 If multiple encodings have been applied to an entity, the content codings be listed in the order in

353 Which they were applied.

3535 All content-coding values are case-insensitive. The Internet Assigned Numbers Authority (IANA) acts
353 s a registry for content-coding value tokens. See [H3.5] for a definition of the syntearftant-coding.

3537 ClientsMAY apply content encodings to the body in requests. A sener apply content encodings to
ss38 the bodies in responses. The semversT only use encodings listed in tifeccept-Encoding header in the

3539 request.

3540 The compact form of th€ontent-Encoding header field i®.

3541 Examples:

3542 Content-Encoding: gzip
3543 e: tar

s 22.13 Content-Language

a5 See [H14.12].
3546 Example:

3547 Content-Language: fr

g 22.14 Content-Length

a0 TheContent-Length header field indicates the size of the message-body, in decimal number of octets, sent

sss0 tO the recipient.

3551 ApplicationssHouLD use this field to indicate the size of the message-body to be transferred, regardless
ss52 - Of the media type of the entity. (The size of the message-bodyrau@sclude the CRLF separating headers

sss3 - and body.) AnyContent-Length greater than or equal to zero is a valid value. If no body is present in a
54 Message, then teontent-Length header fieldwusT be set to zero.

3555 The ability to omitContent-Length simplifies the creation of cgi-like scripts that dynamically generate re-
3556 sponses.

3557 The short form of the header lis

3558 Examples:

3559 Content-Length: 349
3560 [173

e 22.15 Content-Type

62 The Content-Type header field indicates the media type of the message-body sent to the recipient. The
63 “Media-type” element is defined in [H3.7]. Th€ontent-Type heademusT be present if the body is not

ssea empty. If the body is empty, and @ontent-Length header is present, it indicates that the body of the
sse5 specific type has zero length (for example, if it is an emtpy audio file).

3566 The short form of the header ¢s

3567 Examples:

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 99]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

3568 Content-Type: application/sdp
3569 c: text/html; charset=1S0O-8859-4

w0 22.16 CSeq

71 A CSeq header field in a request contains a single decimal sequence number and the request method. The
572 sequence humbenusT be expressible as a 32-bit unsigned integer. Tseq header serves to order

3573 transactions within a dialog, and to provide a means to uniquely identify transactions, and to differentiate
574 between new requests and request retransmissions.

3575 Example:

3576 CSeq: 4711 INVITE

s 22.17 Date

78 The Date header field contains an RFC 1123 date (see [H14.18]). Note that unlike HTTP/1.1, SIP only
3579 supports the most recent RFC 1123 [36] formatting for dates. As in [H3.3], SIP restricts the timezone in
sss0 SIP-date to “GMT”, while RFC 1123 allows any timezone.

3581 The consistent use of GMT betweBrate, Expires andRetry-After headers allows implementation of simple

3582 clients that do not have a notion of absolute time.

3583 Note thatrfc1123-date is case-sensitive.

3584 TheDate header field reflects the time when the request or response is first sent.

3585 The Date header field can be used by simple end systems without a battery-backed clock to acquire a notion of
3586 current time. However, in its GMT-form, it requires clients to know their offset from GMT.

3587 Example:

3588 Date: Sat, 13 Nov 2001 23:29:00 GMT

sss0 22.18 Error-Info

00 TheError-Info header field provides a pointer to additional information about the error status response.

3591 SIP UACs have user interface capabilities ranging from pop up windows and audio on PC softclients to audio-
3592 only on "black” phones or endpoints connected via gateways. Rather than forcing a server generating an error to
3593 choose between sending an error status code with a detailed reason phrase and playing an audio recording, the
3594 Error-Info header field allows both to be sent. The UAC then has the choice of which error indicator to render to the
3595 caller.

3596 A UAC MAY treat a SIP URL in arkrror-Info header field as if it were &ontact in a redirect and

597 generate a neWNVITE, resulting an a recorded announcement session being established. A non-SIP URL
308 MAY be rendered to the user.
3599 Examples:

3600 SIP/2.0 404 The number you have dialed is not in service
3601 Error-Info: <sip:not-in-service-recording@atlanta.com>

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 100]

3602

3603

3604

3605

3606

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

3617

3618

3619

3620

3621

3622

3623

3624

3625

3626

3627

3628

3629
3630
3631

3632

3633

3634

3635

3636

3637

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

22.19 Expires

TheExpires header field gives the date and time after which the message (or content) expires. The precise
meaning of this is method dependent.

Note that the expiration time in dNVITE doesnot affect the duration of the actual session that may
result from the invitation. Session description protocols may offer the ability to express time limits on the
session duration, however.

The value of this field can be either a date (seelate header field) or an integer number of seconds
(in decimal), measured from the receipt of the request. The latter approach is preferable for short durations,
as it does not depend on clients and servers sharing a synchronized clock.

Examples:

Expires: Thu, 01 Dec 1994 16:00:00 GMT
Expires: 5

22.20 From

TheFrom header field indicates the initiator of the request. (Note that this may be different from the initiator
of the dialog. Requests sent by the callee to the caller use the callee’s addredsronttteeader field.)
The optional tisplay-name” is meant to be rendered by a human user interface. A systeouLD
use the display name “Anonymous” if the identity of the client is to remain hidden.
Even if the ‘display-name” is empty, the ‘hame-addr” form MuUsT be used if the &ddr-spec” con-
tains a comma, question mark, or semicolon. Syntax issues are discussed in Section 7.3.1.
The short form of the headerfis
Examples:

From: "A. G. Bell" <sip:agb@bell-telephone.com> ;tag=a48s
From: sip:+12125551212@server.phone2net.com;tag=887s
f: Anonymous <sip:c80qz84zk7z@privacy.org>;tag=hyh8

22.21 In-Reply-To

The In-Reply-To header field enumerates tlall-IDs that this call references or returns. Th&sdl-IDs
may have been cached by the client then included in this header in a return call.

This allows automatic call distribution systems to route return calls to the originator of the first call and allows
callees to filter calls, so that only calls that return calls they have originated will be accepted. This field is not a
substitute for request authentication.

Example:
In-Reply-To: 70710@saturn.bell-tel.com, 17320@saturn.bell-tel.com

22.22 Max-Forwards

The Max-Forwards header field may be used with any SIP method to limit the number of proxies or gate-
ways that can forward the request to the next downstream server. This can also be useful when the client is
attempting to trace a request chain which appears to be failing or looping in mid-chain.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 101]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

3638 The Max-Forwards value is a decimal integer indicating the remaining number of times this request
639 message is allowed to be forwarded. This count is decremented by each server that forwards the request.
3640 Example:

3641 Max-Forwards: 6

2 22.23 MIME-Version

sea3 See [H19.4.1].
3644 Example:

3645 MIME-Version: 1.0

sas 22.24 Organization

sea7 TheOrganization header field conveys the name of the organization to which the entity issuing the request
ssa8 OF response belongs.

3649 The fieldmAY be used by client software to filter calls.

3650 Example:

3651 Organization: Boxes by Bob

52 22.25 Priority

ses3 1he Priority header field indicates the urgency of the request as perceived by the client. Defined values
ses4 include “non-urgent”, “normal”, “urgent”, and “emergency”.

3655 It is RECOMMENDED that the value of “emergency” only be used when life, limb or property are in
ses6 iImminent danger. Otherwise, there are no semantics defined for this header field.

3657 These are the values of RFC 2076 [37], with the addition of “emergency”.

3658 Examples:

3659 Subject: A tornado is heading our way!
3660 Priority: emergency

3661 OF

3662 Subject: Weekend plans
3663 Priority: non-urgent

swee 22.26 Proxy-Authenticate

see5 1he Proxy-Authenticate header field consists of a challenge that indicates the authentication scheme and
se66 parameters applicable to the proxy for tRequest-URI.

3667 The syntax for this header and use is defined in [H14.33]. See 20.2.3 for further details on its usage.
68 Example:

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 102]

3669

3670

3671

3672

3673

3674

3675

3676

3677

3678

3679

3680

3681

3682

3683

3684

3685

3686

3687

3688

3689

3690

3691

3692

3693

3694

3695

3696

3697

3698

3699

3700

3701

3702
3703

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

Proxy-Authenticate: Digest realm="Carrier SIP",
domain="sip:ssl.carrier.com",
nonce="f84flcec4le6cbe5aea9c8e88d359",
opaque="", stale=FALSE, algorithm=MD5

22.27 Proxy-Authorization

The Proxy-Authorization header field allows the client to identify itself (or its user) to a proxy which
requires authentication. ThH&roxy-Authorization field value consists of credentials containing the authen-
tication information of the user agent for the proxy and/or realm of the resource being requested.

See [H14.34] for a definition of the syntax, and section 20.2.3 for a discussion of its usage.

Note that this header field, along witkuthorization breaks the general rules about multiple header
fields. Although not a comma-separated list, this header field may be present multiple times,.sandoT
be combined into a single header using the usual rules described in Section 7.3.1.

Example:

Proxy-Authorization: Digest username="Alice", realm="Atlanta ISP",
nonce="c60f3082ee1212b402a21831ae",
response="245f23415f11432b3434341c022"

22.28 Proxy-Require

The Proxy-Require header field is used to indicate proxy-sensitive features that must be supported by the
proxy. See Section 22.30 for more details on the mechanics of this message and a usage example.
Example:

Proxy-Require: foo

22.29 Record-Route

TheRecord-Route is inserted by proxies in a request to force future requests in the session to route through
the proxy.

Details of its use with th®oute header field are described in Section 16.4.

Example:

Record-Route: <sip:bob@biloxi.com;maddr=10.1.1.1>,
<sip:bob@biloxi.com;maddr=10.2.1.1>

22.30 Require

TheRequire header field is used by clients to tell user agent servers about options that the client expects the
server to support in order to properly process the request. Although an optional heaBertle MUST
NOT be ignored if it is present.

This is to make sure that the client-server interaction will proceed without delay when all options are understood

by both sides, and only slow down if options are not understood (as in the example above). For a well-matched
client-server pair, the interaction proceeds quickly, saving a round-trip often required by negotiation mechanisms.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 103]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

3704 In addition, it also removes ambiguity when the client requires features that the server does not understand. Some
3705 features, such as call handling fields, are only of interest to end systems.
3706 Example:

3707 Require: com.example.billing

sros 22.31 Retry-After

a0 The Retry-After header field can be used with a 503 (Service Unavailable) response to indicate how long
s70 the service is expected to be unavailable to the requesting client and with a 404 (Not Found), 600 (Busy), or
sr11 603 (Decline) response to indicate when the called party anticipates being available again. The value of this
s712 field can be either aBIP-date or an integer number of seconds (in decimal) after the time of the response.
3713 An optional comment can be used to indicate additional information about the time of callback. An
s714 - Optional ‘duration” parameter indicates how long the called party will be reachable starting at the initial
a5 time of availability. If no duration parameter is given, the service is assumed to be available indefinitely.

3716 Examples:

3717 Retry-After: Mon, 21 Jul 1997 18:48:34 GMT (I'm in a meeting)
3718 Retry-After: Mon, 01 Jan 9999 00:00:00 GMT

3719 (Dear John: Don't call me back, ever)

3720 Retry-After: Fri, 26 Sep 1997 21:00:00 GMT;duration=3600

3721 Retry-After. 120

3722 In the third example, the callee is reachable for one hour starting at 21:00 GMT. In the last example, the
s2s delay is 2 minutes.

a2 22.32 Route

a2 TheRoute is used to force routing for a request through the listed set of proxies. Details of its use with the
a6 Record-Route header field are described in Section 13.
3727 Example:

3728 Route: <sip:bob@biloxi.com;maddr=10.1.1.1>, <sip:bob@10.4.1.4>

a9 22.33 Server

sz20 TheServer header field contains information about the software used by the user agent server to handle the
a1 request. The syntax for this field is defined in [H14.38].
3732 Example:

3733 Server: HomeProxy v2

aa 22.34 Subject

s73s This header field provides a summary or indicates the nature of the call, allowing call filtering without having
a6 to parse the session description. (Note that the session description does not have to use the same subject
s737 indication as the invitation.)

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 104]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

3738 The short form of the header $s
3739 Example:

3740 Subject: Need more boxes
3741 s: Tech Support

a2 22.35 Supported

sz The Supported header field enumerates all the extensions upported by the client or server. If empty, it
3724 Means that no extensions are supported.
3745 Example:

3746 Supported: foo, bar

a7 22.36 Timestamp

snus TheTimestamp header field describes when the client sent the request to the server. The usEinihe
s720 tamp is covered in Section 13.
3750 Example:

3751 Timestamp: 54

a2 22.37 To

s7s3 TheTo header field specifies the logical recipient of the request.

3754 The optional tisplay-name” is meant to be rendered by a human-user interface. Td@' ‘parameter

a7s5 Serves as a general mechanism to distinguish multiple instances of a user identified by a single SIP URL.
3756 See Section 13 for details of th&ay” parameter.

3757 Section 22.20 describes how and From header fields are compared for the purpose of matching
s7s8 requests to dialogs. Even if theiSplay-name” is empty, the hame-addr’ form MusT be used if the

a5 “addr-spec” contains a comma, question mark, or semicolon. Note that LWS is commonpbuaotanda-

a0 tory between thelisplay-name and the <.

3761 The short form of the headerts

3762 The following are examples of valitb headers:

3763 To: The Operator <sip:operator@cs.columbia.edu>;tag=287447
3764 t: sip:+12125551212@server.phone2net.com

ares 22.38 Unsupported

szee TheUnsupported header field lists the features not supported by the server. See Section 22.30 for a usage
s7e7 - example and motivation.
3768 Example:

3769 Unsupported: foo

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 105]

3770

3771

3772

3773

3774

3775

3776

3777

3778

3779

3780

3781

3782

3783

3784

3785

3786

3787

3788

3789

3790

3791

3792

3793

3794

3795

3796

3797

3798

3799

3800

3801

3802

3803

3804

3805

3806

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

22.39 User-Agent

The User-Agent header field contains information about the client user agent originating the request. The
syntax and semantics are defined in [H14.43].
Example:

User-Agent: Softphone Betal.5

22.40 Via

TheVia field indicates the path taken by the request so far and indicate the path that should be followed in
routing responses.

TheVia header field contains the transport protocol used to send the message, the client’s host name or
network address and, if not the default port number, the port number at which it wishes to receive responses.
TheVia header field can also contains parameters sucmasgdr”, “ttl", “ received”, and “branch”whose
meaning and use are described in other sections.

The short form of the headervs

Example:

Via: SIP/2.0/UDP erlang.bell-telephone.com:5060
Via: SIP/2.0/UDP 128.59.16.1:5060 ;received=128.59.19.3

In this example, the message originated from a multi-homed host with two addresses, 128.59.16.1
and 128.59.19.3. The sender guessed wrong as to which network interface would be used. Erlang.bell-
telephone.com noticed the mismatch, and added a parameter to the previolgiabteader field, contain-
ing the address that the packet actually came from.

Another example:

Via: SIP/2.0/UDP first.example.com:4000;ttI=16
:maddr=224.2.0.1 ;branch=a7c6a8dlze.l

22.41 Warning

TheWarning header field is used to carry additional information about the status of a respaseing
headers are sent with responses and contain a three digit warning code, host name, and warning text.

The “warn-text” should be in a natural language that is most likely to be intelligible to the human user
receiving the response. This decision can be based on any available knowledge, such as the location of the
cache or user, th&ccept-Language field in a request, or th€ontent-Language field in a response. The
default language is i-default [38].

The first digit of warning codes beginning with “3” indicates warnings specific to SIP.

This is a list of the currently-definedvarn-code”s, each with a recommended warn-text in English, and
a description of its meaning. Note that these warnings describe failures induced by the session description.

Warnings 300 through 329 are reserved for indicating problems with keywords in the session description,
330 through 339 are warnings related to basic network services requested in the session description, 370
through 379 are warnings related to quantitative QoS parameters requested in the session description, and
390 through 399 are miscellaneous warnings that do not fall into one of the above categories.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 106]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

ss07 300 Incompatible network protocol: One or more network protocols contained in the session description
3808 are not available.

ss00 301 Incompatible network address formats: One or more network address formats contained in the ses-
3810 sion description are not available.

11 302 Incompatible transport protocol: One or more transport protocols described in the session descrip-
3812 tion are not available.

13 303 Incompatible bandwidth units: One or more bandwidth measurement units contained in the session
3814 description were not understood.

se15 304 Media type not available: One or more media types contained in the session description are not avail-
3816 able.

ss17 305 Incompatible media format: One or more media formats contained in the session description are not
3818 available.

819 306 Attribute not understood: One or more of the media attributes in the session description are not sup-
3820 ported.

ss21 307 Session description parameter not understoodA parameter other than those listed above was not
3822 understood.

323 330 Multicast not available: The site where the user is located does not support multicast.

ss24 331 Unicast not available: The site where the user is located does not support unicast communication (usu-
3825 ally due to the presence of a firewall).

ss26 370 Insufficient bandwidth: The bandwidth specified in the session description or defined by the media
3827 exceeds that known to be available.

s 399 Miscellaneous warning: The warning text can include arbitrary information to be presented to a hu-

3829 man user, or logged. A system receiving this warmngsT NOT take any automated action.
3830 1xx and 2xx have been taken by HTTP/1.1.
3831 If the warning is caused by the session description, the status respeosa.D include a session de-

32 scription similar to that included iI@PTIONS responses indicating the capabilities of the UAS. Additional
333 “warn-code’s, as in the example below, can be defined through IANA.
3834 Examples:

3835 Warning: 307 isi.edu "Session parameter 'foo’ not understood"
3836 Warning: 301 isi.edu "Incompatible network address type 'E.164™

w7 22.42 \WWW-Authenticate

ss3s The WWW-Authenticate header field consists of a challenge that indicates the authentication scheme and
839 parameters applicable for thiiequest-URI.

3840 The syntax for this header and use is defined in [H14.47]. See 20.2.2 for further details on its usage.
3841 Example:

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 107]

3842

3843

3844

3845

3846

3847

3848

3849

3850

3851

3852

3853

3854

3855

3856

3857

3858

3859

3860

3861

3862

3863

3864

3865

3866

3867

3868

3869

3870

3871

3872

3873

3874

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

WWW-Authenticate: Digest realm="Bob’s Friends",
domain="sip:boxesbybob.com”,
nonce="f84flcec4le6cbe5aea9c8e88d359",
opaque="", stale=FALSE, algorithm=MD5

23 Response Codes

The response codes are consistent with, and extend, HTTP/1.1 response codes. Not all HTTP/1.1 response
codes are appropriate, and only those that are appropriate are given here. Other HTTP/1.1 response codes
SHOULD NOT be used. Response codes not defined by HTTP/1.1 have codes x80 upwards to avoid clashes
with future HTTP response codes. Also, SIP defines a new class, 6xx. The default behavior for unknown
response codes is given for each category of codes.

23.1 Provisional 1xx

Provisional responses indicate that the server or proxy contacted is performing some further action and does
not yet have a definitive response. A server typically sends a 1xx response if it expects to takemore than
200 ms to obtain a final response. Note that 1xx responses are not transmitted reliably, that is, they do not
cause the client to send &CK.

Provisional (1xx) responsesay contain message bodies, including session descriptions.

Provisional responses are also known as informational responses.

23.1.1 100 Trying

This response indicates that the request has been received by the next hop server and that some unspeci-
fied action is being taken on behalf of this call (e.g., a database is being consulted). This response stops
retransmissions of aNVITE by a UAC.

23.1.2 180 Ringing

The user agent receiving thVITE is trying to alert the user. This response MAY be used to initiate local
ringback.

23.1.3 181 Call Is Being Forwarded

A proxy serverMAY use this status code to indicate that the call is being forwarded to a different set of
destinations.

23.1.4 182 Queued

The called party is temporarily unavailable, but the callee has decided to queue the call rather than reject it.
When the callee becomes available, it will return the appropriate final status response. The reason phrase
MAY give further details about the status of the call, e.g., “5 calls queued; expected waiting time is 15
minutes”. The servemAyY issue several 182 responses to update the caller about the status of the queued
call.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 108]

3875

3876

3877

3878

3879

3880

3881

3882

3883

3884

3885

3886

3887

3888

3889

3890

3891

3892

3893

3894

3895

3896

3897
3898

3899

3900

3901

3902

3903

3904

3905

3906

3907

3908

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

23.1.5 183 Session Progress

The 183 (Session Progress) response is used to convey information about the progress of the call which is
not otherwise classified. THReason-Phrase, header fields, or message boalyy be used to convey more
details about the call progress.

23.2 Successful 2xx

The request was successful.

23.2.1 200 OK

The request has succeeded. The information returned with the response depends on the method used in the
request.

23.3 Redirection 3xx

3xx responses give information about the user's new location, or about alternative services that might be
able to satisfy the call.

23.3.1 300 Multiple Choices

The address in the request resolved to several choices, each with its own specific location, and the user (or
user agent) can select a preferred communication end point and redirect its request to that location.

The respons#AY include a message body containing a list of resource characteristics and location(s)
from which the user or user agent can choose the one most appropriate, if allowedAnc#m request
header.

The choicessHOULD also be listed a€ontact fields (Section 22.10). Unlike HTTP, the SIP response
MAY contain severalContact fields or a list of addresses in@ontact field. User agentsAy use the
Contact header field value for automatic redirectionnoxy ask the user to confirm a choice. However, this
specification does not define any standard for such automatic selection.

This status response is appropriate if the callee can be reached at several different locations and the server cannot
or prefers not to proxy the request.

23.3.2 301 Moved Permanently

The user can no longer be found at the address iRdwest-URI and the requesting cliesHouLD retry

at the new address given by tBentact header field (Section 22.10). The callefouLD update any local
directories, address books and user location caches with this new value and redirect future requests to the
address(es) listed.

23.3.3 302 Moved Temporarily

The requesting cliensHOULD retry the request at the new address(es) given byCihetact header field
(Section 22.10). ThRequest-URI of the new request uses the value of @entact header in the response.
The new request can take two different forms. In the first approachJah&rom, Call-ID, andCSeq
header fields in the new request are the same as in the original request, wittbeanelv identifier in the

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 109]

3909

3910

3911

3912

3913

3914

3915

3916

3917

3918

3919

3920

3921

3922

3923

3924

3925

3926

3927

3928

3929

3930

3931

3932

3933

3934

3935

3936

3937

3938

3939

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

Via header field. ProxiestusT follow this behavior and UACsAY . In the second approach, UAsaY
also use th&€ontact information for theTo header field, as well as a né®all-ID value.

The duration of the redirection can be indicated througlE®pires (Section 22.19) header. If there is
no explicit expiration time, the address is only valid for this call andsT NOT be cached for future calls.
23.3.4 305 Use Proxy

The requested resouregusT be accessed through the proxy given by @mntact field. The Contact

field gives the URI of the proxy. The recipient is expected to repeat this single request via the proxy. 305
responsesiusT only be generated by user agent servers.

23.3.5 380 Alternative Service

The call was not successful, but alternative services are possible. The alternative services are described in
the message body of the response. Formats for such bodies are not defined here, and may be the subject of
future standardization.

23.4 Request Failure 4xx

4xx responses are definite failure responses from a particular server. Theselieatd NOT retry the

same request without modification (e.g., adding appropriate authorization). However, the same request to a
different server might be successful.

23.4.1 400 Bad Request

The request could not be understood due to malformed syntaxR&ason-Phrase sHouLD identify the

syntax problem in more detail, e.g., “Missing Call-ID header”.

23.4.2 401 Unauthorized

The request requires user authentication. This response is issued by user agent servers and registrars, while
407 (Proxy Authentication Required) is used by proxy servers.

23.4.3 402 Payment Required

Reserved for future use.

23.4.4 403 Forbidden

The server understood the request, but is refusing to fulfill it. Authorization will not help, and the request
SHOULD NOT be repeated.

23.4.5 404 Not Found

The server has definitive information that the user does not exist at the domain specifie®Raqthest-
URI. This status is also returned if the domain in Request-URI does not match any of the domains
handled by the recipient of the request.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 110]

3940

3941

3942

3943

3944

3945

3946

3947

3948

3949

3950

3951

3952

3953

3954

3955

3956

3957

3958

3959

3960

3961

3962

3963

3964

3965

3966

3967

3968

3969

3970

3971

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

23.4.6 405 Method Not Allowed

The method specified in tHiRequest-Line is not allowed for the address identified by Request-URI.

The responseiusT include anAllow header field containing a list of valid methods for the indicated address.
23.4.7 406 Not Acceptable

The resource identified by the request is only capable of generating response entities which have content
characteristics not acceptable according to the accept headers sent in the request.

23.4.8 407 Proxy Authentication Required

This code is similar to 401 (Unauthorized), but indicates that the cliergtT first authenticate itself with
the proxy. SIP access authentication is explained in section 20 and 20.2.3.

This status code can be used for applications where access to the communication channel (e.g., a tele-
phony gateway) rather than the callee requires authentication.

23.4.9 408 Request Timeout

The server could not produce a response within a suitable amount of time, for example, if it could not
determine the location of the user in time. The clismly repeat the request without modifications at any
later time.

23.4.10 410 Gone

The requested resource is no longer available at the server and no forwarding address is known. This
condition is expected to be considered permanent. If the server does not know, or has no facility to determine,
whether or not the condition is permanent, the status code 404 (Not Fedpd)LD be used instead.

23.4.11 413 Request Entity Too Large

The server is refusing to process a request because the request entity is larger than the server is willing or
able to process. The server MAY close the connection to prevent the client from continuing the request.

If the condition is temporary, the serveHOULD include aRetry-After header field to indicate that it is
temporary and after what time the clienay try again.

23.4.12 414 Request-URI Too Long
The server is refusing to service the request becaudedhaest-URI is longer than the server is willing to
interpret.

23.4.13 415 Unsupported Media Type

The server is refusing to service the request because the message body of the request is in a format not sup-
ported by the server for the requested method. The sereULD return a list of acceptable formats using

the Accept, Accept-Encoding and Accept-Language header fields. UAC processing of this response is
described in Section 8.1.3.4.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 111]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

o2 23.4.14 420 Bad Extension

se73 The server did not understand the protocol extension specifie®Pia-Require (Section 22.28) oRe-
3974 quire (Section 22.30) header field. The sergerouLD include a list of the unsupported extensions in an
se7s Unsupported header in the response. UAC processing of this response is described in Section 8.1.3.4.

sze 23.4.15 421 Extension Required

se77 The UAS needs a particular extension to process the request, but this extension is not liSagpored

3978 header in the request. Responses with this statusode contain aRequire header listing the required

3979 extensions.

3980 In general, a UASHOULD NOT use this response when it wishes to apply an extension to a request. The
se81 end result will often be no service at all, and a break in interoperability. Rather, serets D process the

3082 request using baseline SIP capabilities and any extensions supported by the client.

3083 23.4.16 480 Temporarily Unavailable

384 The callee’s end system was contacted successfully but the callee is currently unavailable (e.g., not logged
3985 N, logged in in such a manner as to preclude communication with the callee or activated the “do not disturb”
3086 feature). The responseay indicate a better time to call in tHeetry-After header. The user could also be

3087 available elsewhere (unbeknownst to this host). The reason péreseLD indicate a more precise cause

3088 as to why the callee is unavailable. This vakiouULD be setable by the user agent. Status 486 (Busy Here)

3989 MAY be used to more precisely indicate a particular reason for the call failure.

3990 This status is also returned by a redirect server that recognizes the user identifiedRegtiest-URI,

s991 but does not currently have a valid forwarding location for that user.

3002 23.4.17 481 Call/Transaction Does Not Exist

s993 This status indicates that the UAS received a request that does not match any existing dialog or transaction.

3904 23.4.18 482 Loop Detected

3995 The server has detected a loop (Section 3).

s 23.4.19 483 Too Many Hops

3997 The server received a request that contaiMaa-Forwards (Section 22.22) header with the value zero.

s008 23.4.20 484 Address Incomplete

3999 The server received a request witliRaquest-URI that was incomplete. Additional informatidHoOULD
a000 be provided.

4001 This status code allows overlapped dialing. With overlapped dialing, the client does not know the length of the
4002 dialing string. It sends strings of increasing lengths, prompting the user for more input, until it no longer receives a
4003 484 status response.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 112]

4004

4005

4006

4007

4008

4009

4010

4011

4012

4013

4014

4015
4016
4017
4018

4019

4020

4021

4022

4023

4024

4025

4026

4027

4028

4029

4030

4031

4032

4033

4034

4035

4036

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

23.4.21 485 Ambiguous

The callee address provided in the request was ambiguous. The responsentain a listing of possible
unambiguous addresses@ontact headers.

Revealing alternatives can infringe on privacy concerns of the user or the organizatimpn.sitbe
possible to configure a server to respond with status 404 (Not Found) or to suppress the listing of possible
choices if the request address was ambiguous.

Example response to a request with the UB&@example.com

485 Ambiguous SIP/2.0

Contact: Carol Lee <sip:carol.lee@example.com>
Contact: Ping Lee <sip:p.lee@example.com>
Contact: Lee M. Foote <sip:lee.foote@example.com>

Some email and voice mail systems provide this functionality. A status code separate from 3xx is used since
the semantics are different: for 300, it is assumed that the same person or service will be reached by the choices
provided. While an automated choice or sequential search makes sense for a 3xx response, user intervention is
required for a 485 response.

23.4.22 486 Busy Here

The callee’s end system was contacted successfully but the callee is currently not willing or able to take
additional calls at this end system. The respomge indicate a better time to call in thRetry-After

header. The user could also be available elsewhere, such as through a voice mail service. Status 600 (Busy
Everywhere)sHOULD be used if the client knows that no other end system will be able to accept this call.
23.4.23 487 Request Terminated

The request was terminated bBaE or CANCEL request. This response is never returned fOANCEL

request itself.

23.4.24 488 Not Acceptable Here

The response has the same meaning as 606 (Not Acceptable), but only applies to the specific entity addressed
by theRequest-URI and the request may succeed elsewhere.

23.5 Server Failure 5xx

5xx responses are failure responses given when a server itself has erred.

23.5.1 500 Server Internal Error

The server encountered an unexpected condition that prevented it from fulfilling the request. Thexlient
display the specific error condition, anthy retry the request after several seconds.

If the condition is temporary, the servery indicate when the client may retry the request using the
Retry-After header.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 113]

4037

4038

4039

4040

4041

4042

4043

4044

4045

4046

4047

4048

4049

4050

4051

4052

4053

4054

4055

4056

4057

4058

4059

4060

4061

4062

4063

4064

4065

4066

4067

4068

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

23.5.2 501 Not Implemented

The server does not support the functionality required to fulfill the request. This is the appropriate response
when a UAS does not recognize the request method and is not capable of supporting it for any user. (Proxies
forward all requests regardless of method.)

23.5.3 502 Bad Gateway

The server, while acting as a gateway or proxy, received an invalid response from the downstream server it
accessed in attempting to fulfill the request.

23.5.4 503 Service Unavailable

The server is currently unable to handle the request due to a temporary overloading (i.e., congestion) or
maintenance of the server. The implication is that this is a temporary condition which will be alleviated
after some delay. If known, the length of the delagy be indicated in &etry-After header. If ndRetry-
After is given, the clientusT handle the response as it would for a 500 response.

A client (proxy or UAC) receiving a 508HoULD attempt to forward the request to an alternate server. It
SHouLD NoT forward any other requests to that server for the duration specified Retrg-After header,
if present.

Note: The existence of the 503 status code does not imply that a server has to use it when becoming
overloaded. Some servayy wish to simply refuse the connection.

23.5.5 504 Server Time-out

The server did not receive a timely response from the server (e.g., a location server) it accessed in attempting
to process the request. Note that 408 (Request Timeout) should be used if there was no response within the
period specified in th&xpires header field from the upstream server.

23.5.6 505 Version Not Supported

The server does not support, or refuses to support, the SIP protocol version that was used in the request
message. The server is indicating that it is unable or unwilling to complete the request using the same major
version as the client, other than with this error message. The resgenseontain an entity describing why

that version is not supported and what other protocols are supported by that server. The format for such an
entity is not defined here and may be the subject of future standardization.

23.5.7 513 Message Too Large

The server was unable to process the request since the message length exceeded its capabilities.

23.6 Global Failures 6xx

6xx responses indicate that a server has definitive information about a particular user, not just the particular
instance indicated in thRequest-URI.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 114]

4069

4070

4071

4072

4073

4074

4075

4076

4077

4078

4079

4080

4081

4082

4083

4084

4085

4086

4087

4088

4089

4090
4091

4092

4093

4094

4095

4096

4097

4098

4099

4100

4101

4102

4103

4104

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

23.6.1 600 Busy Everywhere

The callee’s end system was contacted successfully but the callee is busy and does not wish to take the call
at this time. The responseay indicate a better time to call in thRetry-After header. If the callee does

not wish to reveal the reason for declining the call, the callee uses status code 603 (Decline) instead. This
status response is returned only if the client knows that no other end point (such as a voice mail system) will
answer the request. Otherwise, 486 (Busy Here) should be returned.

23.6.2 603 Decline

The callee’s machine was successfully contacted but the user explicitly does not wish to or cannot partici-
pate. The responseAy indicate a better time to call in tHeetry-After header.

23.6.3 604 Does Not Exist Anywhere

The server has authoritative information that the user indicated Reljeest-URI does not exist anywhere.

23.6.4 606 Not Acceptable

The user’s agent was contacted successfully but some aspects of the session description such as the requested
media, bandwidth, or addressing style were not acceptable.

A 606 (Not Acceptable) response means that the user wishes to communicate, but cannot adequately sup-
port the session described. The 606 (Not Acceptable) respomseontain a list of reasons in\Warning
header field describing why the session described cannot be supported. Reasons are listed in Section 22.41.
It is hoped that negotiation will not frequently be needed, and when a new user is being invited to join an
already existing conference, negotiation may not be possible. It is up to the invitation initiator to decide
whether or not to act on a 606 (Not Acceptable) response.

24 Locating a SIP Server

NOTE: Usage of SRV records is still under discussion with IESG, and therefore this section is likely to change
in subsequent versions of bis.

The SIP URI provides a way to identify a communications resource. For this URI to be useful in a SIP
element, a mechanism is necessary to take this URI and determine the IP address, port, and transport of one
or more servers that message destined for this URI should be sent to. We refer to the combination of an
IP address, port, and transport asext hop There are two ways to determine the next hop. The next hop
can be configured to be the same for all URIs. In this case, the next hop is referreddathsund proxy
This is commonly used in a user agent which is required to send all requests to a specific server for policy
processing or firewall traversal, for example. The outbound proxy can be configured by any mechanism,
including DHCP [39].

When the next hop is not configured, a mechanism is needed to determine one or more next hops from
the URI. Section 24.1 provides an algorithm which can be used to determine an ordered list of next hops.
Typically, the URI that is used is from tHeequest-URI of a request, in order to determine where to send
that request. However, in certain circumstances (which are documented in Section 19.2.2), a URI may have
been extracted from a response in order to determine where to send the response.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 115]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

4105 Once the ordered list of next hops is computed, they are used according to the procedures of Section
4106 24.2.

aor 24.1 Computing the List of Next Hops

4108 The algorithm for computing the list of next hops begins by setting three variables. The first variable is
a00 called thetarget address The target addresgusT be set to the contents of teaddr parameter of the

a0 URI, if present. If not present, MUsT be set to thdost element of the URI. The next variable is called the

a1 target port The target porinusT be set to theport element of the URI if present, else the target pautsT

a1z remain empty. The target transportsTt be set to the headertransport element of the URI if present, else
a1z the target transpomusT remain empty.

4114 The algorithm begins by examining the target address. If it contains a numeric IP address, the procedures
a5 Of Section 24.1..musT be followed. Otherwise, the target transport is examined. If it is empty, and the
a6 target port is either empty or contains a value of 5060, the procedures of Section\24slr. »e followed.

a17 If the target transport is not empty, and the target port is empty, the procedures of Sectionv241 .Be

aus followed if the target transport is UDP. If the target transport and target port are not empty, but the target
a9 port contains the default port for the target transport (5060 for UDP, TCP, and SCTP, 5061 for TLS), the
a120 procedures of Section 24.1MUST also be followed. Otherwise, the procedures of Section 240Sr be

a2 followed. Effectively, this case occurs when the target port and target transport don’'t “match”, taking into
a122 - account their defaults if empty.

a123 24.1.1 Numeric Destination Address

a124 The addresses of the next hops are all the sameyaisd be equal to the value of the target address.

4125 If the target transport is specified, and the element supports that transport, there is only a single next
a126 hop, using the target transport. If the target transport is not specified, the number of next hops is equal to
a127 the number of transports the element supports. The first nexmiugr be UDP, and the ordering of the

4128 remaining transports is at the discretion of the element.

4129 For each next hop, the port number is equal to the target port, if specified, otherwise the default port for
as that transport of that next hop.

4131 For example, consider the SIP USip:joe@1.2.3.4 present in th&kequest-URI of a request. A

a2 UAC wishes to use this URI to determine the set of next hops. The UAC supports UDP and TLS. It applies

a3z the algorithm in this section, and ends up with the following ordered list of IP address, port, transport:

sz {1.2.3.4, 5060, UDP}
ass {1.2.3.4, 5061, TLS}

a3 24.1.2 SRV Resolution of Host Name

a3 DNS SRV records are retrieved according to RFC 2782 [40]. The service identifier for DNS SRV records is
ass " _Sip”. If the target transport is not empty, only records for that transport are retrieved. (If the element does
4139 Not support the transport specified, the lookup fails.) If the target transport is empty, the element retrieves
a0 records for all transport protocols it supports. The results of all queries are merged and then sorted according
a4 to priority, independent of the transport protocol. If this list is empty, follow the procedure in Section 24.1.3.
4142 Note that the behavior above differs slightly from that described in RFC 2782. There, A records are
a143 consulted if the query for one transport protocol fails; here, we only abandon the SRV lookup if none of the

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 116]

4144

4145

4146

4147

4148

4149

4150

4151

4152

4153

4154

4155

4156

4157

4158
4159

4160

4161

4162

4163

4164

4165

4166

4167

4168

4169

4170

4171

4172

4173

4174

4175

4176

4177

4178

4179

4180

4181

4182

4183
4184

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

transport protocols supported by the client yield an answer.
ClientsmusT NOT cache query results except according to the rules in RFC 1035 [41].

24.1.3 Address Record Resolution of Host Name

When the target address is not a numeric IP, and there is a target port which does not match the default port
for the target transport, SRV records are not used. This is because SRV will normally provide ports, so if
one is provided that is not a default, this would seem to imply the the URL is trying to explicitly identify the
destination, rather than using SRV.

In this case, the client queries the DNS server for address records for the destination address. Address
records include A RR’s, AAAA RR’s, or other similar records, chosen according to the client's network
protocol capabilities.

The DNS address records are kept sorted in the order returned by the DNS server. For each address, the
port is set to the target port. For each address, the transport is set to the target transport if not empty, other-
wise, the target transportusT be UDP for the first address, and is at the discretion of the implementation
for the others.

OPEN ISSUE #221: Selection of transports for the case when multiple A records are returned requires more
work.

ClientsMmusT NOT cache query results except according to the rules in RFC 1035 [41].

24.2 Contacting the Next Hops

The algorithms of the previous section will result in an ordered list of next hops. This section describes how
that list is used.

If the ordered list was obtained through SRV, servers are contacted as specified in the “Usage rules”
section of RFC 2782 [40], which describes procedures for using the weight field to randomly select servers
amongst those of equal priority.

The SIP element takes the ordered list, and it tries to contact each next hop in turn, until a server
responds. If contacting a next hop results in a failure, as defined in the next paragraph, the element moves
to the next next hop in the list, until the list is exhausted. If the list is exhausted, then the element gives up.

FailuressHouLD be detected through network failure indications or timeouts. If the element sending the
message is a client sending a request using a client transaction, the client transaction will report any transport
layer failures. If the element sending the message is a client sending a request directly to the transport layer,
the transport layer will report any failures (See Section 19.4). In either case, thessientLD try the
next address. This will involve creating a new client transaction for it in the former case. The new request
MUST have a new branch ID in théia header. Note also that the new destination might be with a different
transport, which might require a change in other parts oMiaeheader.

Response failures are handled by the transport layer itself, which may retry the response to the next next
hop. See Section 19.2.2.

Failures can be detected through timeouts only if the element is a client sending a request through the
client transaction. In that case, if a timeout is reported by the client transaction, theselient.D try the
next next hop in the list.

OPEN ISSUE #219: It might be easier to encapsulate the SRV processing in one place, at the transport layer,
rather than the behavior being dependent on client v. server. This can only be done if merging of srv records across
transports is deprecated, along with failures based on timeouts.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 117]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

4185 Once a next hop is successfully contacted, that same next hop asdresde used for all subsequent
ass messages that share the safal-ID. More specifically, once a request is delivered successfully to a par-
a7 ticular next hop, all subsequent requests with the s@aikelD MUST be delivered to that next hop. Once a
w83 response is delivered successfully to a particular next hop, all subsequent responses with thallsidne
a189 MUST be delivered to that next hop. However, if that next hop fails, the selection algornitlhuss be re-run

as for the top.

4191 This is a change from RFC2543, which only used the same address for requests within a transaction. Broadening
4192 the scope t&all-ID helps, for example, ensure that requests with credentials after a challenge are delivered to the
4193 same server that issued the challenge.

4194 A stateless proxy can accomplish this, for example, by using the madudd a hash of theCall-ID

a0s Value as the uniform random number described in the weighting algorithm of RFC 2782 [40]. Hexe,
a9 the sum of weights within the priority class.

4197 OPEN ISSUE #220: This stateless selection algorithm doesn’t work if there are failures.

as 25 Examples

a99 In the following examples, we often omit the message body and the correspdddirignt-Length and
20 Content-Type headers for brevity.

w2 25.1 Registration

202 Bob registers on start-up. The message flow is shown in Figure 9.

- a

biloxi.com Bob's SIP
Registrar Phone

REGISTER F1 ‘
200 OK F2

Figure 9: SIP Registration Example

4203

20e F1 REGISTER Bob -> Registrar

4205

4206 REGISTER sip:registrar.biloxi.com

4207 Via: SIP/2.0/UDP 10.4.1.4:5060

4208 To: Bob <sip:bob@biloxi.com>

4209 From: Bob <sip:bob@biloxi.com>;tag=456248

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 118]

4210

4211

4212

4213

4214

4215

4216

4217

4218

4219

4220

4221

4222

4223

4224

4225

4226

4227

4228

4229

4230

4231

4232

4233

4234

4235

4236

4237

4238

4239

4240

4241

4242

4243

4244

4245

4246

4247

4248

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

Call-ID: 843817637684230@phone21.boxesbybob.com
CSeq: 1826 REGISTER

Contact: <sip:bob@10.4.1.4>

Expires: 7200

Contact-Length: 0

The registration expires after two hours. The registrar responds with a 200 OK:

F2 200 OK Registrar -> Bob

SIP/2.0 200 OK

Via: SIP/2.0/UDP 10.4.1.4:5060

To: Bob <sip:bob@biloxi.com>

From: Bob <sip:bob@biloxi.com>;tag=456248

Call-ID: 843817637684230@phone21.boxesbybob.com
CSeq: 1826 REGISTER

Contact: <sip:bob@10.4.1.4>

Expires: 7200

Contact-Length: 0

25.2 Session Setup

This example contains the full details of the example session setup in Section 4. The message flow is shown
in Figure 1.

F1 INVITE Alice -> atlanta.com proxy

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP 10.1.3.3:5060

To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710@10.1.3.3

CSeq: 314159 INVITE

Contact: <sip:alice@10.1.3.3>

Content-Type: application/sdp

Contact-Length: 142

(Alice’s SDP not shown)

F2 100 Trying atlanta.com proxy -> Alice

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 119]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

4249 SIP/2.0 100 Trying

4250 Via: SIP/2.0/UDP 10.1.3.3:5060

4251 To: Bob <sip:bob@biloxi.com>

4252 From: Alice <sip:alice@atlanta.com>;tag=1928301774
4253 Call-ID: a84b4c76e66710@10.1.3.3

4254 CSeq: 314159 INVITE

4255 Contact-Length: 0

4256

2257 F3 INVITE atlanta.com proxy -> biloxi.com proxy

4258

4259 INVITE sip:bob@biloxi.com SIP/2.0

4260 Via: SIP/2.0/UDP 10.1.1.1:5060;branch=77ef4¢c2312983.1
4261 Via: SIP/2.0/UDP 10.1.3.3:5060

4262 To: Bob <sip:bob@biloxi.com>

4263 From: Alice <sip:alice@atlanta.com>;tag=1928301774
4264 Call-ID: a84b4c76e66710@10.1.3.3

4265 CSeq: 314159 INVITE

4266 Contact: <sip:alice@10.1.3.3>

4267 Content-Type: application/sdp

4268 Contact-Length: 142

4269

4270 (Alice’s SDP not shown)

4271

22 F4 100 Trying biloxi.com proxy -> atlanta.com proxy
4273

4274 SIP/2.0 100 Trying

4275 Via: SIP/2.0/UDP 10.1.1.1:5060;branch=77ef4c2312983.1
4276 Via: SIP/2.0/UDP 10.1.3.3:5060

4277 To: Bob <sip:bob@biloxi.com>

4278 From: Alice <sip:alice@atlanta.com>;tag=1928301774
4279 Call-ID: a84b4c76e66710@10.1.3.3

4280 CSeq: 314159 INVITE

4281 Contact-Length: 0

4282

283 F5 INVITE biloxi.com proxy -> Bob

4284

4285 INVITE sip:bob@10.4.1.4 SIP/2.0

4286 Via: SIP/2.0/UDP 10.2.1.1:5060;branch=4b43c2ff8.1

4287 Via: SIP/2.0/UDP 10.1.1.1:5060;branch=77ef4¢c2312983.1
4288 Via: SIP/2.0/UDP 10.1.3.3:5060

4289 To: Bob <sip:bob@biloxi.com>

4290 From: Alice <sip:alice@atlanta.com>;tag=1928301774

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 120]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

4201 Call-ID: a84b4c76e66710@10.1.3.3
4292 CSeq: 314159 INVITE

4293 Contact: <sip:alice@10.1.3.3>

4294 Content-Type: application/sdp

4295 Contact-Length: 142

4296

4297 (Alice’s SDP not shown)

4298

299 F6 180 Ringing Bob -> biloxi.com proxy

4300

4301 SIP/2.0 180 Ringing

4302 Via: SIP/2.0/UDP 10.2.1.1:5060;branch=4b43c2ff8.1
4303 Via: SIP/2.0/UDP 10.1.1.1:5060;branch=77ef4¢c2312983.1
4304 Via: SIP/2.0/UDP 10.1.3.3:5060

4305 To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

4306 From: Alice <sip:alice@atlanta.com>;tag=1928301774
4307 Call-ID: a84b4c76e66710@10.1.3.3

4308 CSeq: 314159 INVITE

4309 Contact-Length: 0

4310

w1 F7 180 Ringing biloxi.com proxy -> atlanta.com proxy
4312

4313 SIP/2.0 180 Ringing

4314 Via: SIP/2.0/UDP 10.1.1.1:5060;branch=77ef4¢c2312983.1
4315 Via: SIP/2.0/UDP 10.1.3.3:5060

4316 To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

4317 From: Alice <sip:alice@atlanta.com>;tag=1928301774
4318 Call-ID: a84b4c76e66710@10.1.3.3

4319 CSeq: 314159 INVITE

4320 Contact-Length: 0

4321

a2 F8 180 Ringing atlanta.com proxy -> Alice

4323

4324 SIP/2.0 180 Ringing

4325 Via: SIP/2.0/UDP 10.1.3.3:5060

4326 To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

4327 From: Alice <sip:alice@atlanta.com>;tag=1928301774
4328 Call-ID: a84b4c76e66710@10.1.3.3

4329 CSeq: 314159 INVITE

4330 Contact-Length: 0

4331

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 121]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

w2 F9 200 OK Bob -> biloxi.com proxy

4333

4334 SIP/2.0 200 OK

4335 Via: SIP/2.0/UDP 10.2.1.1:5060;branch=4b43c2ff8.1
4336 Via: SIP/2.0/UDP 10.1.1.1:5060;branch=77ef4¢c2312983.1
4337 Via: SIP/2.0/UDP 10.1.3.3:5060

4338 To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

4339 From: Alice <sip:alice@atlanta.com>;tag=1928301774
4340 Call-ID: a84b4c76e66710@10.1.3.3

4341 CSeq: 314159 INVITE

4342 Contact: <sip:bob@10.4.1.4>

4343 Content-Type: application/sdp

4344 Contact-Length: 131

4345

4346 (Bob’s SDP not shown)

4347

s4s F10 200 OK biloxi.com proxy -> atlanta.com proxy
4349

4350 SIP/2.0 200 OK

4351 Via: SIP/2.0/UDP 10.1.1.1:5060;branch=77ef4¢c2312983.1
4352 Via: SIP/2.0/UDP 10.1.3.3:5060

4353 To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

4354 From: Alice <sip:alice@atlanta.com>;tag=1928301774
4355 Call-ID: a84b4c76e66710@10.1.3.3

4356 CSeq: 314159 INVITE

4357 Contact: <sip:bob@10.4.1.4>

4358 Content-Type: application/sdp

4359 Contact-Length: 131

4360

4361 (Bob’s SDP not shown)

4362

ae3 F11 200 OK atlanta.com proxy -> Alice

4364

4365 SIP/2.0 200 OK

4366 Via: SIP/2.0/UDP 10.1.3.3:5060

4367 To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf
4368 From: Alice <sip:alice@atlanta.com>;tag=1928301774
4369 Call-ID: a84b4c76e66710@10.1.3.3

4370 CSeq: 314159 INVITE

4371 Contact: <sip:bob@10.4.1.4>

4372 Content-Type: application/sdp

4373 Contact-Length: 131

4374

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 122]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

4375 (Bob’s SDP not shown)

4376

a7 F12 ACK Alice -> Bob

4378

4379 ACK sip:bob@10.4.1.4 SIP/2.0

4380 Via: SIP/2.0/UDP 10.1.3.3:5060

4381 To: Bob <sip:bob@biloxi.com>;tag=a6c85cf

4382 From: Alice <sip:alice@atlanta.com>;tag=1928301774
4383 Call-ID: a84b4c76e66710@10.1.3.3

4384 CSeq: 314159 ACK

4385 Contact-Length: 0

4386 The media session between Alice and Bob is now established.

4387 Bob hangs up first. Note that Bob’s SIP phone maintains its @®aq numbering space, which, in this
w383 example, begins with 231. Also not that since Bob is making the requestptaedFrom URLs and tags
a9 have been swapped.

4390

201 F13 BYE Bob -> Alice

4392

4393 BYE sip:alice@10.1.3.3 SIP/2.0

4304 Via: SIP/2.0/UDP 10.4.1.4:5060

4395 From: Bob <sip:bob@biloxi.com>;tag=a6c¢c85cf

4396 To: Alice <sip:alice@atlanta.com>;tag=1928301774
4397 Call-ID: a84b4c76e66710@10.1.3.3

43908 CSeq: 231 BYE

4399 Contact-Length: 0

4400

w01 F14 200 OK Alice -> Bob

4402

4403 SIP/2.0 200 OK

4404 Via: SIP/2.0/UDP 10.4.1.4:5060

4405 From: Bob <sip:bob@biloxi.com>;tag=a6c85cf

4406 To: Alice <sip:alice@atlanta.com>;tag=1928301774
4407 Call-ID: a84b4c76e66710@10.1.3.3

4408 CSeq: 231 BYE

4409 Contact-Length: 0

4410 The SIP Call Flows document [42] contains further examples of SIP messages.
411 ;; This buffer is for notes you don’t want to save, and for Lisp evaluation. ;; If you want to create a file,
412 first visit that file with C-x C-f, ;; then enter the text in that file’s own buffer.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 123]

4413

4414

4415

4416

4417

4418

4419

4420

4421

4422

4423

4424

4425

4426

4427

4428

4429

4430

4431

4432

4433

4434

4435

4436

4437

4438

4439

4440

4441

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

26 Augmented BNF for the SIP Protocol
All of the mechanisms specified in this document are described in both prose and an augmented Backus-
Naur Form (BNF) similar to that used by RFC 822 [12] and RFC 2234 [43]. Implementors will need to

be familiar with the notation in order to understand this specification. The augmented BNF includes the
following constructs:

name = definition

The name of a rule is simply the name itself (without any enclosigend “>") and is separated from
its definition by the equal “=" character. White space is only significant in that indentation of continuation
lines is used to indicate a rule definition that spans more than one line. Certain basic rules are in uppercase,
such as SP, LWS, HT, CRLF, DIGIT, ALPHA, etc. Angle brackets are used within definitions whenever
their presence will facilitate discerning the use of rule names.
"literal"
Quotation marks surround literal text. Unless stated otherwise, the text is case-insensitive.
rulel | rule2
Elements separated by a baf’(’are alternatives, e.g., “yg:0” will accept yes or no.

(rulel rule2)

Elements enclosed in parentheses are treated as a single element. Thus, “(eldrarjffetem)” allows the
token sequences “elem foo elem” and “elem bar elem”.

*rule

The character "™*” preceding an element indicates repetition. The full fornxis:” >*< m >element”
indicating at leask n > and at mosk m > occurrences of element. Default values are 0 and infinity so
that "*(element)” allows any number, including zero; "1*element” requires at least one; and "1*2element”
allows one or two.

[rule]

Square brackets enclose optional elements; "[foo bar]” is equivalent to "*1(foo bar)”.

N rule

Specific repetition: £n>(element)” is equivalent to<n>* <n>(element)”; that is, exactlygn> occur-

rences of (element). Thus 2DIGIT is a 2-digit number, and 3ALPHA is a string of three alphabetic charac-
ters.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 124]

4442

4443

4444

4445

4446

4447

4448

4449

4450

4451

4452

4453

4454

4455

4456

4457

4458

4459

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

#rule

A construct #” is defined, similar to *, for defining lists of elements. The full form is<' n >#< m >
element” indicating at leask n > and at mosk m > elements, each separated by one or more commas
(“,”) and oPTIONAL linear white space (LWS). This makes the usual form of lists very easy; a rule such as

(*LWS element *(*LWS " *LWS element))

can be shown as# element. Wherever this construct is used, null elements are allowed, but do not
contribute to the count of elements present. That (slement), , (element)” is permitted, but counts
as only two elements. Therefore, where at least one element is required, at least one non-null element
MUST be present. Default values are 0 and infinity so th@&l€ment” allows any number, including zero;
“1#element” requires at least one; and#2element” allows one or two.

; comment

A semi-colon, set off some distance to the right of rule text, starts a comment that continues to the end of
line. This is a simple way of including useful notes in parallel with the specifications.

26.1 Basic Rules

The following rules are used throughout this specification to describe basic parsing constructs. The US-
ASCII coded character set is defined by ANSI X3.4-1986.

OCTET = %x00-ff ; any 8-bit sequence of data
CHAR = %x00-7f ; any US-ASCII character (octets 0 - 127)
upalpha = "A”|"B”|"C"|"D"|"E"|"F" | "G”" | "H" | "I" |
"I KL "M | "N | PO | P QT | 'R |
"STTTT U VT WX | YT | 2
lowalpha = "a”|"b”|"c”|"d"|”"e”|"f"|"g" |"h" | " |
T |0 |
"s” |t | u” "y | "z"
alpha = lowalpha | upalpha
DIGIT = "0"|"1"| 27| "3" | 4" | 5" | 6" | T |
ngn | g7
alphanum = alpha | DIGIT
CTL = %Xx00-1f | %x7f ; (octets 0 — 31) an®EL (127)
CR = %d13; US-ASCII CR, carriage return character
LF = %0d10 ; US-ASCII LF, line feed character
SP = %d32 ; US-ASCII SP, space character
HT = %0d09 ; US-ASCII HT, horizontal tab character
CRLF = CR LF; typically the end of a line

The following are defined in RFC 2396 [9] for the SIP URI:

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 125]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

unreserved = alphanum | mark
mark = 1!_1! | H_H ‘ 1!.1! | 1!!” ‘ "~ | %N | mn
‘ n(n u)n
4460 escaped = "%” hex hex
4461 SIP header field values can be folded onto multiple lines if the continuation line begins with a space or

a2 horizontal tab. All linear white space, including folding, has the same semantics as SP. A ragipient
w3 replace any linear white space with a single SP before interpreting the field value or forwarding the message
ass downstream. This is intended to behave exactly as HTTP 1.1 as described in RFC2615 [8].

4465 LWS = *(SP|HT)[CRLF]1*(SP | HT); linear whitespace

4466 To separate the header name from the rest of value, a colon is used, which, by the above rule allows
as7 Whitespace before, but no line break, and whitespace after, including a linebreak. The HCOLON defines
ases this construct.

4469 HCOLON = *(SP|HT)"" LWS

4470 The TEXT-UTF8 rule is only used for descriptive field contents and values that are not intended to be
wn interpreted by the message parser. Word$T&EXT-UTF8 contain characters from the UTF-8 character
a2 set (RFC 2279 [11]). Th@ EXT-UTF8-TRIM rule is used for descriptive field contents that ao¢quoted

473 Strings, where leading and trailing LWS is not meaningful. In this regard, SIP differs from HTTP, which
aa72 Uses the ISO 8859-1 character set.

TEXT-UTF8 = *(TEXT-UTF8char | LWS)
TEXT-UTF8-TRIM = *TEXT-UTF8char *(*LWS TEXT-UTF8char)
TEXT-UTF8char %x21-7e

UTF8-NONASCII
%xc0-df TUTF8-CONT
%xe0-ef 2UTF8-CONT
%xfO-f7 3UTF8-CONT
%xf8-fb AUTF8-CONT
%xfc-fd BUTF8-CONT
%x80-bf

UTF8-NONASCII

aa7s UTF8-CONT

4476 A CRLF is allowed in the definition oTEXT-UTF8 only as part of a header field continuation. It is
w77 expected that the foldingWsS will be replaced with a singl&P before interpretation of theEXT-UTF8
aars value.

4479 Hexadecimal numeric characters are used in several protocol elements. Some elements (authentication)
a0 force hex alphas to be lower case.

asg1 LHEX = digit|"a”|"b"|"c”|"d" | "e” | "f"

4482 Others allow mixed upped and lower case

4483 hex = LHEX|"A”|"B"|"C"|"D"|"E" | "F"

4484 Many SIP header field values consist of words separated by LWS or special characters. Unless otherwise

wgs Stated, tokens are case-insensitive. These special chamactersbe in a quoted string to be used within a
ass parameter value.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 126]

4487

4488

4489

4490

4491

4492

4493

4494

4495

4496

4497

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

token = 1*(alphanum | ™" | "2 | " 9" | AT T | AT T |)
separators = (" |")"|"<"|">" | "@" |

TN <>

T

"7} | SP | HT

When tokens are used or separators are used between elements, whitespace is often allowed before or
after these characters:

MINUS = LWS """ LWS ; minus

DOT = LWS " LWS; period

PERCENT = LWS %" LWS; percent

BANG = LWS"I”" LWS ; exclamation

PLUS = LWS"+"LWS; plus

STAR = LWS ™ LWS ; askerisk

TILDE = LWS ™ LWS ; tilde

EQUAL = LWS"="LWS; equal

LPAREN = LWS"(" LWS; left parenthesis
RPAREN = LWS")" LWS; right parenthesis
LANGLE = LWS "<" LWS; left angle bracket
RAQUOT = ">"LWS; right angle quote

LAQUOT = LWS "< left angle quote

RANGLE = LWS ">"LWS ; right angle bracket
BAR = LWS "—"LWS ; vertical bar

ATSIGN = LWS"@” LWS; atsign

COMMA = LWS"”LWS ; comma

SEMI = LWS ™" LWS ; semicolon

COLON = LWS """ LWS; colon

DQUOT = LWS <"> LWS ; double quotation mark
LDQUOT = LWS <">; open double quotation mark
RDQUOT = <">LWS; close double quotation mark
LBRACK = LWS"{" LWS; left square bracket
RBRACK = LWS"}” LWS ; right square bracket

Comments can be included in some SIP header fields by surrounding the comment text with parentheses.
Comments are only allowed in fields containing “comment” as part of their field value definition. In all other
fields, parentheses are considered part of the field value.

comment
ctext

LPAREN *(ctext | quoted-pair | comment) RPAREN
<any TEXT-UTF8 excluding“(* and*)">

A string of text is parsed as a single word if it is quoted using double-quote marks. In quoted strings,
quotation marks (") and backslashé$ eed to be escaped.

quoted-string
gdtext

(LWS <”> *(qdtext | quoted-pair) <">)
LWS | %x21 | %x23-5b | %x5d-7e
| UTF8-NONASCII

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 127]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

4498 The backslash charactei() MAY be used as a single-character quoting mechanism only within quoted-
as99 String and comment constructs. Unlike HTTP/1.1, the characters CR and LF cannot be escaped by this
as00 mechanism to avoid conflict with line folding and header separation.

4501 quoted-pair = "\" (%x00 - %x09 | %x0b | %x0c | %x0e - %x7f)
SIP-URL = "sip:” [userinfo "@"”] hostport
url-parameters [headers |
userinfo = [user | telephone-subscriber [”:” password]]
user = *(unreserved | escaped | user-unreserved)
user-unreserved = & |"=" "S5 |T
password = *(unreserved | escaped |
& |||)
hostport = host["" port]
host = hostname | IPv4address | IPv6reference
hostname = *(domainlabel ") toplabel ["]
domainlabel = alphanum
| alphanum *(alphanum | ”-") alphanum
4502 toplabel = alpha | alpha *(alphanum | ™-”) alphanum
IPvdaddress = 1*3DIGIT " 1*3DIGIT " 1*3DIGIT ".” 1*3DIGIT
IPvereference = "[" IPv6address "]
IPv6address = hexpart[”:” IPv4address]
hexpart = hexseq | hexseq "::" [hexseq] | "::" [hexseq]
hexseq = hex4 *(""" hex4)
hex4 1*4HEX
4503 port = 1*DIGIT

url-parameters
url-parameter

transport-param

= *(" url-parameter)

= transport-param | user-param | method-param

|ttl-param | maddr-param | other-param
= "transport="

(Hudpﬂ | HthH | ”Sctp” ‘ ”tISH

| other-transport)

other-transport = token

user-param = "user=" ("phone” | "ip” | other-user)
other-user = token

method-param = "method=" Method

ttl-param = ttl="ttl

maddr-param
other-param

= "maddr=" host
= pname ["=" pvalue]

pname = 1*paramchar

pvalue = 1*paramchar

paramchar = param-unreserved | unreserved | escaped
4504 param-unreserved = "[" ||| 77| &N | T | 78T

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 128]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

headers = "?" header *("&” header)

header = hname "=" hvalue

hname = 1*(hnv-unreserved | unreserved | escaped)

hvalue = *(hnv-unreserved | unreserved | escaped)
4505 hnv-unreserved = "["|"]"|"/"|"?" | "7 | "+ | 8"

SIP-message
Request

Request | Response

Request-Line

*(message-header)

CRLF

[message-body |

Method SP Request-URI SP SIP-Version CRLF
SIP-URL | absoluteURI

"SIP/2.0”

Request-Line
Request-URI
4506 SIP-Version

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 129]

4507

INTERNET-DRAFT

message-header

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 130]

draft-ietf-sip-rfc2543bis-05.ps

Accept
Accept-Encoding
Accept-Language
Alert-Info

Allow
Authentication-Info
Authorization
Call-ID

Call-Info

Contact
Content-Disposition
Content-Encoding
Content-Language
Content-Length
Content-Type
CSeq

Date

Error-Info

Expires

From

In-Reply-To
Max-Forwards
MIME-Version
Organization
Priority
Proxy-Authenticate
Proxy-Authorization
Proxy-Require
Record-Route
Require
Retry-After

Route

Server

Subject

Supported
Timestamp

To

Unsupported
User-Agent

Via

Warning
WWW-Authenticate

October 26, 2001

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

Method = VINVITE” | "ACK” | "OPTIONS” | "BYE”
| "CANCEL" | "REGISTER” | extension-method
extension-method = token
option-tag = token
Response
= Status-Line
*(message-header)
CRLF
4508 [message-body]
Status-Line = SIP-version SP Status-Code SP Reason-Phrase CRLF
Status-Code
= Informational
| Redirection
| Success
| Client-Error
| Server-Error
| Global-Failure
| extension-code
4509 extension-code = 3DIGIT
Reason-Phrase
= *<TEXT-UTF8, excludingCR, LF>
Informational
= "100” ; Trying
| 7"180” ; Ringing
| ’181" ; Call Is Being Forwarded
| 7"182" ; Queued
4510 | 7183” ; Session Progress
4511 Success = "200" ;OK
Redirection "300” ; Multiple Choices

| 301" ; Moved Permanently
| "302” ; Moved Temporarily
| 305" ; Use Proxy

|

4512 "380”" ; Alternative Service

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 131]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

Client-Error = "400" ; Bad Request

| "401" ; Unauthorized

| 7402” ; Payment Required

| "403" ; Forbidden

| 404" ; Not Found

| "405" ; Method Not Allowed
| 406" ; Not Acceptable

| "407" ; Proxy Authentication Required
| "408” ; Request Timeout

| 409" ; Conflict

| 7"410" ; Gone

| 7413” ; Request Entity Too Large

| "414” ; Request-URI Too Large

| 7"415” ; Unsupported Media Type

| "420” ; Bad Extension

| 480" ; Temporarily not available

| "481" ; Call Leg/Transaction Does Not Exist
| 7482" ; Loop Detected

| "483" ; Too Many Hops

| 484" ; Address Incomplete

| 485" ; Ambiguous

| "486”" ; Busy Here

| 487" ; Request Terminated

4513 | "488" ; Not Acceptable Here
"500" ; Internal Server Error
"501” ; Not Implemented
"502" ; Bad Gateway

"503" ; Service Unavailable
"504”" ; Server Time-out
"505” ; SIP Version not supported

Server-Error

4514

Global-Failure = 7"600" ; Busy Everywhere
| 603" ; Decline

| 7604” ; Does not exist anywhere
| 606" ; NotAcceptable

4515

Accept = "Accept” HCOLON
#(media-range [accept-params |)
media-range = ("

| (type LWS /" "™*" LWS)
| (type SLASH subtype)
) *(SEMI parameter)
accept-params = SEMI "q” EQUAL gvalue *(accept-extension)
4516 accept-extension SEMI token [EQUAL (token | quoted-string)]

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 132]

4517

4518

4519

4520

4521

4522

4523

4524

INTERNET-DRAFT

Accept-Encoding
codings

content-coding
gvalue

Accept-Language

language-range

Alert-Info

generic-param

Allow =

Authorization
credentials
digest-response

username
username-value
digest-uri
digest-uri-value
message-qop
cnonce
chonce-value
nonce-count
dresponse
request-digest

AuthenticationInfo
nextnonce

callid
Cal-ID = ("Ca

Call-Info

draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

"Accept-Encoding” HCOLON

1#(codings [SEMI "q” EQUAL gvalue] LWS)
= (content-coding | ™")

token

= ("0"["”0*3DIGIT])

— ("1 03(07)])

"Accept-Language” HCOLON
1#(language-range [SEMI "g” EQUAL qgvalue])
((1*8ALPHA *(MINUS 1*8ALPHA)) — ™)

"Alert-Info” HCOLON #

(LAQUOT URI RAQUOT *(COLON generic-param))
token [EQUAL (token | host |

quoted-string)]

"Allow” HCOLON 1#Method

= "Authorization” HCOLON credentials
= LWS "Digest” digest-response
= 1#(username | realm | nonce | digest-uri
| dresponse | [algorithm] | [cnonce]
| [opaque] | [message-qop]
| [nonce-count] | [auth-param])
= "username” EQUAL username-value
= quoted-string
= "uri” EQUAL digest-uri-value
= request-uri ; As specified by HTTP/1.1
= "qop” EQUAL qop-value
= "cnonce” EQUAL cnonce-value
= nonce-value
= "nc” EQUAL nc-value
= "response” EQUAL request-digest
= LDQUOT 32LHEX RDQUOT

"Authentication-info” HCOLON 1#(digest — nextnonce)
"nextnonce” EQUAL nonce-value

token [ATSIGN token]

[I-1D”

"i") HCOLON callid

"Call-Info” HCOLON # (LAQUOT URI RAQUOT

*(SEMI info-param))

info-param

Rosenberg,Schulzrinne,Cam

"purpose” EQUAL ("icon”

'Ilinfo"
"card” | token) | generic-param

arillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 133]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

Contact = ("Contact” | 'm”) HCOLON
(STAR | (1# ((name-addr | addr-spec)
*(SEMI contact-params))))
name-addr = [display-name] LAQUOT addr-spec RAQUOT
addr-spec = SIP-URL | URI
ss25 display-name = LWS (*token | quoted-string)
contact-params = Q" EQUAL qgvalue
| "action” EQUAL “proxy” | "redirect”
| “expires” EQUAL delta-seconds |

LDQUOT SIP-date RDQUOT
| contact-extension
contact-extension = generic-param

gvalue ("0"["" 0*3DIGIT])
| ("1 [0%3('0)])
4527 delta-seconds = 1*DIGIT
Content-Disposition = "Content-Disposition” HCOLON

disposition-type *(SEMI disposition-param)
"render” | "session” | "icon” | "alert”

| disp-extension-token

"handling” EQUAL

disposition-type

disposition-param

("optional” | "required”
other-handling) | generic-param
other-handling = token
4528 disp-extension-token = token
Content-Encoding = ("Content-Encoding” | "e”) HCOLON
4529 1#content-coding

Content-Language
language-tag

"Content-Language” HCOLON 1l1#language-tag
primary-tag *(MINUS subtag)

primary-tag = 1*8ALPHA
4530 subtag = 1*8ALPHA
4531 Content-Length = ("Content-Length” | "I") HCOLON 1*DIGIT
4532 Content-Type = ("Content-Type” | "c”) HCOLON media-type
4533 CSeq = "CSeq’HCOLON 1*DIGIT Method

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 134]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

Date = "Date” HCOLON SIP-date
SIP-date rfc1123-date
rfc1123-date wkday COMMA SP datel SP time SP "GMT”
datel 2DIGIT SP month SP 4DIGIT
; day month year (e.g., 02 Jun 1982)
time = 2DIGIT ™" 2DIGIT ™" 2DIGIT
; 00:00:00 - 23:59:59

wkday = "Mon” | "Tue” | "Wed”
‘ HThuH | HFriﬂ | HSatH ‘ ”Sun”
month = "Jan” | "Feb” | "Mar” | "Apr”
‘ HMay” | ”Jun” | HJUIH | ”Aug”
4534 "Sep” | "Oct” | "Nov” | "Dec”
Error-Info = "Error-Info” HCOLON #
(LAQUOT URI RAQUOT
4535 *(SEMI generic-param))
Expires = "Expires” HCOLON (SIP-date | delta-seconds)

From = ("From” | "f") HCOLON
(name-addr | addr-spec)
*(SEMI from-param)

from-param = tag-param | generic-param
4536 tag-param = "tag” EQUAL token
4537 In-Reply-To = ’"In-Reply-To” HCOLON 1# callid
4538 Max-Forwards = “Max-Forwards” HCOLON 1*DIGIT
4539 MIME-Version = "MIME-Version” HCOLON 1*DIGIT " 1*DIGIT
4540 Organization = "Organization” HCOLON TEXT-UTF8-TRIM

Priority = "Priority” HCOLON priority-value

priority-value = "emergency” | "urgent” | "normal”

| "non-urgent” | other-priority

4541 other-priority = token

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 135]

4542

4543

4544

4545

4546

4547

4548

4549

4550

INTERNET-DRAFT

Proxy-Authenticate
challenge
digest-challenge

realm
realm-value
domain

URI

nonce
nonce-value
opaque
stale
algorithm

gop-options
gop-value

Proxy-Authorization
Proxy-Require =
Record-Route =

rr-param =
Require =

Retry-After

draft-ietf-sip-rfc2543bis-05.ps

"Proxy-Authenticate” HCOLON 1#challenge
= LWS "Digest” digest-challenge
= 1#(realm | [domain]| nonce |
[opaque] | [stale] | [algorithm] |
[gop-options] | [auth-param])
= "realm” EQUALS realm-value
= quoted-string
= "domain” EQUAL LDQUOT URI
(1*SP URI') RDQUOT
= absoluteURI | abs_path
= "nonce” EQUAL nonce-value
= quoted-string
= "opaque” EQUAL quoted-string
= "stale” EQUAL ("true” | "false”)
= "algorithm” EQUAL ("MD5” | "MD5-sess” |

token)
= "gop” EQUAL LDQUOQT 1#qop-value RDQUOT
= "auth” | "auth-int” | token

= "Proxy-Authorization” HCOLON credentials
"Proxy-Require” HCOLON 1#option-tag

"Record-Route” HCOLON 1#

(name-addr *(SEMI rr-param))
generic-param

"Require” HCOLON 1#option-tag

"Retry-After” HCOLON

(SIP-date | delta-seconds)
[comment]| *(SEMI retry-param)

retry-param =

"duration” EQUAL delta-seconds |

generic-param

Route = "Route” HCOLON 1# (name-addr

*(SEMI rr-param))
Server = "Server” HCOLON 1*(product — comment)
product = token [SLASH product-version]
product-version = token
Subject = ("Subject”|"s”) HCOLON TEXT-UTF8-TRIM
Supported = (”"Supported” | k") HCOLON O#option-tag

October 26, 2001

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 136]

4551

4552

4553

4554

4555

4556

4557

INTERNET-DRAFT

Timestamp =

delay

To =

draft-ietf-sip-rfc2543bis-05.ps

"Timestamp” HCOLON *(DIGIT)
["”*(DIGIT)] [delay]
*(DIGIT) [" *(DIGIT)]

("To” | "t”) HCOLON (. name-addr |

addr-spec) *(SEMI to-param)

to-param =

Unsupported =

User-Agent =

Via

via-params

via-hidden
via-ttl
via-maddr
via-received
via-branch
via-extension
sent-protocol

protocol-name
protocol-version
transport

sent-by
ttl

Warning
warning-value
warn-code
warn-agent

warn-text
pseudonym

tag-param | generic-param

"Unsupported” HCOLON 1#option-tag

"User-Agent” HCOLON 1*(product — comment)

WWW-Authenticate

("Via” | "v") HCOLON

1#(sent-protocol sent-by

*(SEMI via-params) [comment])
via-hidden | via-ttl | via-maddr

| via-received | via-branch

| via-extension

"hidden”

"ttI” EQUAL ttl

"maddr” EQUAL host

"received” EQUAL host

"branch” EQUAL token
generic-param

protocol-name SLASH protocol-version
SLASH transport

"SIP” | token

token

"UDP” | "TCP” | "TLS” | "SCTP”

| other-transport

host [COLON port]

1*3DIGIT

: 0to 255

"Warning” HCOLON 1#warning-value
warn-code SP warn-agent SP warn-text
3DIGIT

(host [COLON port]) | pseudonym

; the name or pseudonym of the server adding
; the Warning header, for use in debugging
quoted-string

token

= "WWW-Authenticate” HCOLON challenge

October 26, 2001

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 137]

4558

4559

4560

4561

4562
4563

4564

4565

4566

4567

4568

4569

4570

4571

4572

4573

4574

4575

4576

4577

4578

4579

4580

4581

4582

4583

4584

4585

4586

4587

4588

4589

4590
4591
4592
4593
4594

4595

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

27 |ANA Considerations

All new or experimental method names, header field names, and status codes used in SIP applications
SHOULD be registered with IANA in order to prevent potential naming conflicts. RESOMMENDED that
new “option- tag”s and “warn-code”s also be registered. Before IANA registration, new protcol elements

SHOULD be characterized in an Internet- Draft or, preferably, an RFC.
For Internet-Drafts, IANA is requested to make the draft available as part of the registration database.

By the time an RFC is published, colliding names may have already been implemented.

When a registration for either a new header field, new method or new status code is created based on
an Internet-Draft, and that Internet-Draft becomes an RFC, the person that performed the registration
notify IANA to change the registration to point to the RFC instead of the Internet-Draft.

Registrations should be sentitma@iana.org

27.1 Option Tags

Option tags are used in headers sucRagquire, Supported, Proxy-Require andUnsupported in support
of SIP compatibility mechanisms for extensions. For more on the use of option tags in these headers see
Section 21.2. The option tag itself is a string that is associated with a particular SIP option (e.g. an extension)
in order to identify the option in signaling between SIP endpoints.

When registering a new SIP option with IANA, the following informati@sT be provided:

e Name and description of option. The namay be of any length, busHouLD be no more than
twenty characters long. The nam@sT consist ofalphanum (See Section 26) characters only

e A listing of any new SIP header fields, header parameter fields or parameter values defined by this
option. A SIP optiormusT NOT redefine header fields or parameters defined in either RFC 2543, any
standards-track extensions to RFC 2543, or other extensions registered through IANA

¢ Indication of who has change control over the option (for example, IETF, ISO, ITU-T, other interna-
tional standardization bodies, a consortium or a particular company or group of companies)

e A reference to a further description, if available, for example (in order of preference) an RFC, a
published paper, a patent filing, a technical report, documented source code or a computer manual

¢ Contact information (postal and email address)

This procedure has been borrowed from RTSP [4] and the RTP AVP [44].

27.2 Warn-Codes

Warning codes provide information supplemental to the status code in SIP response messages when the
failure of the transaction results from a Session Description Protocol (SDP, [6]). Wam-code” values
can be registered with IANA as they arise.

The “warn-code” consists of three digits. A first digit of “3” indicates warnings specific to SIP.

Warnings 300 through 329 are reserved for indicating problems with keywords in the session description,
330 through 339 are warnings related to basic network services requested in the session description, 370
through 379 are warnings related to quantitative QoS parameters requested in the session description, and
390 through 399 are miscellaneous warnings that do not fall into one of the above categories.

1xx and 2xx have been taken by HTTP/1.1.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 138]

4596

4597

4598

4599

4600

4601

4602

4603

4604

4605

4606

4607

4608

4609

4610

4611

4612

4613

4614

4615

4616

4617

4618

4619

4620

4621

4622

4623

4624

4625

4626

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

27.3 Header Field Names

Header field names do not require working group or working group chair review prior to IANA registration,
but sHouLD be documented in an RFC or Internet- Draft before IANA is consulted.
The following information needs to be provided to IANA in order to register a new header field name:

e The name and email address of the individual performing the registration.
e The name of the header field being registered.
¢ A compact form version for that header field, if one is defined.

e The name of the draft or RFC where the header field is defined.

A copy of the draft or RFC where the header field is defined.

Header fieldssHouLD NOT use theX- prefix notation anduusT NOT duplicate the names of header
fields used by SMTP or HTTP unless the syntax is a compatible superset and the semantics are similar.
Some common and widely used header fieldyy be assigned one-letter compact forms (Section 7.3.3).
Compact forms can only be assigned after SIP working group review. In the absence of this working group,
a designated expert reviews the request.

27.4 Method and Response Codes

Because the status code space is limited, they do require working group or working group chair review, and
MUST be documented in an RFC or Internet draft. The same procedures apply to new method names.

The following information needs to be provided to IANA in order to register a new response code or
method:

e The name and email address of the individual performing the registration.

The number of the response code or name of the method being registered.

The default reason phrase for that status code, if applicable.

The name of the draft or RFC where the method or status code is defined.

A copy of the draft or RFC where the method or status code is defined.

28 Changes Made in Version 00

e Indicated that UAC should send bdBlANCEL andBYE after a retransmission fails.

e Added semicolon and question mark to the list of unreserved characters tmahpart of SIP URLS
to handletel: URLSs properly.

e Uniform handling of if hop counMax-Forwards: return 483. Note that this differs from HTTP/1.1
behavior, where only OPTIONS and TRACE allow this header, but respond as the final recipient when
the value reaches zero.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 139]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

4627 e Clarified that a forking proxy sendSCKs only forINVITE requests.

4628 ¢ Clarified wording of DNS caching. Added paragraph on “negative caching”, i.e., what to do if one
4629 of the hosts failed. It is probably not a good idea to simply drop this host from the list if the DNS ttl
4630 value is more than a few minutes, since that would mean that load balancing may not work for quite a
4631 while after a server is brought back on line. This will be true in particular if a server group receives a
4632 large number of requests from a small number of upstream servers, as is likely to be the case for calls
4633 between major consumer ISPs. However, without getting into arbitrary and complicated retry rules, it
4634 seems hard to specify any general algorithm. Might it be worthwhile to simply limit the “black list”
4635 interval to a few minutes?

4636 e Added optionalCall-Info and Alert-Info header fields that describe the caller and information to be
4637 used in alerting. (Currently, avoided use of “purpose” qualification since it is not yet clear whether
4638 rendering content without understanding its meaning is always appropriate. For example, if a UAS
4639 does not understand that this header is to replace ringing, it would mix both local ring tone and the
4640 indicated sound URL.) TBD!

4641 e SDP “s="lines can't be empty, unfortunately.

4642 e Noted thatmaddr could also contain a unicast address, $0ULD contain the multicast address if

4643 the request is sent via multicast (Section 22.40.

4644 e Clarified that responses are sent to po¥ia sent-by value.

4645 e Added “other-*" to theuser URL parameter and thidide andContent-Disposition headers.

4646 ¢ Clarified generation of timeout (408) responses in forking proxies and mentidxies header.

4647 e Clarified thatCANCEL andINVITE are separate transactions (Fig. 7). Thus, INITE request

4648 generates a 487 (Request Terminated)GANCEL or BYE arrives.

4649 e Clarified thatRecord-Route sHOULD be inserted in every request, but that the route, once estab-
4650 lished, persists. This provides robustness if the called UAS crashes.

4651 e Emphasized that proxy, redirect, registrar and location servers are logical, not physical entities and
4652 that UAC and UAS roles are defined on a request-by-request basis. (Section 6)

4653 e In Section 22.40, noted that tmeaddr andreceived parameters also need to be encrypted when
4654 doing Via hiding.

4655 e Simplified Fig. 7 to only shoWwNVITE transaction.
4656 e Added definition of the use @@ontact (Section 22.10) foOPTIONS.
4657 e Added HTTP/RFC822 heade®ontent-Language andMIME-Version.

4658 e Added note in minimal section indicating that UAs need to support UDP.
4659 ¢ Added explanation explaining what a UA should do when receiving an il TE with a tag.
4660 ¢ Clarified UA and proxy behavior for 302 responses.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 140]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

4661 e Added details on what a UAS should do when receiving a ta¢ig®diTE request for an unknown call
4662 leg. This could occur if the UAS had crashed and the UAC senddMVfEFE or if the BYE got lost
4663 and the UAC still believes to be in the call.

4664 ¢ Added definition ofContact in 4xx, 5xx and 6xx to “redirect” to more error details.

4665 e Added note to forking proxy description to gatheAuthenticate from responses. This allows several
4666 branches to be authenticated simultaneously.

4667 e Changed URI syntax to use URL escaping instead of quotation marks.

4668 e Changed SIP URL definition to reference RFC 2806tédephone-subscriber part.

4669 e Clarified that theTo URI should basically be ignored by the receiving UAS except for matching
4670 requests to call legs. In particuldip headers with a scheme or name unknown to the callee should
4671 be accepted.

4672 e Clarified thatmaddr is to be added by any client, either proxy or UAC.

4673 e Added response code 488 to indicate that there was no common media at the particular destination.
4674 (606 indicates such failure globally.)
4675 e In Section 22.19, noted that registration updates can shorten the validity period.

4676 ¢ Added note to enclose the URI for digest in quotation marks. The BNF in RFC 2617 is in error.

4677 e Clarified that registrars uskuthorization andWWW-Authenticate, not proxy authentication.

4678 e Added note in Section 22.10 thdt€aders” are copied fromContact into the new request.

4679 e Changed URL syntax so that port specifications have to have at least one digit, in line with other URL
4680 formats such as “http”. Previously, an empty port number was permissible.

4681 ¢ In SDP section, added a section on how to add and delete streamB\NIfeEs.

4682 e IETF-blessed extensions now have short names, withiautetf. prefix.

4683 e Cseqis unigue within a call leg, not just within a call (Section 22.16).

4684 e Added IPv6 literal addresses to the SIP URL definition, according to RFC 2732 [45]. Modified the

4685 IPv4 address to limit segments to at most three digits.

4686 e modify registration procedure so that it explicitly references the URL comparison. Updates with
4687 shorter expiration time are now allowed.

4688 e For send-only media, SDP still must indicate the address and port, since these are needed as destina-
4689 tions for RTCP messages.

4690 e Changed references regarding DNS SRV records from RFC 2052 to RFC 2782, which is now a Pro-

4691 posed Standard. Integrated SRV into the search procedure and removed the SRV appendix. The only
4692 visible change is that protocol and service names are now prefixed by an underscore. Added wording
4693 that incorporates the precedencearaddr.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 141]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

4694 e Allow parameters irRecord-Route andRoute headers.

4695 e In Table 1, listudp as the default value for the transport parameter in SIP URI.

4696 e Removed sentence thktom can be encrypted. It cannot, since the header is needed for call-leg
4697 identification.

4698 ¢ Added note that a UAC only copiesTa tag into subsequent transactions if it arrives in a 200 OK to
4699 anINVITE. This avoids the problem that occurs when requests get resubmitted after receiving, say,
4700 a 407 (or possibly 500, 503, 504, 305, 400, 411, 413, maybe even 408). Under the old rules, these
4701 requests would have a tag, which would force the called UAS to reject the request, since it doesn’t
4702 have an entry for this tag.

4703 e Loop detection has been modified to taketbguest-URI into account. This allows the same request

4704 to visit the server twice, but with different request URIs (“spiral”).

4705 e Elaborated on URL comparison and comparisofraim/To fields.

4706 e Addednp-queried user parameter.

4707 e Changedag syntax from UUID to token, since there’s no reason to restrict it to hex.

4708 e Added Content-Disposition header based on earlier discussions about labeling what to do with a
4709 message body (part).

4710 e Clarification: proxies must insefb tags for locally generated responses.

ar11 ¢ Clarification: multicast may be used for subsequent registrations.

4712 e Feature: Addedupported header. Needed if client wants to indicate things the server can usefully
4713 return in the response.

4714 e Bug: TheFrom, To, and Via headers were missing extension parameters. Hingryption and

4715 Response-Key header fields now “officially” allow parameters consisting only of a token, rather
4716 than just “token = value”.

a7 e Bug: Allow was listed as optional in 405 responses in Table 2. It is mandatory.

4718 e Added: “A BYE request from either called or calling party terminates any peniiMiTE, but the

4719 INVITE request transactiomusT be completed with a final response.”

4720 e Clarified: “If an INVITE request for an existing session fails, the session description agreed upon in
4721 the last successfUNVITE transaction remains in force.”

4722 ¢ Clarified what happens if twiNVITE requests meet each other on the wire, either traveling the same
4723 or in opposite directions:

4724 A UAC musT NOT issue anotheiNVITE request for the same call leg before the pre-

4725 vious transaction has completed. A UAS that receiveNAfITE before it sent the final

4726 response to atNVITE with a lower CSeq numbermusT return a 400 (Bad Request)

4727 response andiusT include aRetry-After header field with a randomly chosen value of

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 142]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

4728 between 0 and 10 seconds. A UA that receiveBNAATE while it has anlNVITE transac-

4729 tion pending, returns a 500 (Internal Server Error) and also includRetrg-After header

4730 field.

a731 e Expires header clarified: limits only duration dNVITE transaction, not the actual session. SDP
4732 does the latter.

4733 e Theln-Reply-To header was added.

4734 e There were two incompatible BNFs fo¥WW-Authenticate. One defined for PGP, and the other
4735 borrowed from HTTP. For basic or digest:

4736 WWW-Authenticate: basic realm="Wallyworld"

4737 and for pgp:

4738 WWW-Authenticate: pgp; realm="Wallyworld"

4739 The latter is incorrect and the semicolon has been removed.

4740 e Added rules folRoute construction from called to calling UA.

4741 e We now allowAccept andAccept-Encoding in BYE andCANCEL requests. There is no particular

4742 reason not to allow them, as both requests could theoretically return responses, particularly when
4743 interworking with other signaling systems.

4744 e PGP “pgp-pubalgorithm” allows server to request the desired public-key algorithm.

4745 ¢ ABNF rules now describe tokens explicitly rather than by subtraction; explicit character enumeration
4746 for CTL, etc.

a747 ¢ Registrars should be careful to check ate header as the expiration time may well be in the past,
4748 as seen by the client.

4749 e Content-Length is mandatory; Table 2 erroneously marked it as optional.

4750 e User-Agent was classified in a syntax definition as a request header rather than a general header.
4751 ¢ Clarified ordering of items to be signed and include realm in list.

4752 e Allow Record-Route in 401 and 484 responses.

4753 e Hop-by-hop headers need to precede end-to-end headers only if authentication is used.

4754 e 1xx message bodiesAy now contain session descriptions.

4755 e Changed references to HTTP/1.1 and authentication to point to the latest RFCs.

4756 e Added 487 (Request terminated) status response. It is issued if the original request was terminated
4757 via CANCEL or BYE.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 143]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

4758 e The spec was not clear on the identification of a call leg. Section 1.3 says it's the combinafmn of

4759 From, andCall-ID. However, requests from the callee to the caller havathendFrom reversed, so

4760 this definition is not quite accurate. Additionally, the “tag” field should be included in the definition
4761 of call leg. The spec now says that a call leg is defined as the combination of local-address, remote-
4762 address, and call-id, where these addresses include tags.

4763 Text was added to Section 6.21 to emphasize thaFtben andTo headers designate the originator

4764 of the request, not that of the call leg.

4765 e All URI parameters, excephethod, are allowed in &equest-URI. Consequently, also updated the

4766 description of which parameters are copied from 3xx responses in Sec. 22.10.

4767 e The use of CRLF, CR,or LF to terminate lines was confusing. Basically, each header line can be
4768 terminated by a CR, LF, or CRLF. Furthermore, the end of the headers is signified by a “double
4769 return”. Simplified to require sending of CRLF, but require senders to receive CR and LF as well and
4770 only allow CR CR, LF LF in addition to double CRLF as a header-body separator.

a1 ¢ Round brackets i€ontact header were part of the HTTP legacy, and very hard to implement. They
4772 are also not that useful and were removed.

4773 e The spec said that a proxy is a back-to-back UAS/UAC. This is almost, but not quite, true. For
4774 example, a UAS should insert a tag into a provisional response, but a proxy should not. This was
4775 clarified.

4776 e Section 6.13 in the RFC begins mid-paragraph after the BNF. The following text was misplaced in the
4777 conversion to ASCII:

4778 Even if the “display-name” is empty, the “name-addr” form MUST be used if the “addr-
4779 spec” contains a comma, semicolon or question mark.

a0 29 Changes Made in Version 01

4781 e Uniform syntax specification for semicolon parameters:
Foo = "Fo0” ".” something *(”;” foo-param)
foo-param = "bar” "="token
4782 | generic-param
4783 e Removedhp-queried user parameter since this is now part of a tel URL extension parameter.
4784 e In SDP section, noted that if the capabilities intersection is empty, a dummy format list still has to be
4785 returned due to SDP syntax constraints. Previously, the text had required that no formats be listed.
4786 (Brian Rosen)
4787 ¢ Reorganized tables 2 and 3 to show proxy interaction with headers rather than “end-to-end” or “hop-

4788 by-hop”.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 144]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

a0 30 Changes Made in Version 02

4790 e Added “or UAS” in description ofreceived headers in Section 22.40. This makes the response
a791 algorithm work even if the last IP address in ¥ is incorrect.

4792 e Tentatively removed restriction th@ANCEL requests cannot havoute headers. (Billy Biggs)

4793 ¢ Tentatively added\Iso header foBYE requests, as it is widely implemented and a simple means to
4794 implement unsupervised call transfer. Subject to removal if there is protest. (Billy Biggs)

4795 ¢ If aproxy sends arequest by UDP (TCP), the spec did not disallow placing TCP (UDP) in the transport

4796 parameter of th&ia field, which it should. Added a note that the transport protocol actually used is
4797 included.

4798 ¢ No default value for the parameter in Contact is defined. This is not strictly needed, but is useful for
4799 consistent behaviors at recursive proxies and at UAC’s. Now 0.5.

4800 ¢ Clarified thatTo andFrom tag values should be different to simplify request matching when calling
4801 oneself.

4802 e Removed ability to carry multiple requests in a single UDP packet (Section 22.14).

4803 ¢ Added note thatAllow MAY be included in requests, to indicate requestor capabilities for the same
4804 call ID.

4805 e Added note to Section 22.17 indicating that registrausT include theDate header to accomodate
4806 UAs that do not have a notion of absolute time.

4807 e Added note emphasizing that non-SIP URIs are permissidREGISTER.

4808 e Rewrote the server lookup section to be more precise and more like pseudo-code, with nesting instead
4809 of “gotos”.

4810 ¢ Removed note

4811 Note that the two URLs example.com and example.com:5060, while considered equal,

4812 may not lead to the same server, as the former causes a DNS SRV lookup, while the latter

4813 only uses the A record.

4814 since that is no longer the case.

4815 e Emphasized that proxies have to forward requests with unknown methods.

4816 ¢ Aligned definition of call leg with URI comparison rules.

4817 ¢ Required that second branch parameter be globally unique, so that a proxy can distinguish different
4818 branches in spiral scenarios similar to the following, with record-routing in place:

4819 B --> Pl - > P2 oo > Pl e > A

4820 BYE B B/1 P1/2,B/1 P2/3,P1/2,B/1 P1/4,P2/3,P1/2,B/1

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 145]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

4821 Here, A/1 denotes theia entry with host A and branch parameter 1. Also, this requires updating the
4822 definition of isomorphic requests, since tRequest-URI is the same for alBYE that are record-

4823 routed.

4824 e RemovedVia hiding from spec, for the following reasons:

4825 — complexity, particularly hidden “gotchas” that surface at various points (as in this instance);

4826 — interference with loop detection and debugging;

4827 — Unlike HTTP, where via-hiding makes sense since all data is contained in the request or re-
4828 sponseVia-hiding in SIP by itself does nothing to hide the caller or callee, as address informa-
4829 tion is revealed in a number of places:

4830 x Contact;

4831 * Route/Record-Route;

4832 x SDP, including the o= and c=lines;

4833 x possibly accidental leakage Wser-Agent header andCall-ID headers.

4834 — Unless this is implemented everywhere, the feature is not likely to be very useful, without the
4835 sender having any recourse such as “don't route this request unless you can hide”. It appears
4836 that almost all existing proxies simply ignore the Hide header.

4837 e AddedError-Info header field.

ws 31 Changes Made in Version 03

4839 e Description ofRoute andRecord-Route moved to separate section, which is new. All UAs must

4840 now support this mechanism.

4841 e Removed status code 411, since it cannot occur (Jonathan Rosenberg, James Jack).

4842 e RewroteRecord-Route section to reflect new mechanism. In particular, requests from callee to caller
4843 now use the same path as in the opposite direction, without substitutifigaheheader field values.

4844 Themaddr parameter is now optional.

4845 ¢ Disallowed SIP URLSs that only have a password, without a user name. The prototype from RFC 1738
4846 also doesn'’t allow this.

4847 e Allow registrar to set the expiration time.

4848 e CSeq (Section 22.16) is counted within a call leg, not a call.

4849 e Removed wording that connection closing is equivaler@&NCEL or 500. This does not work for

4850 connections that are used for multiple transactions and has other problems.

4851 e Cleaned up CSeq section. Removed text about inse@iBgg method when it is absent. Clarified

4852 that CSeq increments for all requests, not just invite. Clarified that all out of order requests, not
4853 just out of order INVITE, are rejected with a 400 class response. Clarified the meaning of “initial”
4854 sequence number. Clarified that after a request forks, each 200 OK is a separate call leg, and thus,
4855 separate CSeq space. Clarified that CSeq humbers are independent for each direction of a call leg.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 146]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

4856 e Massive reorganization and cleanup of the SDP section. Introduced the concept of the offer-answer
4857 model. Clarified that set of codecs in m line are usable all at the same time. Inserted size restriction
4858 on representation of values in o line. Explicitly describe forked media. New media lines for adding
4859 streams appear at the bottom of the SDP (used to say append).

4860 e Removed Also.

4861 ¢ Added text to Require and Proxy-Require sections, making it a SHOULD to retry the request without
4862 the unsupported extension.

4863 ¢ Added text to section on 415, saying that UAC SHOULD retry the request without the unsupported
4864 body.

4865 ¢ Added text to section on CANCEL and ACK, clarifying much of the behavior.
4866 e Modified Content-Type to indicate that it can be present even if the body is empty.
4867 e From tags mandatory

4868 e Old text said that if you hang up before sendingfK, you need not send th&CK. That is wrong.
4869 Text fixed so that adCK is always sent.

4870 e Old text said that if you never got a response taNMITE, the UAC should send both aNVITE and
4871 CANCEL. This doesn’t make sense. Rahter, it should do nothing and consider the call terminated.

4872 e Added text that says pending requests are responded to with a 4B¥ E & received.

4873 e Updated section 2.2, so that its clear tBaintact is not used wittBYE.

4874 ¢ Clarified Via processing rules. Added text on handling loops when proxies route on headers besides
4875 the request URI. Added text on handling case when sent-by contains a domain name. Added text to
4876 6.47 on opening TCP connections to send responses upstream.

4877 e Clarified that a 1xx with an unknown xx is not the same as the 100 response.

4878 e Removed usage &etry-After in REGISTER.

4879 ¢ Clarified usage of persistent connections.

4880 e Clarified that servers supporting HTTP basic or digest in rfc2@U&T be backwards compatible
4881 with RFC 2069.

4882 e Clarified thatACK contains the same branch ID as the request its acknowledging.

4883 e Added definitions for spiral, B2BUA.

4884 e Rephrased definitions for UAC, UAS, Call, call-leg, caller, callee, making them more concrete.
4885 e URL comparison ignores parameters not present in both URLs only for unknown parameters.
4886 e Clarified that * inContact is used only irREGISTER with Expires header zero. Mentioned * case
4887 in section onContact syntax.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 147]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

4888 e Removed text that says a UA can inse€antact in 2xx that indicates the address of a proxy. Not

4889 likely to work in general.

4890 e Removed SDP text about aligning media streams within a media type to handle certain crash and
4891 restart cases.

4892 e Receiving a 481 to a mid-call request terminates that call leg. Agreed upon at IETF 49.

4893 e Introduced definition of regular transaction - niXiYITE exceptingACK andCANCEL.

4894 e Clarified rules for overlapping transactions.

4895 e Forking proxiesmusT be stateful (used to sayHoULD). Proxies that send requests on multicast
4896 MUST be stateful (used to say nothing)

4897 e Text added recommending that registrars authorize that entfyoim field can register address-of-
4898 record in theTo field.

4899 e Forwarding of non-100 provisionals upstream in a proxy changed §@ouULD to MUST.

4900 e Removed PGP.

w1 32 Changes Made in Version 04

4902 e Removed Unsupported as a request header from Table 3.

4903 ¢ Clarified SDP procedures for changing IP address and port. Specifically, spelled out the duration for
4904 which a UA needs to received media on the old port and address.

4905 e Added text in the SDP session which recommends that the answerer use the same ordering of codecs
4906 as used on the offer, in order to help ensure symmetric codec operation under normal conditions.

4907 e Fixed bug in the example in the SDP section, where the new media line was listed at the top. Should
4908 have been the bottom.

4909 ¢ Authorization credentials are cached based on the URL ofTithbeader, not the entiféo header as

4910 10.48 implied.

4011 e Section 10.31, orProxy-Authenticate, indicated that a server responds with a 401 if the client
4912 guessed wrong. This is incorrect. It should be 407.

4913 e Section 10.14, removed motivational text ab@antact allowing an INVITE to be routed directly

4914 between end systems, since its confusing. Some have interpreted to meRedbed-Route is

4915 ignored wherContact is present.

4916 e Added reference to SCTP RFC.
4917 e Updated 2.2 to allow non-SIP URLs @PTIONS and 2xx toOPTIONS.

4918 e Fixed example in 20.5. AddetiCK for 487, and addedio tag to 487 response.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 148]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

4919 e Clarified further URL comparisons. Its only URL parameters without defaults that are ignored if not
4920 present in both URLSs.

4921 e Section 1.5.2, UDP mandatory for all. TCP isaouLD for UA, MUST for proxy, registrar, redirect

4922 servers.

4923 e Brought syntax foiContact, Via, and the SIP URL into alignment between the text and postscript
4924 versions.

4925 e Updated the text in section 6 which said that the ordering of header fields follows HTTP, with the

4926 exception ofVia, where order matters. However, the HTTP spec says that order matters, so this
4927 sentence is redundant and confusing. The sentence was removed.

4928 ¢ Added e lines to SDP examples in the Examples section.

4929 ¢ RewroteAllow discussion, more formally defining its semantics and usage cases.

4930 e Updated text on 604 status, to indicate that its based oRéugiest-URI, not theTo.

4931 e Added response registrations to IANA considerations. Provided more details on registration process.
4932 ¢ Clarified that only a UAS rejects a request becauséthiag doesn’'t match a local value.

4933 e Clarified that stateless proxies need to route based on static criteria only.

4934 e Proxy and UACCANCEL generation upon 2xx, 6xx if it forked is nowsadioULD; used to be a1AY .

4935 e Added text saying that a UASHoULD send aBYE if it never gets anrACK for a 2xx establishing a
4936 call leg.

4937 e Added text saying that a UASHoOULD send a rdNVITE if it never gets anACK for a 2xx to a
4938 redNVITE.

4939 e Added text on 503 processing, indicating that a client should try a different server when receiving a
4940 503, and that a proxy shouldn’t forward a 503 upstream unless it can't service any other requests.
4941 e Removed motivational text in Section 10.43dia headers since its not consistent with the text before
4942 it.

4943 e Changed IPSec reference to RFC2401, from RFC1825.

4944 e Updated retransmission defininition in 17.3.4 to be consistent with the rest of the spec.
4945 ¢ Softened the language for insertion of the transport param in the record-route. Specifically, it can be
4946 inserted in private networks where it is known apriori that the specific transport is supported.

4947 e Updated definition of B2BUA.

4948 e Added text to section on 420 processing, which mandates that the client retry the request without
4949 extensions listed in thensupported header in the response.
4950 e Allow Authentication-Info header to be used for HTTP digest.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 149]

4951

4952

4953

4954

4955

4956

4957

4958

4959

4960

4961

4962

4963

4964

4965

4966

4967

4968

4969

4970

4971

4972

4973

4974

4975

4976

4977

4978

4979

4980

4981

4982

4983

4984

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

33

Changes Made in Version 05

Updated Table 2 to reflect th&tror-Info is a response header in 3xx-6xx responses (it was previously
listed as a request header).

RemovedNVWW-Authenticate as a request header from Table 3. Authentication of responses is now
done according to RFC2617.

Updated theAccept, Accept-Encoding and Accept-Language sections. More details on precise
semantics for the various requests and responses is now provided. Presence of these headers is now
a sHoulLD for INVITE and 2xx toINVITE when a non-default value is present. Extra emphasis is
placed on including théccept-Language in INVITE and 2xx in order to support internationaliza-

tion. Usage of these three header€BNCEL has been removed since it makes no sense.

Generalized local outbound processing rules in Section 16.4.1 to cover the case where the UAS is
using a local outbound proxy which was not in the initial call setup path.

Updated record-routing section, so that a proxy can insert a transport param if it knows that the proxy
on one side supports the specific transport (the previous text required the proxy to know whether the
proxies on both sides supported the specific transport).

AddedAuthentication-Info to Section 10.
Clarified the meaning of Table 2 for responses.
Updated Table 1 to reflect that maddr is no longer mandatoReitord-Route.

Updated Table 3 so that header fields in respons@€tdare never listed as optional, mandatory, etc.
- only not applicable. This is because responsesA& are not allowed. Also improved wording in
Section 5.1.1 to clarify that theneusT NOT be responses &CK.

Updated SRV procedures. Old text said to treat a failure to contact a server as a 4xx, which would
stop the SRV processing. But, this is not so. Sentence was stricken.

Updated 12.1 to clarify that 2xx INVITE responses ST contain session descriptions.
ChangedJser-Agent to a request header in Table 3.

Updated SDP section, so that a UA cannot change the SDP when it gelfd\élTé= with no SDP.
Clarified Appendix B that a unicast offetusT have a unicast response.

Clarified that any request can be record-routed, but it may not be used by the UA, depending on the
method.

non-2xx responses IIVITE no longer retransmitted over TCP.

Removed lower bound on T1 and T2 in private networks, which can use lower values. Furthermore,
T1 can be smaller on the public Internet if proper RTT estimation is used.

UAS Cannot send BYE for a call leg until it receiveACK, in order to eliminate a race condition
betweerBYE and 200 OK.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 150]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

4985 e Support of CR or LF alone as line terminators, as opposed to CRLF, is no longer required.

4986 e Client behavior on receipt of a 3xx to tBIVITE is now specified, and it is no longer forbidden to

4987 generate a 3xx. This is heeded to maintain the idempotentM\OITE, as a proxy might redirect

4988 without knowing its a 3xx.

4989 e CANCEL cannot be sent before a 1xx is received, in order to eliminate race condition between request
4990 andCANCEL.

4991 e Termination of the client and server transactions is now based entirely on timeouts, rather than re-
4992 transmission counters, in order to unify TCP and UDP behavior. Timeout values scale as a function
4993 of the RTT estimate, defined as T1. For reliable transports, many of these timers are now set to zero.
4994 Many timeouts differ than in bis-04.

4995 e Added a working RTT estimation algorithm using tfénestamp header, and specified it to be

4996 compliant to RFC 2988.

4997 e UAS accepting requests with unknown schemes in the URI if¢higeld is now aRECOMMENDED

4998 instead ofsHouLD. This reflects the fact that processing a request whefidHield doesn’t match is

4999 a matter of policy.

5000 ¢ Bodies are now allowed in any request and response, incl@kgCEL, although there may not be

5001 any semantics associated with that.

5002 e Supporting ofINVITE without SDP is now a1usT (no strength was previously specified).

5003 e Registration procedures for visiting, which had a few sentences in bis-04, have been removed. Roam-
5004 ing is a complex issue, and should be treated elsewhere.

5005 e Bis-04 mandated that a 2xx responsdRIBGISTER contain expire<Contact parameters indicating

5006 the expiration time of a contact. This behavior has now been made consistent with requests, so that
5007 the expiration time of a contact is the same in either case: the expires param is used first if present,
5008 then theExpires header if present, else one hour for SIP URLSs.

5009 e Action parameter in contact registrations is deprecated.

5010 e 2xXx to REGISTER MUST contain current contacts. This was just@ouLD in bis-04.

5011 e Multicast operation radically changed. Now, the treatment is no different than unicast. That is, only
5012 the first non-1xx response to a multicast request will be used. This is a natural consequence of the
5013 layering now applied to the protocol. This still enables anycast types of functions, mirroring the real
5014 usage of registrar discovery.

5015 e To completely separate transport rules from transaction rules, the rule in bis-04 that said a UAC
5016 SHOULD keep a connection opened until a response is received, has been turned into a timer recom-
5017 mendation. Specifically, the spec now says that®Es OMMENDED that connections be kept opened

5018 for a minimum interval of sufficient duration to guarantee, with high probability, that responses are
5019 sent over the same connections as a request.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 151]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

5020 e Re-use of existing connections for new requests to the same address and pom ET@MMENDED,

5021 it was only amAY in bis-04.

5022 e Moadification of headers below th&uthorization header by proxies is no longer disallowed, since the
5023 only mechanism that useklthorization in that way, PGP, has been deprecated previously.

5024 e Authentication of registrations NnORECOMMENDED; no strength was defined previously.

5025 e Registering of new headers with IANA is nasHOULD; no strength was defined previously.

5026 e Proxy aggregation of challenges nowgaouLD; no strength was defined previously.

5027 e Server support of basic authentication downgraded fserauLD to MAY .

5028 e UAC resubmitting requests with credentials after a challenge upgradedviromo SHOULD.

5029 e TLS is nowRECOMMENDED as the transport layer security for SIP signaling.

5030 e UA recursion on a redirect is nogHOULD; no strength was assigned previously.

5031 e UA reuse of headers in a recursed request is sB@ULD; no strength was assigned previously.

5032 e Security considerations added foall-Info andAlert-Info.

5033 e Proxies no longer forward a 6xx immediately on receiving it. Instead, ANCEL pending

5034 branches immediately. This avoids a potential race condition that would result in a UAC getting a
5035 6xx followed by a 2xx. In all cases except this race condition, the result will be the same - the 6xx is
5036 forwarded upstream.

5037 e The term call-leg has been eliminated from the spec; a more generic term, dialog, is used in its place.
5038 e For SRV processing, subsequent requests with the €attdD (as opposed to the same transaction
5039 in bis-04) are sent to the same server.

5040 e SRV processing generalized to deal with the fact that the default port is transport dependent.

5041 e Per IESG request, draft-ietf-sip-serverfeatures has been integrated into bis.

5042 e Per IESG request, draft-ietf-sip-100rel will be integrated into bis. This is marked with a placeholder
5043 in this dratft.

5044 e The BNF has been converted from implicit LWS to explicit LWS.

5045 e Caching of responses in a proxy to avoid redoing location server lookups used tsHxeuaD.
5046 Caching behavior for responses is now fully encapsulated in the transaction processing.
5047 e Proxy usage of SRV in processiipute headers upgraded froeHOULD to MUST.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 152]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

s 34 Acknowledgments

sos0 We wish to thank the members of the IETF MMUSIC and SIP WGs for their comments and suggestions.
sos0 Detailed comments were provided by Brian Bidulock, Jim Buller, Neil Deason, Dave Devanathan, Cdric
sos1 Fluckiger, Yaron Goland, Bernie Hneisen, Phil Hoffer, Christian Huitema, Jean Jervis, Gadi Karmi, Peter
sos2 Kjellerstedt, Anders Kristensen, Jonathan Lennox, Gethin Liddell, Keith Moore, Vern Paxson, Moshe J.
sos3 Sambol, Chip Sharp, Igor Slepchin, Robert Sparks, Eric Tremblay., and Rick Workman.

5054 Brian Rosen provided the compiled BNF.

5055 This work is based, inter alia, on [46, 47].

s5s 35 Authors’ Addresses

sos7 Authors addresses are listed alphabetically for the editors, the writers, and then the original authors of RFC
sos8 2543,

sos9 Jonathan Rosenberg

sos0 dynamicsoft

ser 72 Eagle Rock Ave

s062 East Hanover, NJ 07936

so63 USA

soe4 €lectronic mail;jdrosen@dynamicsoft.com

so,es Henning Schulzrinne

soe6 Dept. of Computer Science

so67 Columbia University

soes 1214 Amsterdam Avenue

sos0 New York, NY 10027

so70 USA

sor1 electronic mail:schulzrinne@cs.columbia.edu

so2 Gonzalo Camarillo

so73 Ericsson

sora Advanced Signalling Research Lab.

sors FIN-02420 Jorvas

so76 Finland

so77 electronic mail:Gonzalo.Camarillo@ericsson.com

sors Alan Johnston

so79 WorldCom

sos0 100 South 4th Street

so81 St. Louis, MO 63102

so82 USA

so83 €lectronic mail:alan.johnston@wcom.com

so84 JOn Peterson
s0ss NeuStar, Inc

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 153]

5086

5087

5088

5089

5090

5091

5092

5093

5094

5095

5096

5097

5098

5099

5100

5101

5102

5103

5104

5105

5106

5107

5108

5109

5110

5111

5112

5113

5114

5115

5116

5117

5118

5119

5120

5121

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps

1800 Sutter Street, Suite 570

Concord, CA 94520

USA

electronic mail;jon.peterson@neustar.com

Robert Sparks

dynamicsoft, Inc.

5100 Tennyson Parkway

Suite 1200

Plano, Texas 75024

USA

electronic mailirsparks@dynamicsoft.com

Mark Handley
ACIRI
electronic mail:mjh@aciri.org

Eve Schooler

Computer Science Department 256-80
California Institute of Technology
Pasadena, CA 91125

USA

electronic mail:schooler@cs.caltech.edu

References

October 26, 2001

[1] R. Pandya, “Emerging mobile and personal communication systdElEF Communications Maga-

zine Vol. 33, pp. 44-52, June 1995.

[2] R. Braden, Ed., L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource ReSerVation protocol
(RSVP) — version 1 functional specification,” Request for Comments 2205, Internet Engineering Task

Force, Sept. 1997.

[3] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: a transport protocol for real-time

applications,” Request for Comments 1889, Internet Engineering Task Force, Jan. 1996.

[4] H. Schulzrinne, A. Rao, and R. Lanphier, “Real time streaming protocol (RTSP),” Request for Com-

ments 2326, Internet Engineering Task Force, Apr. 1998.

[5] M. Handley, C. Perkins, and E. Whelan, “Session announcement protocol,” Request for Comments

2974, Internet Engineering Task Force, Oct. 2000.

[6] M. Handley and V. Jacobson, “SDP: session description protocol,” Request for Comments 2327, Inter-

net Engineering Task Force, Apr. 1998.

[7] S. Bradner, “Key words for use in RFCs to indicate requirement levels,” Request for Comments 2119,

Internet Engineering Task Force, Mar. 1997.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 154]

5122

5123

5124

5125

5126

5127

5128

5129

5130

5131

5132

5133

5134

5135

5136

5137

5138

5139

5140

5141

5142

5143

5144

5145

5146

5147

5148

5149

5150

5151

5152

5153

5154

5155

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

[8]

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee, “Hypertext
transfer protocol — HTTP/1.1,” Request for Comments 2616, Internet Engineering Task Force, June
1999.

[9] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform resource identifiers (URI): generic syntax,”

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Request for Comments 2396, Internet Engineering Task Force, Aug. 1998.

T. Berners-Lee, L. Masinter, and M. McCalhill, “Uniform resource locators (URL),” Request for Com-
ments 1738, Internet Engineering Task Force, Dec. 1994.

F. Yergeau, “UTF-8, a transformation format of ISO 10646,” Request for Comments 2279, Internet
Engineering Task Force, Jan. 1998.

D. Crocker, “Standard for the format of ARPA internet text messages,” Request for Comments 822,
Internet Engineering Task Force, Aug. 1982.

A. Vaha-Sipila, “URLSs for telephone calls,” Request for Comments 2806, Internet Engineering Task
Force, Apr. 2000.

N. Freed and N. Borenstein, “Multipurpose internet mail extensions (MIME) part two: Media types,”
Request for Comments 2046, Internet Engineering Task Force, Nov. 1996.

W. R. StevensTCP/IP illustrated: the protocolsvol. 1. Reading, Massachusetts: Addison-Wesley,
1994,

J. C. Mogul and S. E. Deering, “Path MTU discovery,” Request for Comments 1191, Internet Engi-
neering Task Force, Nov. 1990.

D. Eastlake, S. Crocker, and J. Schiller, “Randomness recommendations for security,” Request for
Comments 1750, Internet Engineering Task Force, Dec. 1994.

P. Hoffman, L. Masinter, and J. Zawinski, “The mailto URL scheme,” Request for Comments 2368,
Internet Engineering Task Force, July 1998.

D. Meyer, “Administratively scoped IP multicast,” Request for Comments 2365, Internet Engineering
Task Force, July 1998.

E. M. Schooler, “A multicast user directory service for synchronous rendezvous,” Master’'s Thesis CS-
TR-96-18, Department of Computer Science, California Institute of Technology, Pasadena, California,
Aug. 1996.

S. Donovan, “The SIP INFO method,” Request for Comments 2976, Internet Engineering Task Force,
Oct. 2000.

J. Rosenberg and H. Schulzrinne, “An offer/answer model with sdp,” Internet Draft, Internet Engineer-
ing Task Force, Oct. 2001. Work in progress.

R. Rivest, “The MD5 message-digest algorithm,” Request for Comments 1321, Internet Engineering
Task Force, Apr. 1992.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 155]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

sise [24] V. Paxson and M. Allman, “Computing TCP'’s retransmission timer,” Request for Comments 2988,
5157 Internet Engineering Task Force, Nov. 2000.

siss [25] T. Dierks and C. Allen, “The TLS protocol version 1.0,” Request for Comments 2246, Internet Engi-
5159 neering Task Force, Jan. 1999.

si0 [26] S. Kentand R. Atkinson, “Security architecture for the internet protocol,” Request for Comments 2401,
5161 Internet Engineering Task Force, Nov. 1998.

sie2 [27] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and L. Stewart, “HTTP
5163 authentication: Basic and digest access authentication,” Request for Comments 2617, Internet Engi-
5164 neering Task Force, June 1999.

sie5 [28] J. Franks, P. Hallam-Baker, J. Hostetler, P. Leach, A. Luotonen, E. Sink, and L. Stewart, “An exten-
5166 sion to HTTP : Digest access authentication,” Request for Comments 2069, Internet Engineering Task
5167 Force, Jan. 1997.

sie8 [29] J. Galvin, S. Murphy, S. Crocker, and N. Freed, “Security multiparts for MIME: multipart/signed and
5169 multipart/encrypted,” Request for Comments 1847, Internet Engineering Task Force, Oct. 1995.

si0 [30] J. Postel, “User datagram protocol,” Request for Comments 768, Internet Engineering Task Force,
5171 Aug. 1980.

si2 [31] J. Postel, “DoD standard transmission control protocol,” Request for Comments 761, Internet Engi-
5173 neering Task Force, Jan. 1980.

si74 - [32] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang,
5175 and V. Paxson, “Stream control transmission protocol,” Request for Comments 2960, Internet Engi-
5176 neering Task Force, Oct. 2000.

si77 [33] F. Dawson and T. Howes, “vcard MIME directory profile,” Request for Comments 2426, Internet
5178 Engineering Task Force, Sept. 1998.

si79 [34] G. Good, “The LDAP data interchange format (LDIF) - technical specification,” Request for Com-
5180 ments 2849, Internet Engineering Task Force, June 2000.

sis1 [35] R. Troost and S. Dorner, “Communicating presentation information in internet messages: The content-
5182 disposition header,” Request for Comments 1806, Internet Engineering Task Force, June 1995.

sis3 [36] R. Braden and Ed, “Requirements for internet hosts - application and support,” Request for Comments
5184 1123, Internet Engineering Task Force, Oct. 1989.

sis5 [37] J. Palme, “Common internet message headers,” Request for Comments 2076, Internet Engineering
5186 Task Force, Feb. 1997.

s187 [38] H. Alvestrand, “IETF policy on character sets and languages,” Request for Comments 2277, Internet
5188 Engineering Task Force, Jan. 1998.

si89 [39] G. Nair and H. Schulzrinne, “DHCP option for SIP servers,” Internet Draft, Internet Engineering Task
5190 Force, Mar. 2001. Work in progress.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 156]

5191

5192

5193

5194

5195

5196

5197

5198

5199

5200

5201

5202

5203

5204

5205

5206

5207

5208

5209

5210

5211

5212

5213

5214

5215

5216

5217

5218

5219

5220

5221

5222

5223

5224

5225

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-05.ps October 26, 2001

[40] A. Gulbrandsen, P. Vixie, and L. Esibov, “A DNS RR for specifying the location of services (DNS
SRV),” Request for Comments 2782, Internet Engineering Task Force, Feb. 2000.

[41] P. V. Mockapetris, “Domain names - implementation and specification,” Request for Comments 1035,
Internet Engineering Task Force, Nov. 1987.

[42] A. Johnston, S. Donovan, R. Sparks, C. Cunningham, D. Willis, J. Rosenberg, K. Summers, and
H. Schulzrinne, “SIP telephony call flow examples,” Internet Draft, Internet Engineering Task Force,
Apr. 2001. Work in progress.

[43] D. Crocker, Ed., and P. Overell, “Augmented BNF for syntax specifications: ABNF,” Request for
Comments 2234, Internet Engineering Task Force, Nov. 1997.

[44] H. Schulzrinne, “RTP profile for audio and video conferences with minimal control,” Request for
Comments 1890, Internet Engineering Task Force, Jan. 1996.

[45] R. Hinden, B. Carpenter, and L. Masinter, “Format for literal IPv6 addresses in URL's,” Request for
Comments 2732, Internet Engineering Task Force, Dec. 1999.

[46] E. M. Schooler, “Case study: multimedia conference control in a packet-switched teleconferencing
system,”Journal of Internetworking: Research and Experigneel. 4, pp. 99-120, June 1993. ISI
reprint series ISI/RS-93-359.

[47] H. Schulzrinne, “Personal mobility for multimedia services in the InternetZuropean Workshop on
Interactive Distributed Multimedia Systems and Services (IDNERrlin, Germany), Mar. 1996.

Full Copyright Statement

Copyright (c) The Internet Society (2001). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and
this paragraph are included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to the Internet Society or
other Internet organizations, except as needed for the purpose of developing Internet standards in which case
the procedures for copyrights defined in the Internet Standards process must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or
itS successors or assigns.

This document and the information contained herein is provided on an "AS IS” basis and THE IN-
TERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WAR-
RANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,SchoolerExpires April 2002[Page 157]

